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Abstract –In this paper, we introduce a covert timing channel 
(CTC) algorithm and compare it to one of the most prevailing 
CTC algorithms, originally proposed by Cabuk et al. CTC is a 
form of covert channels – methods that exploit network 
activities to transmit secret data over packet-based networks – 
by modifying packet timing. This algorithm is a seminal work, 
one of the most widely cited CTCs, and the foundation for many 
CTC research activities. In order to overcome some of the 
disadvantages of this algorithm we introduce a covert timing 
channel technique that leverages timeout thresholds. The 
proposed algorithm is compared to the original algorithm in 
terms of channel capacity, impact on overt traffic, bit error 
rates, and latency. Based on our simulation results the proposed 
algorithm outperforms the work from Cabuk et al., especially in 
terms of its higher covert data transmission rate with lower 
latency and fewer bit errors. In our work we also address the 
desynchronization problem found in Cabuk et al.’s algorithm in 
our simulation results and show that even in the case of the 
synchronization-corrected Cabuk et al. algorithm our proposed 
method provides better results in terms of capacity and latency.     

Keywords-Covert Communication; Covert Timing Channel; 
Hidden Information; Capacity; Latency; Network Security  

I.  INTRODUCTION 
Taking advantage of a communication medium, its 

characteristics and its resources to send secret information to 
specific recipients is known as covert communication. While 
it has its origins in ancient times, it found a dramatic 
resurgence with the proliferation of the Internet. Several 
diverse methods of using exploiting this communication 
medium for hidden information exchange purposes are 
introduced and investigated in [1-7]. Based on the specific 
technique of how this covert communication is accomplished, 
it can be classified into three major categories. One of the 
simplest and most straightforward methods of covert 
communication in networks is to utilize specific header fields 
of the overt network packets that are not used for regular 
communication and substitute their information with covert 
data. This technique is known as Covert Storage Channel 
(CSC), and has been studied in articles such as [1] and [2]. 
The authors in [1] establish a covert channel based on the 
Session Initiation Protocol (SIP) signaling during the 
signaling phase of Voice-over-IP (VoIP). The authors discuss 
different parts of the SIP signaling message that can be used 
to embed covert data and determine the amount of data that 
can be embedded within the generated covert channel. In [2] 
the authors discuss the possibility of embedding hidden 

information in TCP/IP packets and verify the vulnerability of 
these types of covert storage channels against wardens.  

Another existing method to transfer secret data is called 
Covert Timing Channel (CTC), which manipulates the timing 
of overt network packets to achieve a desired pattern [3-5]. 
This pattern is what is used to convey the covert information. 
In [3], the authors introduce a CTC that transfers a covert “1” 
by sending a packet during a given time interval and a covert 
“0” by not sending a network packet. Another method, 
introduced in [4], is known as the Jitter Bug covert channel, 
where during a network terminal session the transmitted 
keystroke timing is manipulated by applying delays to the 
corresponding packets. In another approach [5], the authors 
designed a covert timing channel that encodes N covert 
symbols to the inter transmission time of L TCP/IP overt 
packets.  

In addition to these two major categories, papers such as 
[6] and [7] introduce covert communication methods that are 
a combination of storage and timing techniques. There, a 
given network packet is filled with covert data and sent 
intentionally late by the covert sender. An overt receiver that 
is not aware of the covert channel algorithm will ignore this 
packet because it appears to arrive late. However, the covert 
receiver gets the late packet and extracts the covert data.  

Among all of these CTC algorithms, the one proposed by 
Cabuk et al. in [3] is the one that has been used in many 
research efforts and investigations of covert communications. 
This algorithm is well accepted by the research community 
and is used as the basis for numerous other concepts in covert 
communication such as detection and modulation. For 
example in [8], the authors introduce Cabuk et al.’s CTC 
algorithm as a covert communication technique that can be 
employed in Building Automation Systems and provide a 
solution to prevent covert communication in BAS. The 
authors in [9] developed an attack that uses a covert channel 
mechanism such as Cabuk et al.’s CTC, to inject a watermark 
signature into the network flow via virtual machines in cloud 
environments. A network forensics collection system called 
Horizon Extender is presented in [10] to avoid information 
leakage in HTTP traffic such as the one introduced by Cabuk 
et al. In [11] Cabuk et al.’s CTC is one of the case studies for 
the general mathematical model that is proposed to predict 
the capacity of CTCs in networks. 

