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An SAS Macro for Implementing
the Modified Bollen–Stine Bootstrap

for Missing Data: Implementing
the Bootstrap Using Existing Structural

Equation Modeling Software

Craig K. Enders
University of Nebraska

The Bollen–Stine bootstrap can be used to correct for standard error and fit statistic
bias that occurs in structural equation modeling (SEM) applications due to non-
normal data. The purpose of this article is to demonstrate the use of a custom SAS
macro program that can be used to implement the Bollen–Stine bootstrap with exist-
ing SEM software. Although this article focuses on missing data, the macro can be
used with complete data sets as well. A series of heuristic analyses are presented,
along with detailed programming instructions for each of the commercial SEM soft-
ware packages.

Bootstrapping is a method that can be used to correct for the standard error and fit
statistic bias that occurs in structural equation modeling (SEM) applications due to
nonnormal data. Two forms of the bootstrap have been discussed in the SEM litera-
ture, the naive bootstrap and the Bollen–Stine bootstrap; the former is appropriate
for generating standard error estimates, whereas the latter can be used to estimate
standard errors (Yung & Bentler, 1996) and to correct for bias in the model fit sta-
tistic (Bollen & Stine, 1992). Although the Bollen–Stine bootstrap has performed
well in a small number of empirical studies (e.g., Enders, 2001; Fouladi, 1998;
Nevitt & Hancock, 2001), it appears that the method is used infrequently in applied
studies.
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One likely reason why the bootstrap is not widely used in applied studies is the
availability of straightforward corrective procedures such as the rescaled test statis-
tic and robust standard errors (Satorra & Bentler, 1994). With complete data, it is
well known that rescaled statistics provide reasonably accurate inferences, even
when normality assumptions are violated (e.g., see Finney & DiStefano, in press, for
an overview). However, much less is known about the performance of these correc-
tive procedures in the missing data context. Rescaling methods for nonnormal miss-
ingdatawereproposedbyYuanandBentler (2000), andarecurrentlyavailable in the
Mplus (version 2.1 or higher) and EQS (version 6 or higher) software packages.

Despite this widespread availability, few studies have examined the perfor-
mance of rescaled statistics for missing data. Enders (2001) compared the perfor-
mance of rescaled statistics and the bootstrap under missing at random (MAR)
missing data (i.e., missingness is dependent on other observed variables), and
found that the Bollen–Stine bootstrap produced slightly more accurate Type I error
rates than the rescaled test statistic. Although robust and bootstrap standard errors
both worked well, the two approaches exhibited different tendencies: The boot-
strap yielded slightly liberal significance tests (i.e., confidence interval coverage
values were, in some cases, lower than 95%), and robust standard errors produced
somewhat conservative tests (i.e., coverage values generally exceeded 95%). Al-
though maximum likelihood (ML) estimation with missing data assumes MAR
missingness, it is important to note that robust standard errors require the more
stringent missing completely at random (MCAR) assumption (i.e., missingness is
unrelated to the data). Although the bootstrap does not explicitly rely on specific
assumptions regarding the missingness, the performance of the procedure in this
context merits further investigation.

In addition to the availability of rescaled statistics, another possible explanation
for the lack of bootstrap applications is the limited availability of bootstrapping
routines in commercial software packages. As such, the purpose of this article is to
outline an SAS macro program capable of performing the Bollen–Stine bootstrap,
and to demonstrate how this macro can be used in conjunction with existing SEM
software packages to obtain corrected probability values for the model fit statistic
and empirical standard error estimates. Although the macro is capable of handling
complete data, the focus of this article is on missing data, as only one commercial
software package, EQS 6.1, performs the modified Bollen–Stine bootstrap for
missing data proposed by Enders (2002).

There are several reasons why this SAS macro might be useful to substantive
researchers and methodologists. As already noted, little is known about the perfor-
mance of rescaled test statistics in the missing data context, and this is further com-
plicated by the fact that robust standard errors require restrictive assumptions
about the missing data mechanism (i.e., MCAR). The limited simulations that
have been conducted to date suggest that the Bollen–Stine bootstrap performs as
well, if not better than, rescaled statistics in the missing data context (Enders,
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2001). Although implementing the Bollen–Stine bootstrap with complete data is
relatively straightforward, the computational complexities increase dramatically
with missing data. To date, only EQS 6.1 implements the Bollen–Stine bootstrap
for missing data, so the availability of this macro might facilitate the use of the
bootstrap in substantive applications, but could also provide a research tool for
methodologists who are interested in studying the behavior of this technique. Al-
though not one of the explicit goals of this article, it should be noted that the pro-
cess of fitting multiple bootstrap samples using SEM software is identical to the
process one would use to fit computer simulation data generated by an external
program such as SAS or SPSS. As such, the instructions provided in this article
may also be informative for researchers interested in conducting Monte Carlo
studies.

To illustrate the bootstrapping procedure, a confirmatory factor analysis (CFA)
of the Eating Attitudes Test (EAT; Garner, Olmsted, Bohr, & Garfinkel, 1982) is
used, a popular self-report instrument for assessing eating disorder risk. For sim-
plicity, a subset of 10 manifest indicators was extracted from a model proposed by
Doninger, Enders, and Burnett (2005). These indicators measured two latent fac-
tors (drive for thinness and food preoccupation), and a graphical depiction of the
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FIGURE 1 Two-factor CFA model for Eating Attitudes Test.



two-factor CFA model is shown in Figure 1. The original data had no missing val-
ues, so a 5% missing data rate was imposed on five items (EAT1, EAT10, EAT12,
EAT18, and EAT24) in an MCAR fashion (the missing data mechanism is ir-
relevant to the current illustration, so MCAR was chosen for simplicity). The
raw data (N = 200) used in the heuristic analyses can be downloaded at
http://www.asu.edu/clas/psych/people/faculty/enders.htm or obtained from the
author.

