
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Papers in Natural Resources Natural Resources, School of

10-1-2011

Optimizing spectral indices and chemometric
analysis of leaf chemical properties using radiative
transfer modeling
Jean-Baptiste Féret
Carnegie Institution for Sciences, jbferet@stanford.edu

Christophe François
Université Paris-Sud, Orsay, France, christophe.francois@u-psud.fr

Anatoly A. Gitelson
University of Nebraska-Lincoln, agitelson2@unl.edu

Gregory P. Asner
Carnegie Institution for Sciences, gpa@stanford.edu

Karen M. Barry
University of Tasmania, Karen.Barry@utas.edu.au

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers
Part of the Natural Resources and Conservation Commons

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Féret, Jean-Baptiste; François, Christophe; Gitelson, Anatoly A.; Asner, Gregory P.; Barry, Karen M.; Panigada, Cinzia; and
Jacquemoud, Stéphane, "Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer
modeling" (2011). Papers in Natural Resources. Paper 311.
http://digitalcommons.unl.edu/natrespapers/311

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natrespapers?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natres?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natrespapers?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/natrespapers/311?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Jean-Baptiste Féret, Christophe François, Anatoly A. Gitelson, Gregory P. Asner, Karen M. Barry, Cinzia
Panigada, and Stéphane Jacquemoud

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/natrespapers/311

http://digitalcommons.unl.edu/natrespapers/311?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages


1. Introduction

Leaf chemical constituents are determining indicators of 
plant physiology and other functional processes up to the 
ecosystem level. Chlorophylls a and b enable light harvest-
ing for photosynthesis (Anderson, 1986; Lichtenthaler et al., 
1981), while carotenoids (carotenes and xanthophylls) and 
anthocyanins afford protection from excess light, for exam-
ple during leaf development or abiotic stress (Close and Bea-
dle, 2003; Gould et al., 2008). Measurement of total chloro-
phyll content (Cab) and carotenoid content (Cxc) has many 
applications in agriculture, ecology, and Earth science. Be-
side photosynthetic pigments, leaf water content, expressed 
as Equivalent Water Thickness (EWT), and dry matter con-
tent, expressed as Leaf Mass per Area (LMA), are also critical 
variables in plant ecology, especially in forest fire risk assess-
ment, water stress analysis, net ecosystem exchange and car-
bon storage computation.

Remote sensing is particularly adapted to study these leaf 
constituents because of their strong influence both on leaf 
and canopy reflectance. This study focuses on the assess-
ment of vegetation chemical properties at the leaf level. Un-
til now, Cab and EWT have been the most extensively investi-
gated chemical constituents at the leaf scale, because of their 
strong absorption features in the visible and shortwave infra-
red domains, respectively (Seelig et al., 2008; Ustin et al., 2009). 
Quantifications of Cxc and LMA are much more challenging, 
because they are masked by stronger absorbers like Cab in the 
visible and EWT in the infrared (Gitelson et al., 2002; Kokaly et 
al., 2009; Zur et al., 2000). The number of methods to retrieve 
carotenoid content is limited (Asner and Martin, 2008; Chap-
pelle et al., 1992; Féret et al., 2008; Gitelson et al., 2002, 2006; 
Sims and Gamon, 2002; Zur et al., 2000) and there are even 
less focusing on anthocyanins (Asner and Martin, 2008; Gi-
telson et al., 2001, 2006, 2009; Sims and Gamon, 2002). LMA 
gathers several types of constituents, which show strongly 
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Abstract
We used synthetic reflectance spectra generated by a radiative transfer model, PROSPECT-5, to develop statistical relationships between leaf 
optical and chemical properties, which were applied to experimental data without any readjustment. Four distinct synthetic datasets were 
tested: two unrealistic, uniform distributions and two normal distributions based on statistical properties drawn from a comprehensive ex-
perimental database. Two methods used in remote sensing to retrieve vegetation chemical composition, spectral indices and Partial Least 
Squares (PLS) regression, were trained both on the synthetic and experimental datasets, and validated against observations. Results are com-
pared to a cross-validation process and model inversion applied to the same observations. They show that synthetic datasets based on nor-
mal distributions of actual leaf chemical and structural properties can be used to optimize remotely sensed spectral indices or other retrieval 
methods for analysis of leaf chemical constituents. This study concludes with the definition of several polynomial relationships to retrieve leaf 
chlorophyll content, carotenoid content, equivalent water thickness and leaf mass per area using spectral indices, derived from synthetic data 
and validated on a large variety of leaf types. The straightforward method described here brings the possibility to apply or adapt statistical re-
lationships to any type of leaf.