 Although Cabuk et al.’s algorithm is one of the most 
influential methods of covert communication, it has some 
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flaws such as low covert data rate, high latency, and high bit 
error rate due to desynchronization events. 

 In this paper, we propose a CTC algorithm that solves the 
issues of low capacity and high latency for Cabuk et al. and 
verifies it by simulation. We will show that we could 
successfully reduce the bit error rate during 
desynchronization events. However, to prevent these 
desynchronization errors we also suggest a solution that 
eliminates this problem of Cabuk et al.’s CTC algorithm and 
we will show that the Bit Error Rate (BER) is significantly 
decreased.   

This paper is organized as follows: In section II these 
different CTC methods are described in detail. This is 
followed by section III in which we provide a comparison and 
analysis of these approaches. In section IV, we explain our 
simulation parameters and implementation approach.  
Simulation results are presented and discussed in section V 
followed by the summary and conclusions in section VI.   

II. BACKGROUND ON UTILIZIED CTC ALGORITHMS  
One of the most influential methods of CTC was 

presented by Cabuk et al. in [3]. In this method, covert bits 
are sent over the communication channel by considering a 
constant time interval, which is known by both the covert 
sender and the covert receiver. On the network, an overt 
transmitter communicates with an overt receiver. This packet 
exchange is intercepted and manipulated by the covert 
transmitter on the network path the packets take. Farther 
along this path the covert receiver is located. It observes the 
packets before they reach the overt receiver. The covert 
transmitter manipulates the timing of packets intercepted 
from the overt transmitter in order to conform to the specified 
time interval. If during that time it allows a packet to be 
delivered towards the receiver, this encodes a covert “1”, 
whereas if no packet is allowed it is encoding a covert “0”. 
Therefore, from the covert receiver’s point of view, the 
decoding is based on whether a packet is observed during the 
known time interval. This method is illustrated in Figure 1.  

Aiming to improve upon the original Cabuk et al., we 
introduce our proposed CTC method in which a covert “1” is 

sent after a specific time delay that is known by the covert 
sender and receiver. However, for sending a covert “0”, 
network packets are transferred normally. On the covert 
receiver side, the given interval is monitored to check if any 
network packet arrives after this interval or not. If any packet 
was received within this interval, it will be interpreted as a 
covert “0”, after which the covert receiver resets the 
observation interval. If a packet was received after the given 
timeout it represents a covert “1”.  

Our proposed CTC technique shares the idea of utilizing 
timeouts with LACK, proposed in [6] and [7]. In LACK the 
contents of the late packet are modified and used as covert 
information carrier. In our proposed method, however, which 
we call Delayed Packet One Indicator (DPOI) all the covert 
information is derived from the timing exclusively, which 
significantly reduces detectability of our algorithm. Our 
proposed CTC algorithm is shown in Figure 2.  

The operation of both Cabuk et al.’s CTC and the 
proposed DPOI algorithm is based on the assumption that the 
time interval between network packets does not exceed the 
covert time interval.  

With both of these algorithms introduced we can now 
compare them in terms of aspects such as bit error rate, 
capacity, latency and more.  

III.  ANALYSIS METHODOLOGY 
In this section we compare Cabuk et al.’s CTC algorithm 

against our proposed DPOI CTC algorithm in terms of their 
impact on the overt traffic, capacity for covert data, Bit Error 
Rate (BER) of covert data and implementation constraints for 
covert sender and receiver. 

A. Impact on the overt traffic 
As shown in Figures 1 and 2, the principles by which the 

two CTC algorithms encode covert information has 
observably different impact on overt traffic. In Cabuk et al.’s 
algorithm, for sending a covert bit zero no packet is allowed 
during a given time interval. Therefore, there is a silent period 
between overt network packets that are used to transmit the 
covert data. This gap results in a decrease in the bandwidth of 
the overt network and a corresponding increase in 
detectability of this covert activity on the network. However, 
for the DPOI algorithm, covert “0” bits are sent normally and 
do not have any impact on overt network traffic. For sending 
covert “1” bits, both scenarios introduce the same latency to 
the overt network traffic. Thus, DPOI has less impact on overt 
traffic and lower detectability. 