THE BOOTSTRAP

In the interest of space, only a brief description of the bootstrap is provided, but a
number of detailed overviews are available to interested readers (e.g., Efron &
Tibshirani, 1993; Stine, 1989). One of the central goals of most statistical analyses
is to estimate the sampling variance of a parameter, θ. In the SEM context, it is typ-
ical to rely on an estimator such as ML, although doing so often requires the adop-
tion of distributional assumptions. The bootstrap provides an alternative method
for estimating the sampling variance of a statistic, but does so without the usual
normality assumptions (which is not to imply that the bootstrap is without its own
tenuous assumptions).

In the bootstrapping procedure, the sample data are assumed to be an accurate
representation of the population distribution function from which the sample was
drawn. Essentially, the sample data, sometimes referred to as the parent sample,
serve as a miniature population from which repeated samples will be drawn with
replacement. For example, in the subsequent analyses, the EAT data set (N = 200)
serves as a surrogate for the population, and samples of N = 200 are repeatedly
drawn with replacement. Sampling with replacement implies that some cases may
appear two or more times in any given bootstrap sample, and some cases may not
appear at all. Usually, a large number of samples are drawn from the parent data
(say B = 1,000), and an estimate of the parameter of interest, �θ, is obtained from
each sample. The B estimates form an empirical sampling distribution, the stan-
dard deviation of which is the bootstrap standard error estimate.

THE BOLLEN–STINE BOOTSTRAP

The so-called naive bootstrap previously described is appropriate for obtaining
empirical estimates of parameter standard errors, and appears to provide accurate
estimates in the SEM context. However, this form of the bootstrap is not appropri-
ate for assessing model fit, because the covariance structure of the parent data ma-
trix is not consistent with the null hypothesis. As such, model fit statistics esti-
mated from the bootstrap samples will reflect both model misfit and sampling
fluctuation.
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The application of the bootstrap to testing covariance structures was first intro-
duced by Beran and Srivastava (1985), and later popularized in the SEM context
by Bollen and Stine (1992) in an unrelated work. When bootstrapping the likeli-
hood ratio fit statistic, Bollen and Stine showed that it is first necessary to trans-
form the parent data matrix so that its covariance structure is consistent with the
hypothesized model (i.e., the null is true in the parent data). This is accomplished
using the following transformation:

where Y is the parent data matrix, Y is the implied mean vector from the saturated
model, S is the implied covariance matrix of the saturated model, and �Σ is the im-
plied covariance matrix of the hypothesized model. Next, B bootstrap samples are
drawn (with replacement) from the transformed data matrix, Z, and the hypothe-
sized model is fit to each sample. The B model fit statistics are subsequently used
as an empirical sampling distribution, and an adjusted probability value is obtained
by computing the proportion of test statistics from the empirical sampling distribu-
tion that exceed the likelihood ratio test statistic obtained from the parent sam-
ple, Y.

The Bollen–Stine transformation shown in Equation 1 requires a complete data
matrix, but Enders (2002) proposed a modification to the Bollen–Stine bootstrap
for missing data. This modified Bollen–Stine transformation is applied separately
to each case’s data vector using only those parameter values for which case i has
complete data. The modified Bollen–Stine transformation is

where � )µ S(i is the implied mean vector of the saturated model, �Σ ( )S i is the implied
covariance matrix of the saturated model, and �Σ ( )M i and � )µ M(i are the implied
covariance matrix and mean vector associated with the hypothesized model, re-
spectively. In the method proposed by Enders (2002), the parameter matrices are
obtained using ML estimation for MAR missing data (often referred to as full in-
formation maximum likelihood [FIML]; Arbuckle, 1996).

The case subscript i in Equation 2 suggests that the parameter matrices may dif-
fer in size and content, but are constant within a group of cases with the same miss-
ing data pattern. It is important to note that the same parameter values are used for
all cases, but the specific parameter elements that are used in the transformation
may vary from case to case. To illustrate, consider a simple situation with three
variables, y1, y2, and y3. For cases with no missing data, the FIML parameter matri-
ces would not be altered, and the transformation would utilize the entire data vec-
tor—this is equivalent to the Bollen–Stine transformation given in Equation 1. In
contrast, consider a subset of cases missing y1. For these cases, the rows and col-
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umns of the parameter matrices that correspond to y1 would be removed (as would
the missing element in the raw data vector), and the transformation would utilize
only those elements that correspond to y2 and y3.

After applying the modified Bollen–Stine transformation to each case’s data
vector, the bootstrap proceeds in the same fashion as it would with complete data;
bootstrap samples are drawn with replacement from the transformed data matrix,
the model is fit to each sample using the FIML estimator, and an empirical sam-
pling distribution of the model fit statistics is used to obtain an adjusted probability
value for the FIML likelihood ratio test.