Keywords: leaf optical properties, PROSPECT, hyperspectral data, pigment content, water content, leaf mass per area, spectral indices, partial 
least squares regression
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overlapping optical properties. These constituents, mainly cel-
lulose, lignin, nitrogen and proteins, have been investigated 
by numerous authors (reviewed by Kokaly et al., 2009), and 
a few studies considered direct assessment of LMA using re-
mote sensing (Asner et al., 2011; Baret and Fourty, 1997; Jac-
quemoud et al., 1996; le Maire et al., 2008).

Several methods have been applied to assess the chemi-
cal content of plant leaves from their optical properties. There 
have been three main approaches: i) semi-empirical meth-
ods based on spectral indices adjusted to experimental data-
sets (e.g. Danson and Bowyer, 2004; Gitelson et al., 2006; Sims 
and Gamon, 2002); these indices may be calibrated and vali-
dated on synthetic datasets simulated using leaf optical mod-
els (le Maire et al., 2004, 2008), ii) statistical multivariate meth-
ods based on linear (e.g. Asner and Martin, 2008; Asner et al., 
2009; Blackburn and Ferwerda, 2008; Jacquemoud et al., 1995; 
Jørgensen et al., 2007; Li et al., 2007) and nonlinear regres-
sion models (e.g. Shi & Sun, 2007), iii) radiative transfer model 
(RTM) inversion (e.g. Barry et al., 2009; Di Vittorio, 2009; Féret 
et al., 2008; Jacquemoud et al., 1996).

Whatever the method, its success depends upon the qual-
ity of the training dataset, the selection of the wavelengths and 
the availability of an independent dataset for the method val-
idation. There is a large variety of published spectral indices 
for leaf Cab retrieval, but inter-comparison studies intended to 
find the “best” index in terms of reliability have underscored 
several problems (Gitelson et al., 2003; Richardson et al., 2002; 
Sims and Gamon, 2002). These authors noted that reaching 
consensus is difficult because the calibration and validation 
datasets are generally limited to one or a few closely related 
species. As a consequence, methods based on small-sized da-
tasets often lead to specialized indices that perform poorly 
when applied to a wide variety of plant leaves and conditions. 
Moreover the datasets were often not generic enough in terms 
of pigment composition and distribution, phenological stage 
and leaf structure. Finally they noted that an independent vali-
dation dataset is an exception to the rule.

To address this problem, le Maire et al. (2004, 2008) proposed 
a method which purports to be generic at two levels: the de-
sign of a comprehensive calibration database and the choice of 
a set of wavelengths. The calibration database, simulated with 
the leaf optical properties RTM PROSPECT (Jacquemoud et al., 
1996), was used to select optimal combinations of narrow spec-
tral bands through systematic exploration of the wavelength 
space to build new indices dedicated to Cab and LMA retrieval. 
With the same approach, Danson and Bowyer (2004) compared 
the correlation between EWT and different spectral indices, ad-
justed both on experimental and simulated data. Shi and Sun 
(2007) similarly trained an artificial neural network for Cab and 
EWT retrieval, but the contribution of simulations has not been 
clearly demonstrated and only one species was studied. Black-
burn and Ferwerda (2008) proposed a method to retrieve leaf 
chlorophyll content from reflectance using wavelet analysis; 
this approach based on PROSPECT simulations gave promising 
results but was not validated with experimental data.

The application of radiative transfer models is also generic 
by its nature since it does not depend on a specific calibration 
database: models are calibrated once, thus their inversion does 
not require any prior adjustment for a training dataset. The re-
trieval of leaf chemistry by PROSPECT inversion gave good 
results when applied to various species and phenological 
stages (Barry et al., 2009; Féret et al., 2008). Although the math-
ematical libraries for optimization routines and the increasing 
computer performance are making model inversion more trac-
table, it still requires much spectral information, and its imple-
mentation is not as common or straightforward as are statisti-
cal methods and spectral indices.

Using simulations in place of experimental data may be 
worthwhile because it increases flexibility and control when 
building the training dataset. For example it has the advan-

tage of avoiding laboratory analytical errors in deriving chem-
ical constituents. Moreover model simulations are more easily 
reproducible and can facilitate comparison studies based on a 
standardized approach.