According to this discussion, we define the following 
parameters to explain the relationship between the overt 
network and covert data in both algorithms: 
 ௥ܶ: A given duration of time, which is used as a reference 

to determine the number of overt network packets 
considered.  

 ௥ܲ: Number of overt network packets within ௥ܶ. 
 ௖ܰ௧: Number of covert bits (total number of zeros and 

ones). 
 ܱ௖௧: Number of covert “1” bits within a covert bit string.  

Figure 1. Cabuk et al.’s CTC algorithm (Modified picture from [3]) 
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 ௖ܶ௧: Covert time interval that is known by the covert 
receiver and the covert sender. 

 ௣ܶ: Time duration to transfer one overt packet from a 
sender to a receiver. ௣ܶ includes channel delay, 
operational delay and other existing delays that affect the 
overt packet arrival time. 

According to these definitions, in Cabuk et al.’s algorithm 
the bandwidth of the overt traffic is bounded to the number 
of covert “1” bits. This arises from the fact that the overt 
network packets are only transmitted if the current covert bit 
is one, otherwise no packet is sent over the network. 
Therefore the number of overt network packets within a given 
time ௥ܶ equals to: 

 ௥ܲ = ை೎೟× ೝ்ை೎೟×( ೎்೟ା ౦்)  (1) 

In the DPOI CTC, transferring covert bits zero does not 
require a silent time interval, which considerably improves 
the overt traffic bandwidth. However, the delay after sending 
each covert “1” bit results in the reduction of overt traffic 
bandwidth within a given time ௥ܶ  so that: 

 ௥ܲ =  ே೎೟× ೝ்( ೛்×ே೎೟)ା(ை೎೟× ೎்೟) (2) 

According to this discussion, sending a given number of 
covert “1” bits contributes to the same ௥ܲ  in both CTC 
algorithms. In addition, the maximum ௥ܲ  for Cabuk et al.’s 
algorithm is reached when a covert bit string of all ones is 
sent. As the number of covert “1” bits increases in the covert 
data, the bandwidth of the overt network is improved 
proportionally.  

In our DPOI algorithm, the maximum overt traffic 
bandwidth is achieved by sending a string of zeros covertly. 
As the number of ones increases in the covert data, ௥ܲ  
decreases based on the covert time interval ௖ܶ௧ .     

In general, the proposed DPOI CTC algorithm is more 
suitable to be employed in networks where the latency of 
overt traffic and detectability are important factors. Since 
Cabuk et al.’s CTC algorithm diminishes the bandwidth of 
the overt network traffic, this CTC algorithm can best be 
employed in case of low network traffic channels.     

B. Covert Channel Capacity  
The capacity of a covert channel, ܥ௖௧, is defined as the 

number of covert bits that can be transferred within a specific 
time ௥ܶ from the covert sender to the covert receiver. 
Evidently, this capacity depends on the channel latency, noise 
and other network factors. However, for the maximum covert 
channel capacity analysis we can consider an ideal channel 
that does not have the mentioned limitations.  Therefore, for 
the Cabuk algorithm, the capacity of the covert channel 
depends on the covert time interval. This arises from the fact 
that each covert bit, regardless of being one or zero, is 
transferred within ௖ܶ௧ . Consequently, the capacity of the 
covert channel for this algorithm, also reported in [11], is 
defined as: 

௖௧ܥ  = ଵ்೎೟ (3) 

For the proposed DPOI CTC algorithm the covert channel 
capacity depends on the covert bits being “1” or “0”. In case 
of a covert “0” bit, the capacity of the covert channel equals 
the number of overt packets that are transferred. However, in 
case of covert “1” bits the covert channel capacity is 
calculated using equation (3). Hence, the covert channel 
capacity depends on the probability of a covert bit being one 
or zero. If we assume that the probability of a covert bit being 
one is ଵܲ, then the capacity of a covert timing channel for the 
second scenario is: 