To date, only the forthcoming version of EQS (version 6.1) performs the modi-
fied Bollen–Stine bootstrap for missing data, although AMOS (versions 4 and
higher) can be used to implement the Bollen–Stine bootstrap with complete data. As
stated previously, the purpose of this article is to illustrate how one would perform
the bootstrap using existing SEM software. To accomplish this, a custom SAS
macro program was written that generates bootstrap data sets from a transformed
data matrix based on Equation 2. The hypothesized model can subsequently be fit to
each of the bootstrap samples using existing SEM software. However, because SEM
software packages require different input data structures, it was necessary to write a
separate macro program for AMOS, LISREL, and Mplus, all of which are available
for download at http://www.asu.edu/clas/psych/people/faculty/enders.htm. Again,
these SAS programs can be used to perform the Bollen–Stine with complete data as
well (with no missing data, Equations 1 and 2 are equivalent, although Equation 2 al-
lows for a mean structure), and the instructions outlined herein are identical in both
cases.

USING THE SAS MACRO

Fitting the hypothesized model to each bootstrap sample is software-specific and is
discussed in detail later. At this stage, the implementation of the SAS macro is de-
scribed, as the process of transforming the parent data and drawing bootstrap sam-
ples is identical regardless of which package is ultimately used to analyze the data
(the different versions of the macro program differ only with respect to the format
of the output data sets).

As a first step, it is necessary to fit the hypothesized model to the parent data
(not the transformed data) using the FIML estimator. Returning to the EAT exam-
ple, the CFA model was estimated using Mplus 3.11, and the likelihood ratio fit
statistic from this analysis was χ2(34) = 65.53, p = .001, N = 200. However, the ac-
curacy of this test statistic is questionable given that the data were not multivariate
normal, by definition; the univariate skewness and kurtosis values for the manifest
indicators were not necessarily excessive (skewness ranged between .12 – 1.48,
and kurtosis ranged between –1.04 – 2.18), but the questionnaire items were mea-

PERFORMING THE BOLLEN–STINE BOOTSTRAP 625



sured on a 6-point Likert scale ranging from (6) always to (1) never. As such, the
Bollen–Stine bootstrap was used to construct empirical sampling distributions for
the model fit statistic and parameter estimates. Before proceeding, it is worth not-
ing that it may not be advisable to implement the bootstrap using a sample size of
200, but I do so for the purpose of illustrating the procedure.

To use the macro program, it is necessary to save the implied covariance matri-
ces and mean vectors from both the saturated and hypothesized models (these ma-
trices are standard output in commercial SEM programs). Each of the four parame-
ter matrices should be saved as separate ASCII files, with the covariance matrices
in lower diagonal format. Next, the parameter matrices and raw data matrix (also in
ASCII format) are used as input data for the SAS macro program. Note that the raw
data matrix must contain only those variables that appeared in the substantive
model. The macro program is quite straightforward, and the user need only specify
values for a small number of variables (the missing value code, number of manifest
indicators, number of bootstrap samples, a seed value, and the file paths for the
ASCII input files). To illustrate, a program excerpt showing the user-specified
variables is given in Figure 2. Note that the AMOS macro requires an additional
line of code that specifies the names of the manifest variables.

To illustrate the use of the SAS macro, 1,100 bootstrap samples were generated
from the EAT data set described earlier,1 and the two-factor CFA model was fit to
each sample using the FIML estimator in Mplus (specific instructions for Mplus
are given later). Mplus, like the other commercial SEM packages, saves the results
from each sample replication to an ASCII file that can subsequently be analyzed
using SPSS or SAS. In this case, the 1,100 model fit statistics were used to con-
struct a reference sampling distribution for the likelihood ratio fit statistic obtained
from the parent data. Although there were no convergence failures in this example,
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FIGURE 2 SAS macro user-specified variables.

1The initial goal was to generate 1,000 bootstrap samples. Anticipating convergence failures, I arbi-
trarily chose to generate 1,100 samples.



bootstrap samples that produce inadmissible estimates or fail to converge should
be discarded from further analysis (Yung & Bentler, 1996).

Before proceeding, it is instructive to examine the empirical sampling distribu-
tion of the bootstrap fit statistics, and contrast it to the central chi-square distribu-
tion with 34 df (the theoretical sampling distribution that was used to obtain the
normal-theory probability value reported earlier). Kernel density graphs of empiri-
cal and central chi-square distributions are shown in Figure 3. In Figure 3, it is
shown that the empirical sampling distribution is shifted to the right somewhat,
and has a thicker tail (and thus a larger variance) than that of the central chi-square
distribution. Recall that the expected value and variance of the central chi-square
distribution is equal to df and 2df, respectively, so the expected value of the central
chi-square distribution is 34 with a variance of 68. In contrast, the mean of the em-
pirical sampling distribution is 41.29, and its variance is 150.06. The important
point to remember is that the shape of the empirical sampling distribution is not a
result of model misfit, because the bootstrap samples were drawn from a trans-
formed data set in which the null hypothesis was true. Rather, the discrepancy in
the expected value and variance reflects sampling variation that occurs due to fea-
tures of the data (e.g., nonnormality).

The empirical sampling distribution in Figure 3 can be used to obtain an ad-
justed probability value for the likelihood ratio fit statistic obtained from the parent
sample. This is accomplished by computing the proportion of the 1,100 bootstrap
chi-square values that exceeded that of the parent sample, which was χ2 (34, N =
200) = 65.53; this adjusted probability value can readily be determined from a fre-
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quency distribution of the bootstrap fit statistics. In the EAT example, 51 of the
1,100 bootstrap chi-square statistics exceeded 65.53, so the Bollen–Stine adjusted
probability value is 51/1,100 = .046.