Our goal is to compare several methods of sampling and to 
provide a reproducible framework for the design of an opti-
mal synthetic dataset using the model PROSPECT-5. Four sam-
pling strategies differing by their intrinsic variance and covari-
ance matrices are tested to build two types of statistical models, 
spectral indices and PLS, with the intention of assessing Cab, 
Cxc, EWT, and LMA retrieval at the leaf scale. The models ad-
justed to synthetic data are then compared to those adjusted to 
experimental data, in terms of chemical retrieval performance. 
They are also examined against PROSPECT-5 inversions. All 
methods face the same problem when it comes to validation, 
i.e., they all require a large and representative database. Here 
the main attribute of our validation dataset is that it maximizes 
spectral and biochemical variability. To achieve this, plant spe-
cies from different ecosystems, grown under various conditions 
and at different phenological stages have been selected.

2. Material and methods

We first describe the experimental dataset used in this study 
and the PROSPECT-5 model that is run to simulate leaf reflec-
tance. The different strategies adopted to build a synthetic da-
taset are then compared. Finally, the methods used to assess 
leaf chemical constituents are introduced: spectral indices, 
PLS, and radiative transfer model inversion.

2.1. Description of the experimental datasets

Seventeen independent datasets including a wide range of leaf 
spectral, chemical, and structural properties were incorporated 
into this study. They encompass 1417 leaves corresponding to 
about 120 different species from various growing conditions 
and developmental stages (Table 1). Exhaustive informa-
tion about the methods used to measure optical and chemical 
properties of leaves can be found in the references given in Ta-
ble 1. These datasets contain leaf directional-hemispherical re-
flectance spectra and, when available, transmittance spectra 
measured in the solar domain (1 nm increment) with labora-
tory spectrophotometers or field spectroradiometers equipped 
with integrating spheres, except BIRCH 2 for which leaf opti-
cal properties are measured using a leaf clip. The spectral range 
varies according to the datasets but they all include measure-
ments in the visible (VIS, 400–700 nm) and in part or total of 
the near-infrared (NIR, 700–1000 nm) domains. Some also in-
clude the shortwave-infrared (SWIR, 1000–2500 nm). The data-
sets generally share a pool of chemical constituents expressed 
as a mass per unit leaf area, thus comparable: Cab and Cxc (μg.
cm− 2), EWT (g.cm− 2 or cm), and LMA (g.cm− 2). Basic statistics 
for the chemical constituents are displayed in Table 2.

The first step in compiling leaf datasets was to develop syn-
thesis information about the distribution of each leaf property 
and correlations between leaf constituents. As shown in Fig-
ure 1, the distribution of Cab, Cxc and LMA can be fitted with 
a Gaussian distribution, while EWT is better represented by a 
lognormal distribution. Despite our efforts to include as many 
vegetation types as possible, this database does not repre-
sent all types of vegetation since it mainly contains deciduous 
trees, cereal crops and fruit trees, and a very few humid trop-
ical species. Nevertheless, it is one of the largest that has been 
compiled to date, and it provides the possibility to validate 
our modeling results on more than a hundred plant species. 
Although the distributions may not be suitable to all types of 
ecosystems, the various growing conditions—from natural 
growth to fertilized growth under green houses—and physio-
logical stages—from young to senescent leaves and healthy to 
stressed leaves—create a dataset with wide-ranging leaf traits.
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This database is also used at the validation stage to evalu-
ate the performance of the methods detailed hereafter for Cab, 
Cxc, EWT, and LMA retrievals from leaf optical measurements. 
The 17 experimental datasets vary both in terms of the spectral 
domain covered and the foliar attributes quantified, as shown 
in Table 1. Therefore, the number of leaf samples available for 
the validation stage varies as well, depending upon the spec-
tral domain required and on the chemical constituents related 
to leaf optical properties. We underline that it is important that 
the validation dataset is common to all the methods, and thus 
its size is constrained by the spectral domain required to apply 
the method which is spectrally the most demanding. For ex-
ample the dataset BIRCH 1, which comprises EWT and LMA 
measurements but spectral measurements from 400 to 835 nm 
only, is not included in the validation dataset used with these 
two constituents because their assessment by model inversion 
requires SWIR data. As a result, the validation is performed 
using 821 reflectance spectra measured from 400 to 800 nm for 
Cab, 707 reflectance spectra measured from 400 to 800 nm for 
Cxc, 587 reflectance spectra measured from 800 to 1600 nm for 
EWT, and 381 reflectance spectra measured from 800 to 1800 
nm for LMA. The SWIR domain is narrowed to 1600 nm for 
EWT and to 1800 nm for LMA in order to keep as much exper-
imental data as possible.