௖௧ܥ  = (1 − ଵܲ) × ଵ்೛ + ଵܲ × ଵ்೎೟  (4) 

From this discussion, we can conclude that the capacity 
of the DPOI CTC algorithm is larger than the capacity of 
Cabuk et al. Furthermore, DPOI’s capacity is bounded to the 
number of ones in the covert data. As the number of covert 
“1” bits increases the capacity is reduced and approaches 
equation (3).  Generally we can observe that for the CTC 
algorithms discussed in this paper the covert time interval 
plays a significant role in the capacity of the covert data. If 
the covert interval is not long enough, the network delay jitter 
will result in decoding errors in the covert bits, which we will 
discuss in the following section in detail. 

C. Covert Channel Bit Error Rate 
One key target of CTC algorithms, or in fact any 

networking approach, is to be able to transmit data with as 
few errors as possible. The Bit Error Rate (BER) for both 
CTC algorithms depends on various aspects of the network 
and implementation of the covert channel algorithms. The 
main reasons for getting covert bit errors for the covert timing 
channel algorithms are: 

1) Network Delay 
Although a short covert time interval is desirable for 

higher capacity, if it is too short network delay can affect the 
decoding result of the covert receiver. Let’s assume that the 
covert time interval is 30 ms and the sender transmits a 
network packet at the middle of this time interval (covert 
“1”). The covert receiver will check the arrival of the network 
packet within this 30 ms interval. If the network delay is such 
that the receiver observes the packet after its covert time 

 
 

Figure 2. Proposed CTC algorithm: DPOI 
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interval ends, then it will wrongly decode a covert “0” as the 
next bit instead of the cover “1” that was intended. Therefore, 
the covert time interval should be chosen in such a way as to 
diminish and ideally eliminate the network delay effects on 
the covert BER.  

For Cabuk et al.’s CTC algorithm, network delay 
contributes to both zero-to-one and one-to-zero errors. 
However, in the proposed DPOI CTC algorithm, network 
delay will only cause zero-to-one errors. 

2) Network Jitter  
The error introduced by network delay jitter is a random 

phenomenon that cannot be predicted by the receiver. If the 
jitter causes an arbitrary delay that is not expected in the 
normal traffic network, then the covert receiver does not 
observe the network packet within the expected covert time 
interval and produces covert BER.  For example, if the 
common delay in the network follows normal distribution and 
the covert time interval is adjusted between the covert sender 
and the covert receiver, then arbitrary jitter can change the 
timing of overt traffic, which results in covert data BER. 
Similar to network delay, jitter can result in zero-to-one and 
one-to-zero errors in Cabuk et al.’s algorithm but only zero-
to-one errors in our DPOI CTC algorithm. 

3) Desynchronization between the Covert Sender and the 
Covert Receiver 

Another aspect factor contributing to Covert BER is the 
desynchronization of the covert sender and receiver. If the 
sender does not compensate for network delay, then the 
covert receiver will receive the network packets outside of the 
expected covert arrival time interval bounds. Consequently, 
the covert receiver will produce decoding errors. In essence, 
the covert communication partners become desynchronized if 
this delay remains uncompensated for.  

In Cabuk et al.’s algorithm, sporadic desynchronization 
causes an extra covert time interval to be inserted into the 
received covert data. Hence, all following bits are shifted and 
thus potentially differ from the expected bits until 
synchronization is restored. In our proposed algorithm, if the 
covert sender and receiver are not synchronized, then a one 
bit zero-to-one or one-to-zero error type can occur. This 
arises from the fact that an empty covert time interval from a 
covert receiver’s perspective is not an indicator for covert 
data. Instead, a late packet indicates a covert “1”. The extra 
covert time interval, which results from the 
desynchronization problem, can be ignored in the covert 
receiver if the desynchronization issue occurs while sending 
covert bits “1”. If the desynchronization happens when the 
cover bits “0” are sent, one of the normal packets that 
indicates covert “0” will arrive late and the covert receiver 
will interpret that as a covert “1”. Therefore, a zero-to-one bit 
error appears.  