Finally, it should be noted that the parameter estimates from the 1,100 bootstrap
samples can be used to obtain model-based empirical standard error estimates
(Yung & Bentler, 1996). This is accomplished by simply computing the standard
deviation of each parameter estimate over the 1,100 samples.

Although the use of the SAS macro is virtually identical across SEM software
packages, the process of repeatedly fitting the model to each bootstrap sample dif-
fers considerably. As such, detailed programming instructions for each software
package are outlined next.

USING THE SAS MACRO WITH AMOS

Although AMOS readily performs the Bollen–Stine bootstrap with complete data
(Arbuckle & Wothke, 1999), it is somewhat more labor intensive to implement the
bootstrap with missing data, because a Visual Basic (VB) program must be used to
fit the hypothesized model to each of the bootstrap samples. However, the AMOS
software includes a VB programming environment (AMOS Basic), and the VB
program given in Appendix A can be easily altered for a specific analytic purpose.

When using AMOS, it is necessary to save each bootstrap data set as a separate
file within the same directory. Although the SAS macro performs this task, it is
necessary to first create a folder named “bootsamples” in the root directory (i.e.,
C:\bootsamples). Executing the appropriate SAS program will generate B boot-
strap data files within this directory, each of which is differentiated by a unique in-
dex number. To illustrate, the SAS macro was used to generate 1,100 bootstrap
samples from the EAT data described previously. The macro generated 1,100 files
within the C:\bootsamples directory with file names boot1.txt, boot2.txt, …,
boot1100.txt. As a reminder, the covariance structure of the bootstrap samples has
been transformed to be consistent with the hypothesized model (i.e., the null hy-
pothesis is true in the transformed parent data set).

Next, it is necessary to use the VB programming environment (AMOS Basic) to
repeatedly fit the hypothesized CFA model to each of the bootstrap samples. The
VB program used to fit the 1,100 EAT samples is given in Appendix A, and is also
available for download at http://www.asu.edu/clas/psych/people/faculty/end-
ers.htm. Briefly, the VB program (a) cycles through each of the bootstrap samples
using a loop structure, (b) repeatedly calls the AMOS Engine to perform an analy-
sis on the selected data set, and (c) writes the parameter estimates and fit statistics
to an ASCII file. An overview of the VB programming language is beyond the
scope of this article, but the program given in Appendix A has numerous comment
lines that begin with an apostrophe. Fortunately, very few lines of code need to be
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altered to perform the analysis, and these lines are clearly marked in the program.
Specifically, the user need only specify the desired number of bootstrap samples
and the number of model parameters, including the means or intercepts (these pa-
rameters must be estimated when you have missing data). In addition, the user
must specify the hypothesized model—in this example, a two-factor CFA—using
the VB language. For those who are familiar with the EQS or Simplis program-
ming languages, the AMOS model specification should be fairly straightforward.
A detailed tutorial for the AMOS Basic language can be found in the AMOS 4.0
User’s Guide (Arbuckle & Wothke, 1999, p. 35).

On executing the VB program, one will notice that a new folder named
tempboot was created in the root directory (i.e., C:\tempboot)—this folder can be
deleted after the VB program is finished executing. This folder is created automati-
cally so that the VB program can select the desired bootstrap sample (e.g., if the
loop index equals 100, boot100.txt will be selected) and copy that file to the
C:\tempboot folder, overwriting the previous replicate. Although this step seems
unnecessary (VB could simply point AMOS to the appropriate file located in the
C:\bootsamples directory), the time required to fit the bootstrap samples is reduced
dramatically if there is only a single data file residing in the target directory. On a
related topic, it appears that processing time can also be reduced by using AMOS 4
rather than AMOS 5, or by using Microsoft Visual Basic rather than AMOS Basic.

After executing the VB program, two new files are generated in the root direc-
tory, chisquares.txt and parameters.txt, that contain the chi-square statistic and
model parameters, respectively, from each of the bootstrap samples. These output
statistics can be read into SPSS or SAS using free format (the exact order of the pa-
rameter values is listed on the first line of the parameter file). To illustrate, the
SPSS syntax needed to import the AMOS results is shown in Appendix B. As de-
scribed previously, an adjusted probability value for the parent sample is obtained
by computing the proportion of bootstrap chi-square values that exceeded the
chi-square statistic obtained from the parent sample, which can readily be accom-
plished by inspecting a frequency distribution. As before, bootstrap standard errors
are obtained by computing the standard deviation of the parameter estimates
across the 1,100 samples.

USING THE SAS MACRO WITH LISREL

Unlike AMOS and Mplus, LISREL requires the bootstrap samples to be stacked
vertically in a single file. Thus, executing the appropriate SAS macro program
generates a single ASCII data file in the root directory, bootstacked.txt, that con-
tains the B bootstrap samples. In the case of the EAT example, the 1,100 bootstrap
samples (each of which is 200 × 10 in dimension) were stacked in a single file that
is 220,000 × 10 in dimension, such that the first 200 records are associated with the
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first bootstrap sample, the next 200 records with the second bootstrap sample, and
so on. Again, each of the bootstrap samples is drawn from a transformed data set
that has a covariance structure consistent with the null hypothesis.

