


[31] U(VI) concentrations decreased much more slowly
during TransDeso1 than was observed during Deso1 (Figure
4). Even though the chemical composition of injection
SCRW changed during transport through the column, the
effluent chemical conditions exhibited lower pH, alkalinity,
and Ca2þ concentrations than those observed during injec-
tion of SGW-0. Thus, during periods when SCRW was
injected into the column, chemical conditions favored signif-
icant decreases in U(VI) desorption throughout the column.
Rate-limited U(VI) desorption was observed during the two
stop-flow events (Figure 4b). The significantly smaller
increase in U(VI) concentrations observed during the second
stop-flow event as compared to the first also reflects differ-
ences in the aqueous chemistry resident in the column
during the stop-flow events. During the first and second
stop-flow events, aqueous chemistry reflected the composi-
tion of SGW and SCRW, respectively, as modified by the
additional chemical reactions and biological processes
described previously. Lower alkalinity values and Ca2þ con-
centrations during the second stop flow were less favorable
to U(VI) desorption (Figure 2) and therefore less extensive
mass transfer of U(VI) out of the sediments occurred.

3.3. Modeling
[32] The physical transport parameters of the two column

experiments were estimated with the code STAMMT-L and

the results are given in Table 3. In contrast to the experi-
ment Deso1, no immobile domain needed to be considered
to fit the Br breakthrough curve in the experiment Tran-
Deso1 where the sediment was wet packed. Preferential
flows might occur along the column wall during the experi-
ments. Therefore, in optimization, longitudinal dispersivity
was optimized to a large value to simulate the observed
breakthrough curve.

[33] Modeling the temporal variation in effluent chemis-
try would require ad hoc assumptions about mineral disso-
lution and other reactions that affected pH, cation, and
carbonate concentrations. Instead, we adjusted the pH, alka-
linity, and other major cations of the influent SGW-0 and
SCRW manually to the corresponding values observed in
the effluent in both experiments. In Deso1, considering that
the measured chemistry was relatively stable except in the
first few pore volumes, averaged values of pH and alkalinity
just before and just after the three stop-flow events were
used to make four SGW recipes used in the model
(SGW1–SGW4). In TranDeso1, a more detailed chemical
composition sequence was used to investigate the responses
of U(VI) desorption to variations in water chemistry.
Twenty one discrete chemical compositions based on the
pH, alkalinity, and major ion composition of the effluent
were used as input in the model. Therefore the influent
chemistry approximately resembled the evolutions of the

Figure 4. Observed and simulated U(VI) desorption in two column experiments.

W04502 YIN ET AL.: EFFECTS OF TRANSIENT CHEMISTRY ON U(VI) W04502

8 of 11



effluent chemistry and most of the compositional transitions
in the column were thereby manually captured. Model cali-
bration was carried out by only adjusting the rate constant
distribution with the condition that the log-standard devia-
tion had to be the same as measured by Liu et al. [2008].
An additional simulation using a single fast rate constant
(0.0241 h�1) was conducted to evaluate whether the number
of discrete adsorption domains could be reduced.

[34] The calibrated model captured the major trends in
U(VI) concentrations as observed in both experiments (Fig-
ure 4). In Deso1, increasing the log mean of rate constant
increased the overall U(VI) desorption. However, the influ-
ence of the rate constant decreased when the mean of the
rate constants became sufficiently large that the model- cal-
culated U(VI) concentrations approached equilibrium. Under
such conditions, U(VI) desorption was mainly controlled by
the pore water chemistry rather than the rate constant distri-
bution. Simulations using a single constant rate showed no
significant differences than the simulations using 50 discrete
rate constants, suggesting that a single adsorption domain

may sufficiently represent the early stage U(VI) desorption
in this composite sediment. However, as shown in Figure 4a,
the increased U(VI) in the third stop-flow event was com-
pletely missed in the single-rate simulation case. Almost all
the simulation cases captured the magnitude of the U(VI)
increase in the first stop-flow event but underestimated the
U(VI) increase in the second stop-flow event and missed the
U(VI) increase in the third stop-flow event. This indicates
that a small amount of U(VI) on slow adsorption sites
remained in the sediment. Models with additional complex-
ity, such as those with a relatively large portion of faster
adsorption sites and a small portion of slow adsorption sites,
might be required to improve predicted U(VI) desorption.
Utilizing the best-fit simulation with a log mean of � ¼
�4:66; an additional simulation has been carried out that
does not take into account the chemical variation induced by
mineral dissolution and ion exchange reactions within the
column; instead, the experimentally defined (constant) input
solution was employed. The simulation results show a nearly
constant U(VI) desorption through time (Figure 4a).

Figure 5. Selected chemical compositions in influent and effluent in TranDesol.
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Therefore it can be concluded that without considering the
changes of major ion chemistry occurring within the column,
U(VI) desorption cannot be adequately described in Deso1.