4) Network Packet Loss 
 Although the packet loss in modern Internet 

communication links is very low and is assumed to be zero in 
[3] and other covert channel publications [4-7], packet loss 
can nevertheless cause errors in covert data. For the two CTC 
algorithms discussed in this paper packet loss can result in 
various error types. In Cabuk et al.’s CTC algorithm, packet 
loss will contribute to one-to-zero errors. However, in the 
proposed algorithm, it can cause both zero-to-one and one-to-
zero errors depending on whether the lost packet was 
intended to be sent as normal or delayed traffic. 

IV. IMPLEMENTATION AND SIMULATION PARAMETERS 
We implemented both covert timing channel algorithms 

to verify the previous discussions and observe their 
differences. These algorithms are implemented using C++, 

Figure 3. CTC Flowchart of Cabuk et al.’s Algorithm. 
 

Figure 4. CTC Flowchart of the proposed DPOI algorithm 
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using a multithreaded simulation framework where the covert 
sender, covert receiver and network channel run on three 
separate threads. One of the significant advantages of this 
approach is the simultaneous interaction between covert 
sender, covert receiver and network channel. Figures 3 and 4 
show the overall flowcharts of these two algorithms. The 
most important factor that we want to observe from our 
simulation results for these two CTC algorithms is the 
capacity, latency, and their vulnerability to channel delay. 
The simulation parameters and assumptions are collected in 
Table 1. In order to represent a wide variety of environments 
we have defined different scenarios of covert time interval of 
the sender versus the channel delay. The channel latency is 
considered as a uniform random distribution in the range of 
[45ms, 55ms].  

Table 1. Simulation Parameters and Assumptions 

Parameter Setting and value 
Channel Conditions Delay channel with uniform 

distribution over [45ms,50ms] 
Covert Time Interval: ࢚ࢉࢀ (ms) 250, 200, 175, 150, 100 
Size of Bit Strings  80 bits from 10 ASCII characters 
Clock Cycles and Bit Error 
Results 

Averaged over 3 bit stings 

Simulation iterations All tests were performed 10 times 
over three 80-bit strings and the 
mean value is presented.   

 
In the next two sections we demonstrate the impact of 

these two covert timing channels on the overt traffic and 
covert data.  

V. COMPARISONS AND EVALUATIONS 

A. Capacity and Latency 
In Figure 5, the percentage of covert transfer delay 

reduction we achieved with our DPOI algorithm compared to 
Cabuk et al.’s algorithm is shown. This result is obtained 
from transmitting the test’s 80 covert bits to the covert 
receiver based on different covert time intervals ௖ܶ௧ . As we 
can see in this figure, our proposed DPOI algorithm improves 
the covert message transfer time by more than 40% on 
average for all the time intervals. We can observe that our 
proposed DPOI algorithm significantly outperforms Cabuk et 
al.’s and can transfer bit strings almost twice as fast. As 
discussed before, the duration that it takes to transfer 80 
covert bits for the proposed DPOI algorithms depends on the 
number of covert “1” bits.  

 Figure 6 shows the average capacity for all the values of 
covert time intervals and is based on the mentioned 
assumptions for the channel delay. The simulations are 
conducted 10 times for 3 strings of 80 covert bits and the 
average capacity is calculated. From this figure we can 
observe that the covert data capacity is considerably 
improved in the proposed DPOI algorithm and our proposed 
algorithm can transfer approximately twice the amount of 
covert data compared to Cabuk et al.’s algorithm. For 
example, in the case of 175ms covert time interval our 

proposed DPOI algorithm transfers 9.99 bits/sec on average. 
However, we can achieve only 5.69 bits/sec using Cabuk et 
al.’s algorithm for the same simulation parameters.  We 
should mention the fact that these results may change slightly 
based on operating system, operational speed and other 
factors.   