2.2. Radiative transfer modeling of leaf reflectance

PROSPECT-5, the latest version of the PROSPECT model (Jac-
quemoud & Baret, 1990), simulates leaf directional–hemi-
spherical reflectance and transmittance, referred to as reflec-
tance and transmittance hereafter, from 400 to 2500 nm with 
five input variables: Cab, Cxc, LMA, EWT, and N, the leaf struc-
ture parameter (Féret et al., 2008). The adding of carotenoids 
to the photosynthetic pigments taken into account by the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model is the main advance of the new version. PROSPECT is a 
generalized plate model, i.e. it describes the leaf as a stack of N 
homogeneous, absorbing elementary layers, separated by N–1 
air spaces. The leaf structure parameter corresponds to the 
number of layers. Although N is most conceivable as a whole 
number, accounting for subtle variations in leaf structure re-
quires to feed the model with continuous values. Therefore, N 
is a real number ranging between 1 and 3. Jacquemoud and 
Baret (1990) proposed a relationship between N and the LMA, 
but our attempts to obtain similar relationship showed that it 
was unsuitable for our data. Thus the characteristic value of N 
for each leaf that is used in this study results from the inver-
sion of PROSPECT-5.

Table 1. All available datasets.

Name                     Number of   Number of    Vegetation type              Spectral domain       R          T          Leaf biochemistry
                                           samples        species  (nm)                      Cab       Cxc      EWT    LMA

ANGERS (1) 276 49 Temperate species and crops 400–2450 × × × × × ×
BIRCH 1 (2) 140 1 Temperate species 400–835 × × × × × ×
BIRCH 2 (3) 98 1 Temperate species 400–1000 ×  ×   ×
Maple and chestnut 1 (4) 49 2 Temperate species 400–750 × × × ×  
Beech, elm, vine (5) 66 3 Temperate species 400–780 ×  × ×  
Maple and chestnut 2 (6) 45 2 Temperate species 400–750 ×  × ×  
Maize, soybean (7) 40 2 Crops 400–800 ×  × ×  
Oak 1 (8) 142 1 Temperate species 400–1600 × × × × × ×
Oak 2 (9) 112 1 Temperate species 400–2200 × × ×   ×
Ese (10) 99 11 Temperate species 410–785 ×  ×   ×
Eucalyptus (11) 64 1 Temperate species 400–1650 × × × × × ×
Fig (12) 60 1 Temperate species 400–800 × × × ×  
Hawaii (13) 41 41 Tropical species 400–2500 × × × × × ×
Beech (14) 46 1 Temperate species 400–800 × × × ×  
LOPEX (15) 64 58 Temperate species and crops 400–2400 × ×   × ×
Chestnut 3 (16) 22 1 Temperate species 400–780 × × × ×  
Vine (17) 53 1 Temperate species 400–950 ×  × ×  

(1) Féret et al., 2008; (2) C. Panigada (personal communication); (3) Richardson et al., 2002; (4) Gitelson et al., 2002; (5) Gitelson et al., 1999; (6) Gi-
telson et al., 2003; (7) Gitelson et al., 2006; (8) Rossini et al., 2006; (9) J. Louis (personal communication); (10) le Maire et al., 2004; (11) Barry et al., 
2009; (12) Gitelson & Merzlyak, 1997; (13) Féret et al., 2008; (14) Gitelson et al., 2002; (15) Hosgood et al., 1994; (16) Gitelson & Merzlyak, 1994; 
(17) Steele et al., 2008.

Table 2. Basic statistics computed on the whole dataset (1417 
leaves).

 Cab  Cxc  EWT LMA 
 (μg.cm− 2) (μg.cm− 2)  (cm)  (g.cm− 2)

Number of samples 1417 1106 725 1034
Minimum value 0.30 0.04 0.0043 0.0008
Maximum value 106.72 25.30 0.0713 0.0331
Mean value 32.81 8.51 0.0129 0.0077
Standard deviation 18.87 3.92 0.0073 0.0035

Figure 1. Distributions of Cab, Cxc, EWT, and LMA in the entire da-
taset compiled from Table 1.
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2.3. Design of a synthetic dataset

Four different sampling strategies intended to design syn-
thetic leaf optical properties datasets are tested. The probabil-
ity distributions of the input variables of the model and the 
number of simulations required to create the synthetic dataset 
distinguish each approach.

