Identification of Chromosomes with Secondary Constrictions in *Melilotus* Species

S. E. Schlarbaum
Kansas State University

L. B. Johnson
United States Department of Agriculture

Herman J. Gorz
United States Department of Agriculture

Francis A. Haskins
University of Nebraska - Lincoln, fhaskins@neb.rr.com

Follow this and additional works at: http://digitalcommons.unl.edu/agronomyfacpub

Part of the [Plant Sciences Commons](http://digitalcommons.unl.edu/agronomyfacpub)

http://digitalcommons.unl.edu/agronomyfacpub/307

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Identification of chromosomes with secondary constrictions in *Melilotus* species

ABSTRACT: Secondary constrictions were determined in one chromosome pair in the complements of *M. infesta*, *M. macrocarpa*, *M. italica* (subgenus *Micromelilotus*), and *M. alba* and *M. officinalis* (subgenus *Melilotus*). The karyotypes of *M. infesta* and *M. macrocarpa* were found to be similar. Chromosomes of *M. italica* were larger than the chromosomes of the other four *Melilotus* species. The chromosome size in *M. italica* suggests the presence of large chromosomes in an ancestral or pro-*Melilotus* prototype. The chromosomes with satellites of *M. infesta* and *M. macrocarpa* appear to differ in morphology from the satellite chromosomes of *M. alba* and *M. officinalis* by a paracentric inversion. The morphology of the satellite chromosomes in *M. italica* is thought to represent a more primitive type than in the other *Melilotus* species studied.

S. E. Schlarbaum
L. B. Johnson
H. J. Gorz
F. A. Haskins

The sweetclover genus, *Melilotus* Adans., contains forage and nitrogen fixing species of agricultural importance. Taxonomically, *Melilotus* is divided into two subgenera10, (Eu)*Melilotus* Schulz and *Micromelilotus* Schulz. Isely4 considers the subgenus *Melilotus* to consist of nine biennial species, including the commercially important *M. alba* Desr. and *M. officinalis* (L.) Lam., while the subgenus *Micromelilotus* contains 11 annual species, few of which have economic value as crops14. Other taxonomists, most notably Suvorov16, consider the genus to contain a greater number of species.

The chromosome number of many *Melilotus* species, $2n = 2x = 16$, was determined early in this century2,11. Karyotype analyses of all *Melilotus* species, with the exception of the dubious *M. bicolor* Boiss & Bal., were reported by Kita5,6. Chromosomes with satellites were found in all species except *M. infesta* Guss., *M. macrocarpa* Goss. et Dur., and *M. italica* (L.) Lam., which belong to *Micromelilotus*. Secondary constrictions could not be defined in the chromosomes of these three species.

The present study was undertaken to delineate the occurrence and positions of secondary constrictions in the chromosome complements of *M. infesta*, *M. macrocarpa*, and *M. italica*. Additionally, a comparison was made between the satellite chromosomes of these species and the satellite chromosomes of *M. alba* and *M. officinalis* for evidence of karyotypic evolution.

Materials and Methods

Seed of each species was obtained from the collection of *Melilotus* germplasm that is kept in cold storage at the University of Nebraska. *M. infesta* (Bdn. 61-98) and *M. macrocarpa* (Bdn. 61-97) were from seed of Algerian accessions. Seed of *M. italica* (Bdn. 523) came from a collection made in Portugal. Seed of commercially available cultivars of *M. alba* (Evergreen-Lot 14C) and *M. officinalis* (Yukon-F.C. 40594) were used in the study.

Actively growing root tips from one-month-old seedlings grown in clay pots were utilized. The root tips were placed in ice water for 24 hours (for a detailed description, see Singh and Tsuchiya12) and then fixed in a 3:1 mixture of ethanol:propionic acid in which a small amount of ferric chloride had been dissolved as a mordant. After 3-4 days in a fixative, the root tips were hydrolyzed in 1N HCl at 60°C for 6 minutes and stained in aceto-carmine for at least 3 days. After sufficient staining, the meristematic tissue was squashed.
in 45 percent acetic acid. Dividing cells in the meristematic region were isolated and analyzed.

For the *Micromelilotus* species, the karyological interpretations were made on the chromosome complement of a representative cell from each species in which the chromosomes were well spread and the secondary constrictions were obvious. From these cells, karyotypes were constructed by arranging the chromosomes in pairs considering the total length, centromere position, and gross morphology. The chromosome pairs were generally arranged in gradation from the longest to the shortest pair of the complement. Satellite chromosome morphology in *M. alba* and *M. officinalis* cells was studied in a number of preparations.

Results

The chromosome number of \(2n = 2x = 16\), as previously reported\(^2,5,11\), was confirmed in all species. Numerous cells were observed (ca. 20) in each species in which chromosome morphology was able to be characterized. Secondary constrictions in one chromosome pair were found to exist in *M. infesta*, *M. macrocarpa*, and *M. italicica* (Figures 1, 2, 3, and 4A–C). The existence of satellite chromosomes in *M. alba*\(^3\) and *M. officinalis*\(^1\) also was reaffirmed (Figure 4D and E).