Next, the hypothesized model is fit to each of the 1,100 bootstrap data sets. The
Simplis syntax file for this analysis is given in Appendix C, and is available for
download at http://www.asu.edu/clas/psych/people/faculty/enders.htm. Only mi-
nor programming modifications to the Simplis syntax are required to read and ana-
lyze a stacked data file. Specifically, the RP (replications) keyword is placed on the
OPTIONS command line to specify the number of samples in the stacked file (it is
assumed that each sample in the stacked file has the same N, which is true in this
case). Also, the GF and LX keywords are used to specify the output files that con-
tain the goodness-of-fit statistics and loadings from each bootstrap sample (the LX
keyword is only necessary if bootstrap standard error estimates are desired).2

Like AMOS, the ASCII output files produced in LISREL can be read into SPSS
or SAS using free format, the SPSS syntax for which is given in Appendix B. Con-
sistent with the previous discussion, an adjusted probability value for the original
likelihood ratio statistic can be determined by inspecting a frequency distribution
of the bootstrap chi-square statistics, and bootstrap standard errors are obtained by
computing the standard deviation of the parameter estimates contained in the file
specified by the LX keyword.

USING THE SAS MACRO WITH MPLUS

The Monte Carlo simulation facilities in Mplus can be used to estimate a structural
equation model for each of the B bootstrap samples generated by the SAS macro.
Because the most recent release of Mplus (version 3) handles Monte Carlo data
differently than its predecessor, the bootstrapping procedure for Mplus version 2
and version 3 are described.

LikeAMOS, it isnecessary to saveeachbootstrapdata set asa separate filewithin
the same directory (the format of the ASCII data differs, however, which is why a
separate macro program was written for Mplus). Again, the SAS macro program for
this analysis is available for download at http://www.asu.edu/clas/psych/
people/faculty/enders.htm. Before running the SAS macro, it is necessary to first
create a folder named bootsamples in the root directory (i.e., C:\bootsamples). Exe-
cuting the appropriate SAS program will generate B bootstrap data files within this
directory, each of which is differentiated by a unique index number (e.g., boot1.txt,
boot2.txt, …, boot1100.txt).

630 ENDERS

2It may be necessary to download and install a patch for LISREL 8.5 (www.ssicentral.com) for the
GF keyword to work properly with missing data.



Next, it is necessary to fit the hypothesized model to each of the bootstrap data
sets. The Mplus 3 syntax for the EAT analysis is given in Appendix D. In Mplus
version 3, externally generated Monte Carlo data (e.g., the B bootstrap data sets)
are handled using the TYPE = MONTECARLO option of the DATA command.
When specifying TYPE = MONTECARLO, the FILE option is used to specify a
file that contains a list of the names of the bootstrap data sets that are to be ana-
lyzed. In the current example, the file replist.txt contains a list of the 1,100 file
names found in the bootsamples directory. Note that the SAS macro automatically
creates the replist.txt file in the root directory, so there is no need for the user to
alter the DATA portion of the Mplus program shown in Appendix D. The
VARIABLE, ANALYSIS, and MODEL commands are identical to those used to
analyze the parent sample, so no discussion of these commands is given here; in-
terested readers can consult the Mplus User’s Guide (Muthén & Muthén, 2004) for
further details.

Executing the Mplus program in Appendix D fits the two-factor CFA model
to each of the bootstrap data sets. Conveniently, the TYPE = MONTECARLO
option produces summary tables of the 1,100 replications, and these tables con-
tain the critical values for the empirical chi-square distribution as well as the
standard deviation of the parameter estimates across the 1,100 replications (i.e.,
the bootstrap standard errors). To illustrate, Figure 4 shows the Mplus summary
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table for the chi-square test statistic. The columns labeled Proportions Expected
(column 1) and Percentiles Expected (column 3) give alpha values and the corre-
sponding critical values from a central chi-square distribution with 34 df, respec-
tively. From the output shown in Figure 4, it is seen that the chi-square critical
value (df = 34) associated with an alpha level of .05 is 48.60. The column la-
beled Proportions Observed (column 2) gives the proportion of bootstrap sam-
ples that exceeded a given critical value from the central chi-square distribution.
In this example, 24.9% of the bootstrap samples would be deemed statistically
significant using the critical value from the central chi-square distribution, which
results from the fact that the empirical sampling distribution has a much thicker
tail than that of the central chi-square distribution (see Figure 3). For the purpose
of this demonstration, the column labeled Percentiles Observed (column 4) is
important, as it contains the critical values for the empirical sampling distribu-
tion. As seen in Figure 4, the critical value associated with an alpha level of .05
is 64.206 (i.e., 5% of the bootstrap chi-square values exceeded 64.206). Because
the chi-square statistic obtained from the parent sample (χ2 (34, N = 200) =
65.53) exceeds the critical value from the empirical reference distribution, the
model would be rejected at p < .05.

For those who prefer an exact probability value over a dichotomous retain–re-
ject decision, it is also possible to obtain an adjusted probability value from the em-
pirical reference distribution. Returning to the Mplus program given in Appendix
D, the RESULTS ARE option of the SAVEDATA command is used to save the pa-
rameter estimates, standard errors (which are not needed in this particular applica-
tion), and fit indexes for each bootstrap sample to an ASCII file. In this example,
the bootstrap results are output to a file called mplusparams.txt, which is located in
the root directory.