[35] Similar to Deso1, simulated results of TransDeso1
could not be significantly improved by increasing the mean
of rate constants (Figure 4b) when � >¼ �6:05. Differen-
ces between simulation cases became even less significant
during the SCRW injection phases. For example, the vari-
ous cases produced essentially identical calculated aqueous
U(VI) concentration differences between 9 and 12 pore vol-
umes. The simulation differences, however, increased dur-
ing 12 and 18 PV when the pore solution generates less
adsorption strength. Comparison of the 50 domain simula-
tions where � � �6:05 and the single adsorption domain
simulation again indicates that a single kinetic rate constant
may be sufficient to represent the results of these experi-
ments. Note that in the single-rate simulation case, the lack
of slow adsorption domains (as seen in Deso1) was not sig-
nificant because of the relatively short contact times
between pore fluids and sediments. Because the input solu-
tions have been adjusted to closely track the compositional
changes occurring within the column, the overall underesti-
mation of U(VI) concentration between 2 and 7 PV is likely
to be result of the inherent error of the surface complexa-
tion model that overestimates the adsorption strength
around an alkalinity of 2 meq/L (Figure 2). However, the
small undulations resulting from the variable major ion
chemistry were well captured by the model. Without adapt-
ing the input solutions (i.e., neglecting the effect of sedi-
ment buffering) in the simulation for � ¼ �4:66;
simulated U(VI) concentrations drastically underestimate
the measured U(VI) concentrations with those simulated
with the adapted inflow solution. The response of U(VI)
concentrations to the water chemistry changes in the nona-
dapted simulation was more pronounced than in the simula-
tion where the inflow solution was adapted (Figure 4b),
even though concentrations were overall low. Again, this
means that without accounting for the water chemistry
changes occurring along the column, U(VI) desorption
could not be predicted. In both stop-flow events, all simula-
tion cases underestimated the U(VI) increase. This discrep-
ancy may result from the assumption of constant chemical
conditions spatially within the column. This assumption is
most likely to be violated during stop-flow events, where
chemical reaction rates likely drive differences in chemical
composition spatially along the column. During the stop
flow, the chemical composition in the column is likely to
favor desorption, but the composition near the column out-
let (measured in the first effluent sample following the stop
flow) favors adsorption. None of the simulations could
account for the enhanced desorption during two stop-flow
events and it could not be clarified to what degree chemis-
try changes or mass transfer processes are responsible for
the observed U(VI) concentration peaks.

4. Conclusion
[36] The U(VI) transport at the Hanford 300 Area is

affected by factors expected to be important in many sites
near streams and rivers. These include variable chemical
composition owing to changes in flow direction caused by
changes in river stage, and slow mass transfer owing to dif-

fusion and adsorption in mineral grains and mineral-grain
aggregates. In the present study, laboratory experiments and
corresponding numerical modeling have been carried out to
investigate U(VI) adsorption/desorption behavior and its de-
pendency on transient water chemistry conditions that are
representative of, but not limited to, the Hanford 300 Area
site. The results of laboratory batch and column experiments
demonstrate the importance of pH, (bi)carbonate concentra-
tion (measured as the alkalinity), and Ca2þ concentrations
on U(VI) adsorptive mass transfer. A previously proposed
multicomponent multirate surface complexation model only
captured the U(VI) desorption in the conducted column
experiments when chemical conditions were adequately
defined. However, in the studied sediment and within the
time scale of the column experiments, the number of
adsorption domains could be decreased to increase the com-
putational efficiency. Under constant water chemistry, de-
sorption of U(VI) is fully controlled by rate-limited mass
transfer, and the underestimation of U(VI) increase in the
stop-flow event at the later stage of the experiment (e.g., in
Deso1) could be compensated by assigning several slower
adsorption domains to retard the desorption. In the experi-
ments with transient chemistry, U(VI) adsorption/desorption
was largely controlled by the rate of changes in water chem-
istry rather than the mass transfer rates.

[37] From this study, it can be concluded that the appli-
cation of the multirate surface complexion model to the
field is feasible when the groundwater chemistry is suffi-
ciently constrained or the evolution of the groundwater
chemistry can be accurately predicted. However, the rate
constant distributions and the number of the adsorption
domains should be carefully calibrated to characterize the
physical and chemical properties and the contamination
history of the investigated sediments. At the Hanford 300
Area, near the Columbia River, stage oscillations and mi-
crobial metabolism change the water chemistry on a daily
and seasonal basis. The field measurements of U(VI) there-
fore have to be coupled with chemistry measurements to
constrain the hydrochemical parameters of the model. It
will be valuable to improve models for predicting the evo-
lution of inorganic carbon, major cations, and pH under
transient chemical boundary conditions.
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