The chromosome complement of *M. infesta* is shown in Figure 1A. A secondary constriction was found in the largest chromosome pair near the centromere in the short arm (Figures 1B and 4A). At somatic prophase, this chromosome pair appeared to be heterochromatic in contrast to the majority of other chromosomes that appeared to stain normally (Figure 5). The karyotype shows the presence of many nonmetacentric chromosomes (Figure 1B).

Figure 2A shows the somatic chromosomes of *M. macrocarpa*. The chromosomes with satellites in this species were the largest chromosomes in the complement (Figure 2B) and appear to be heterochromatic, as in *M. infesta*. In general, the karyotype of *M. macrocarpa* closely resembles the *M. infesta* karyotype. However, the short arm bearing the satellite body in *M. macrocarpa* was shorter, relatively, than the corresponding short arm in *M. infesta* (Figure 4A and B). The chromosomes of *M. macrocarpa*, excluding the satellite chromosome pair, did not stain as deeply as chromosomes of the other species.

Overall, the chromosomes of *M. italicica* were the largest of the species studied (Figure 3A). The satellite bodies in this species were the same or of greater length than the long arms of the satellite chromosomes (Figures 3B and 4C). The larger chromosomes in the karyotype were metacentric while the smaller chromosomes tended to have nonmedian centromeres (Figure 3B). The chromosomes of *M. italicica* stained very deeply, suggesting a heterochromatic nature.

The satellite chromosomes of *M. alba* and *M. officinalis* are different in morphology from the preceding species (Figure 4A–E). Both species have small satellite bodies attached to the short arms (Figure 4I and E).

Discussion

Comparisons of the karyotypes of *M. infesta*, *M. macrocarpa*, and *M. italicica* served the present study with the
sented by Kita show a general agreement with the exception of the satellite chromosomes. In each species, it appears that Kita misidentified the secondary constriction as the primary constriction. The small size of the short arm of the satellite chromosomes in M. infesta and M. macrocarpa causes a close proximity between the primary and secondary constrictons making distinction very difficult (figure 4A and B). Also, excessive chromosome contraction and deep staining often obscured the primary constriction in many cells.

In the case of M. italicu, overstaining of the presumably heterochromatic satellite chromosomes probably confounded Kita's observations.

The chromosomes of M. macrocarpa are similar to those of M. infesta, yet appear substantially larger. This is in contrast with the results of Kita who observed no significant difference in chromosome size between the two species. Comparison of the chromosomes of M. infesta and M. macrocarpa by chromosome index (short arm/long arm ratio) additive length, following the methodology of Tjoa and Hagberg, reveals no critical difference between the karyotypes. The size differential found in the present study is probably due to differences in chromosome attraction between the two cells shown of each species and to artifacts normally encountered with the squash technique for slide preparations.

The differences in size between chromosomes of M. italicu and those of other Melilotus species have been reported previously. In many plant species, it has been observed that the evolution of karyotypes proceeds from large chromosomes in primitive species to smaller chromosomes in specialized species. Chromosome studies in two leguminous genera, Trifolium and Medicago (Schlarbaum, unpub.), indicate karyotypic evolution has occurred in this manner. This suggests that the chromosome size of M. italicu may be indicative of the chromosome size in an ancestral Melilotus or pro-Melilotus species. This hypothesis is supported by the morphological observations of Suvorov, who considered M. italicu to characterize the features of an ancestral Melilotus type, although he recognized that paleobotanic information was lacking for the genus. There is some doubt that the present karyotype of M. italicu should be considered as a basikaryotype for a Melilotus prototype, as it is semi-asymmetrical, indicating an advanced evolutionary state.

The functional basis of the large size and heterochromatic nature of the M. italicu chromosomes is not known.
short arm small as in *M. infesta* and *M. macrocarpa* (Figure 4A and B), and type III—satellite small, short arm large as in *M. alba* and *M. officinalis* (Figure 4D and E). The differences between types II and III could result from a paracentric inversion with breakage sites in the short arm and satellite body. The satellite chromosome morphology of type I possibly represents a more primitive state than satellite chromosomes of types II and III.

After observing alteration of the nucleolus organizer chromosome system due to irradiation in *Trillium kamtschatcicum* Pall., Matsuura proposed that one method of satellite chromosome origin was a paracentric inversion of a terminally located nucleolus organizer region (NOR) to an intercalary position. If the origin of satellite chromosomes in *Melilotus* proceeded according to this hypothesis, the morphology of the satellite chromosomes in *M. italicu* (type I) appears similar to what would be expected from a paracentric inversion in a chromosome with a terminal NOR present in a primitive *Melilotus* karyotype.

References