As before, the output statistics can be read into SPSS or SAS using free format
(the exact order of the statistics in the file is listed near the bottom of the Mplus
output file). To illustrate, the SPSS syntax needed to import the Mplus results is
shown in Appendix B. Consistent with the previous examples, an adjusted proba-
bility value is obtained by computing the proportion of the bootstrap chi-square
values that exceeded the value of the likelihood ratio test statistic for the parent
data.

Before concluding, a brief discussion of bootstrap standard errors is warranted.
As described previously, the standard deviation of the parameter estimates across
the 1,100 samples serves as an empirical estimate of the standard error for each pa-
rameter. Conveniently, the Mplus 3 output includes a summary table for the 1,100
sets of parameter estimates that includes the mean and standard deviation, among
other things. As before, the standard deviation of the bootstrap parameter estimates
can be used in lieu of the normal-theory standard errors. A more detailed descrip-
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tion of the Monte Carlo summaries can be found in the Mplus User’s Guide
(Muthén & Muthén, 2004, p. 279).

A brief discussion of the Mplus 2 procedure is warranted, as this version of the
software is likely enjoying widespread use at the time of this writing. Consistent
with Mplus version 3, it is necessary to save each bootstrap data set as a separate
file within the same directory. As such, the SAS macro can be used in conjunction
with either version of Mplus. However, the procedure for fitting the model to each
bootstrap sample differs considerably in Mplus version 2. In this case, a series of
Monte Carlo utilities (e.g., runall.bat) must be downloaded from the Mplus home
page (www.statmodel.com). Specific instructions for editing these files is given on
the Mplus Web site, but the procedure is quite straightforward: The runstart.bat file
is edited, and the user must specify a number of variables contained within this file
(e.g., the directory that contains the files to be analyzed, the name of the output file
to which the parameter estimates will be saved, etc.). After specifying the appro-
priate variables in the runstart.bat file, the user executes a file called runall.bat.
This file repeatedly fits the hypothesized model to each of the bootstrap data sets,
and creates an ASCII file containing the parameter estimates and model fit statis-
tics from each replicate. When the program is finished executing, the Mplus results
can be analyzed using SPSS or SAS in the exact manner described earlier (e.g., see
Appendix B).

PERFORMING THE BOOTSTRAP USING EQS 6.1

As mentioned previously, the forthcoming release of EQS (version 6.1) can be
used to perform the modified Bollen–Stine bootstrap for missing data. Although
it is not necessary to use the SAS macro program in this context, the EQS syntax
for performing this analysis which is given in Appendix E is briefly discussed.
For brevity, the user is referred to the EQS User’s Guide (Bentler & Wu, 2002)
for instructions on implementing ML estimation in the missing data context. As
seen in Appendix E, the SIMULATION command is added to the program, and
the MBB and REPLICATIONS keywords are used to invoke the model-based
(i.e., Bollen–Stine) bootstrap and to specify the desired number of bootstrap
samples, respectively. Like Mplus, EQS provides summary statistics for a num-
ber of fit indexes and the parameter estimates. Returning to the EAT example,
the critical value associated with an alpha level of .05 is 64.206 (i.e., 5% of the
bootstrap chi-square values exceeded 64.206). Because the chi-square statistic
obtained from the parent sample (χ2 (34, N = 200) = 65.53) exceeds the critical
value from the empirical reference distribution, the model would be rejected at p
< .05.
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DISCUSSION

The number of published bootstrapping applications has, to date, been limited,
perhaps due to a lack of bootstrapping routines in commercial SEM software pack-
ages. As such, the purpose of this article was to demonstrate the use of a custom
SAS macro program that can be used to implement the Bollen–Stine bootstrap
with existing SEM software. The focus of the article was on missing data, although
the macro could also be used with complete data sets. A series of heuristic analyses
was performed using a CFA model of the EAT. Using the provided macro program,
it is quite straightforward to implement the Bollen–Stine bootstrap. Although the
bootstrap is more computationally demanding than rescaled statistics, this should
not preclude its use. For example, generating and analyzing the 1,100 bootstrap
samples from the EAT data set took less than 3 min. Detailed programming in-
structions were presented for each of the commercial SEM software packages, and
it is hoped that this article facilitates the use of the bootstrap for those who are in-
terested in implementing this technique in their own research studies, and enables
researchers to further study the behavior of this corrective procedure under a vari-
ety of missing data conditions.
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APPENDIX A
VISUAL BASIC PROGRAM FOR FITTING

BOOTSTRAP SAMPLES

‘ SPECIFY THE FOLLOWING INFORMATION IN THE SUBMAIN SECTION BELOW:
‘ (A) THE NUMBER OF DESIRED BOOTSTRAP SAMPLES (E.G., 1000)
‘ (B) NUMBER OF ESTIMATED PARAMETERS
‘ (C) THE OVERIDENTIFIED MODEL
‘ (D) THE SATURATED MODEL
Option Explicit
Sub Main()
‘ DO NOT ALTER THE FOLLOWING THREE LINES

Dim chisq As Double, cminMod As Double, cminSat As Double
Dim outfile As String, source As String, infile As String
Dim projPath As String, outfilep As String
Dim bsCount As Integer, boot As Integer, modStatus As Integer
Dim satStatus As Integer, numFit As Integer, j As Integer
Dim npars As Integer

‘ SPECIFY (A) AND (B) BELOW
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‘ (A) SPECIFY THE NUMBER OF DESIRED BOOTSTRAP FIT STATISTICS
numFit = 1000