B. Reliability 
In this section we discuss the results for BER obtained 

from our simulation. As discussed before, one of the main 
causes of errors in Cabuk et al.’s CTC algorithm is the 
desynchronization problem. If the observation covert time 
intervals at the transmitter and receiver are not aligned, 
packets may not arrive until after the receiver’s current covert 
time interval ends, resulting in a covert “0” being decoded 
even though originally transmitted was a covert “1”. 
Subsequent bits are then affected as well. In our simulations 
we assumed correlated clocks between sender and receiver 
and thus could achieve interval synchronization by using a 
fixed delay to the start of the receiver’s covert timing interval. 
We observed that by having a delay of 0.3 ∗ ௖ܶ௧ for sending 
the first covert bit, we can resolve the desynchronization 
problem. However, this approach does not apply to real-
world implementations and different synchronization 
approaches need to be developed. The results shown in Figure 
7 include scenarios for the original Cabuk CTC algorithm (no 

 
Figure 6. Covert Data Capacity of CTC Algorithms: Cabuk 
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sync), a modification that resolves the desynchronization 
problem (sync), as well as our proposed DPOI algorithm. 

In [3] the authors have tested their CTC algorithm using 
a test bed implementation. However, the details and different 
parameters of their test bed are not stated in their paper. The 
desynchronization problem is addressed by string to string 
correction after receiving the covert bits and the character 
accuracy is calculated for different covert time intervals (20, 
30, 40, 50, 60, and 80 ms) in a normal traffic channel with an 
average round trip time of 31 ms.  

From Figure 7 we can also observe that in cases where the 
covert sender interval time is more than 4 times the delay of 
the channel ( ௖ܶ௧ : .ݏݒ 250 ݎ݋ 200 :௖௛ܦ [45 − 55]), only few 
bit errors are observed and the covert data accuracy remains 
above 90%. However, as ௖ܶ௧  decreases the number of bit 
errors increases, for the reasons explained in section III part 
C, especially the desynchronization problem. When we 
corrected the Cabuk’s desynchronization issue in our 
simulations, then more accurate results can be obtained for 
Cabuk’s algorithm. While our proposed DPOI algorithm 
shows a higher BER than the Cabuk’s corrected version, it 
also achieved almost twice the capacity of Cabuk et al.’s 
algorithm and unlike the modified version of Cabuk can be 
used in real environments as well.   

Our results show that the proposed DPOI CTC algorithm 
outperforms Cabuk et al., especially when considering 
capacity and covert bit accuracy for scenarios of ௖ܶ௧ ≥ 200. 
Our algorithm transfers strings of 80 covert bits within 
approximately 9094.33 ms for ௖ܶ௧ = 200, while providing 
more than 97% covert data accuracy. Although Cabuk et al.’s 
CTC shows promising results when the synchronization 
problem is addressed, the amount of time it takes to transmit 
covert data is significantly longer. Cabuk’s algorithm 
contributes to transmission delay for all the transferred 
packets over the network link, which increases detectability 
and is not desirable in network applications. Furthermore, 
while we addressed the desynchronization problem of Cabuk 
et al. in our simulation, this approach is not feasible for actual 
implementations and a more suitable approach is needed. 
Hence, Cabuk’s algorithm is more vulnerable to 
desynchronization between sender and receiver. By contrast, 
our proposed DPOI algorithm does not share this limitation.        

VI.  SUMMARY AND CONCLUSIONS 
In this paper we introduced a new CTC algorithm called 

DPOI that transmits covert “0” bits by transmitting overt 
network packets without delay while covert “1” bits are 
delivered by delaying the overt packet for a specific time. We 
have shown that the proposed algorithm performs better than 
Cabuk et al. [3]. Cabuk’s work is among the most cited CTC 
algorithms used in the literature and in ongoing research 
efforts. We have analyzed, compared and evaluated the two 
CTC algorithms to extract insights on covert data rate, 
latency, types and causes of bit error, and the Bit Error Rate 
itself. Based on the simulation results and our analysis for 
these two algorithms, our proposed algorithm can transmit 
more covert data within a specific amount of time compared 
to Cabuk et al. Also, one of the significant problems with 
Cabuk’s algorithm is the desynchronization of the covert 
sender and receiver that causes erroneous bit insertions in the 
decoded data and subsequent bit error sequences. Even 
though we provided a modification to Cabuk et al. that 
addresses this desynchronization problem, our proposed 
DPOI CTC algorithm performs better in terms of covert data 
rate and latency.   
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Figure 7. Bit Error Rate for the Covert Timing Algorithms 
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