‘ (B) SPECIFY THE NUMBER OF ESTIMATED MODEL PARAMETERS, INCLUDING MEANS
Dim params(31)
Dim names(31)

‘ DO NOT ALTER THE FOLLOWING CODE
MkDir(“c:\tempboot”)

‘ SPECIFY THE DIRECTORY THAT CONTAINS THE BOOTSTRAP SAMPLES
projPath = “c:\bootsamples\”

‘ SPECIFY THE OUTPUT PATH FOR THE CHI-SQUARES AND PARAMETER ESTIMATES
outfile = “c:\chisquares.txt”
outfilep = “c:\parameters.txt”

‘ INITIALIZE COUNTERS
bsCount = 0
boot = 0
Open outfile For Output As #1
Open outfilep For Output As #2

‘ START BOOTSTRAP LOOP
Do
boot = boot + 1

‘ READ FILES
source = projPath & “boot” & boot & “.txt”
infile ="c:\tempboot\temp.txt”
FileCopy source, infile

‘ CALL MODEL ESTIMATION SUBROUTINES
Call AmosSemModel(infile, cminMod, modStatus, params, names, npars)
Call AmosSat(infile, cminSat, satStatus)

‘ DO IF CONVERGED
If modStatus = 1 And satStatus = 1 Then
bsCount = bsCount + 1
Debug.Print “Number of Bootstrap Samples Converged = ” & bsCount

‘ COMPUTE FIT STATISTIC AND WRITE TO FILE
chisq = cminMod – cminSat
Write #1, chisq

‘ WRITE PARAMETER NAMES TO FILE ONLY FOR 1ST CONVERGED SAMPLE
If bsCount = 1 Then
For j = 1 To (npars)
Write #2, names(j)
Next j
Else
End If

‘ WRITE PARAMETER VALUES TO A FILE AFTER NAMES
For j = 1 To npars
Write #2, params(j)
Next j

‘ CLOSE DO IF CONVERGED
Else
End If

‘ END BOOTSTRAP SAMPLE LOOP
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Loop Until bsCount = numFit
‘ CLOSE OUTPUT FILES

Close #1
Close #2

End Sub
Sub AmosSemModel(infile, cminMod, modStatus, params, names, npars)

Dim sem As New AmosEngine
Dim Converge As Boolean, admiss As Boolean
Dim p As Integer
Converge = False
admiss = False
modStatus = 0
sem.ModelMeansAndIntercepts
On Error Resume Next

‘ (C) SPECIFY HYPOTHESIZED MODEL BELOW
‘ SPECIFY OVERIDENTIFIED MODEL

sem.BeginGroup (infile)
sem.Structure “driveft (1)”
sem.Structure “foodpre (1)”
sem.Structure “driveftfoodpre (f1f2r)”
sem.Structure “eat1 = (xbar1) + (load1) driveft + (1) e1”
sem.Structure “eat2 = (xbar2) + (load2) driveft + (1) e2”
sem.Structure “eat10 = (xbar10) + (load10) driveft + (1) e10”
sem.Structure “eat11 = (xbar11) + (load11) driveft + (1) e11”
sem.Structure “eat12 = (xbar12) + (load12) driveft + (1) e12”
sem.Structure “eat14 = (xbar14) + (load14) driveft + (1) e14”
sem.Structure “eat24 = (xbar24) + (load24) driveft + (1) e24”
sem.Structure “eat3 = (xbar3) + (load3) foodpre + (1) e3”
sem.Structure “eat18 = (xbar18) + (load18) foodpre + (1) e18”
sem.Structure “eat21 = (xbar21) + (load21) foodpre + (1) e21”
sem.Structure “e1 (e1)”
sem.Structure “e2 (e2)”
sem.Structure “e10 (e10)”
sem.Structure “e11 (e11)”
sem.Structure “e12 (e12)”
sem.Structure “e14 (e14)”
sem.Structure “e24 (e24)”
sem.Structure “e3 (e3)”
sem.Structure “e18 (e18)”
sem.Structure “e21 (e21)”

‘ GET PARMETER VALUES AND PARAMETER NAMES FOR OUTPUT
For p = 1 To sem.NumberOfParameters
params(p) = sem.ParameterValue(p)
names(p) = sem.ParameterName(p)
Next

‘ ASSESS CONVERGENCE AND ADMISSIBILITY STATUS
npars = sem.NumberOfParameters
Converge = (sem.FitModel() = 0)
admiss = sem.Admissible
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cminMod = sem.Cmin
If Converge = True And admiss = True Then modStatus = 1

‘ REINITIALIZE AMOS ENGINE
Set sem = Nothing
DoEvents

End Sub
Sub AmosSat(infile, cminSat, satStatus)

Dim sem As New AmosEngine
Dim Converge As Boolean, admiss As Boolean
Converge = False
admiss = False
satStatus = 0
sem.ModelMeansAndIntercepts
On Error Resume Next

‘ (D) SPECIFY SATURATED MODEL BELOW
‘ SPECIFY SATURATED MODEL

sem.BeginGroup (infile)
sem.Structure “eat1 = (xbar1)”
sem.Structure “eat2 = (xbar2)”
sem.Structure “eat10 = (xbar10)”
sem.Structure “eat11 = (xbar11)”
sem.Structure “eat12 = (xbar12)”
sem.Structure “eat14 = (xbar14)”
sem.Structure “eat24 = (xbar24)”
sem.Structure “eat3 = (xbar3)”
sem.Structure “eat18 = (xbar18)”
sem.Structure “eat21 = (xbar21)”

‘ ASSESS CONVERGENCE AND ADMISSIBILITY STATUS
Converge = (sem.FitModel() = 0)
admiss = sem.Admissible
cminSat = sem.Cmin
If Converge = True And admiss = True Then satStatus = 1

‘ REINITIALIZE AMOS ENGINE
Set sem = Nothing
DoEvents

End Sub

APPENDIX B
SPSS SYNTAX FOR READING AMOS, MPLUS,

AND LISREL OUTPUT FILES

* READ BOOTSTRAP CHI-SQUARES FROM AMOS OUTPUT.
data list free file = “c:\chisquares.txt”
/chisq.

execute.
frequencies chisq.
* READ BOOTSTRAP PARAMETERS FROM AMOS OUTPUT.
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data list free file = “c:\parameters.txt”
/f1f2cov icept1 load1 icept2 load2 icept10 load10 icept11 load11
icept12 load12 icept14 load14 icept24 load24 icept3 load3
icept18 load18 icept21 load21 res1 res2 res10 res11
res12 res14 res24 res3 res18 res21.

execute.
descriptives f1f2cov to res21.
* READ BOOTSTRAP RESULTS FROM LISREL OUTPUT.
data list free file = ‘c:\fit.txt’
/sample
v2 v3
df chisq pval
v7 to v19
rmsea lo hi rmseap
v24 to v47.

frequencies chisq.
* READ BOOTSTRAP RESULTS FROM MPLUS OUTPUT.
data list free file = ‘c:\mplusparams.txt’
/icept1 icept2 icept3 icept10 icept11
icept12 icept14 icept18 icept21 icept24
load1 load2 load3 load10 load11
load12 load14 load18 load21 load24
res1 res2 res3 res10 res11
res12 res14 res18 res21 res24 f1f2cov
se1 to se31 chisq fit1 to fit15.

execute.
frequencies chisq.
descriptives icept1 to f1f2cov.

APPENDIX C
SIMPLIS SYNTAX FOR FITTING BOOTSTRAP SAMPLES

Observed Variables: eat1 eat2 eat3 eat10 eat11 eat12 eat14 eat18
eat21 eat24
Missing Value Code –9
Sample Size: 200
Raw Data from File c:\bootstacked.txt
Latent Variables: driveft foodpre
Relationships:

eat1 = const + driveft
eat2 = const + driveft
eat10 = const + driveft
eat11 = const + driveft
eat12 = const + driveft
eat14 = const + driveft
eat24 = const + driveft
eat3 = const + foodpre
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eat18 = const + foodpre
eat21 = const + foodpre

Set the error variances of eat1 – eat24 free
Set the variance of driveft to 1
Set the variance of foodpre to 1
Options: sc rp = 1100 lx = loadings.txt gf = fit.txt
End of Problem

APPENDIX D
MPLUS 3 SYNTAX FOR FITTING

BOOTSTRAP SAMPLES

TITLE:
Mplus external Monte Carlo program;

DATA:
file is ‘c:\replist.txt’;
type is montecarlo;

VARIABLE:
names are eat1 eat2 eat3 eat10 eat11 eat12 eat14 eat18 eat21
eat24;
usevariables are eat1 – eat24;
missing are all (–9);

ANALYSIS:
type = h1 missing;
estimator = ml;

MODEL:
driveft by eat1* eat2 eat10 eat11 eat12 eat14 eat24;
foodpre by eat3* eat18 eat21;
driveft@1 foodpre@1;
driveft with foodpre;

SAVEDATA:
results are “c:\mplusparams.txt”;

APPENDIX E
EQS 6.1 SYNTAX FOR PERFORMING THE

BOLLEN–STINE BOOTSTRAP

/TITLE
Modified Bollen-Stine Bootstrap for Missing Data

/SPECIFICATIONS
DATA=’C:\eatboot.ess’;
VARIABLES=10; CASES=200;
METHOD=ML; ANALYSIS=MOMENT; MATRIX=RAW;
MISSING=ML; SE=OBSERVED;
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/LABELS
V1=eat1; V2=eat2; V3=eat3; V4=eat10; V5=eat11;
V6=eat12; V7=eat14; V8=eat18; V9=eat21; V10=eat24;

/EQUATIONS
V1 = *V999 + *F1 + E1;
V2 = *V999 + *F1 + E2;
V3 = *V999 + *F2 + E3;
V4 = *V999 + *F1 + E4;
V5 = *V999 + *F1 + E5;
V6 = *V999 + *F1 + E6;
V7 = *V999 + *F1 + E7;
V8 = *V999 + *F2 + E8;
V9 = *V999 + *F2 + E9;
V10 = *V999 + *F1 + E10;
F1 = D1;
F2 = D2;

/VARIANCES
V999 = 1;
E1 = *;
E2 = *;
E3 = *;
E4 = *;
E5 = *;
E6 = *;
E7 = *;
E8 = *;
E9 = *;
E10 = *;
D1 = 1;
D2 = 1;

/COVARIANCES
D2,D1 = *;

/PRINT
FIT=ALL;
TABLE=EQUATION;

/OUTPUT
DATA=’EQSOUT.ETS’;

/SIMULATION
MBB=200;
REPLICATIONS=1100;
SEED=12345.0;
SAVE=NO;

/END
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