2.3.1. Sampling #1
This approach, proposed by le Maire et al. (2004, 2008) in-
volves defining a range of variation for each input variable 
of PROSPECT and, within the given range, a fixed number of 
levels following a uniform distribution. All possible combina-
tions are then simulated. The range for each input variable is 
derived from experimental observations. Le Maire et al. (2004) 
simulated 11,583 leaf reflectances with PROSPECT, in order 
to adjust optimal indices aiming at assessing Cab. Following 
a similar principle, le Maire et al. (2008) built indices appli-
cable to Cab and LMA, and they extended their investigation 
to the canopy level. Two datasets were generated: one con-
tained 6006 leaf reflectance spectra obtained by crossing four 
variables (Cab, EWT, LMA, and N) and the other was made of 
149,688 canopy reflectance spectra obtained by crossing seven 
variables. They showed that Cab is well retrieved by the spec-
tral indices adjusted at the leaf scale, while LMA is poorly de-
termined. The advantage of this sampling strategy is its ba-
sic implementation and the wide range of values taken by the 
chemical and structural properties, to encompass as many leaf 
types as possible, thus making the index applicable on a large 
range of species and growing conditions. The main restrictions 
lie in the size of the synthetic dataset which grows exponen-
tially with the number of variables and the generation of un-
realistic data. In this study, the distribution of le Maire et al. 
(2008) is reproduced for N, Cab, EWT and LMA, with the ad-
dition of Cxc for which eleven levels are uniformly selected be-
tween 2.5 and 25 μg.cm− 2 (Table 3). A total of 66,066 leaf re-
flectance spectra make up the first dataset.

2.3.2. Sampling #2
Design of experiment (DOE) is a statistical method that allows 
defining a structured and restricted number of simulations 
where all input variables vary at the same time. It maintains 
the statistical properties of a uniformly distributed sampling 
(sampling #1), but greatly decreases the number of simula-
tions. This method is applied at the leaf scale by Pavan et al. 
(2004) in order to perform sensitivity studies with the PROS-
PECT model. Here we use a Hyper Graeco Latin Geometric 
sampling scheme (Benoist et al., 1994) which allows seven val-
ues equi-distributed within a definition range for each of the 
five input variables of PROSPECT-5, leading to 2401 simula-
tions. A distribution range similar to sampling #1 has been 
chosen here (Table 3). The very reasonable size of sampling #2 
allows us to apply statistical methods using information from 
the whole spectral domain such as PLS, whereas the applica-
tion of these methods to the dataset obtained from sampling 
#1 result in a computationally intensive task.

2.3.3. Sampling #3
To study the relationship between spectral indices and leaf 
chemistry, some authors create synthetic datasets with ac-

tual distributions. Ceccato et al. (2001) performed a sensitiv-
ity analysis of the Moisture Stress Index (MSI) (Hunt & Rock, 
1989) using PROSPECT. The variation for all the input vari-
ables was taken from the LOPEX dataset of actual leaf mea-
surements (Hosgood et al., 1994), and a log-normal distribu-
tion is allocated to EWT. Ceccato et al. (2001) then applied the 
EFAST (Extended Fourier Amplitude Sensitivity Test) method 
that requires 9987 simulations for only three input variables. 
Danson and Bowyer (2004) underwent a similar effort to ad-
just spectral indices sensitive to EWT. The main advantage of 
this method is that the user can define the number of simula-
tions needed to create the dataset. For instance, these authors 
simulated 335 leaf reflectance spectra, the same number as in 
the experimental dataset. The results confirmed the high cor-
relation between MSI and EWT regardless of whether the da-
taset is experimental or synthetic. However, they did not pro-
vide similar results for all the indices, highlighting possible 
inaccuracies in the model. Note that no noise is applied to the 
data, which may explain the overestimation of the correlation 
between the spectral indices adjusted on simulated data and 
EWT. Based on the means and standard deviations of Table 2, 
we used 2500 samples randomly selected, following a normal 
distribution for Cab, Cxc, LMA and N, and a log-normal distri-
bution for EWT. Note that another trial using a smaller dataset 
containing 500 samples did lead to similar results, but we de-
cided to set a size comparable to that used in sampling #2.

2.3.4. Sampling #4
The fourth sampling strategy is similar to sampling #3, ex-
cept that it includes actual correlations between leaf constitu-
ents. Danson and Bowyer (2004) did not include covariations 
between leaf constituents and concluded on the necessity to 
investigate their influence on the accuracy of the relationship 
linking chemical and optical properties based on simulations. 
Indeed, this is a critical point as ignoring covariance among leaf 
traits may become an issue as it is likely that unrealistic combi-
nations of chemical constituents are simulated with samplings 
#1 to #3. Table 4 shows the different degree of correlation of 
leaf constituents, with highest correlation found between Cab 
and Cxc. The probability to find leaves which deviate from this 
straight line exists, for example in senescent leaves that show 
a very low Cab:Cxc ratio (Gitelson et al., 2003, 2006). However, 
leaves with a very high ratio are physiologically unlikely in na-
ture. Avoiding such unrealistic combinations, which would re-
sult in the simulation of meaningless leaf optical properties and 
induce some bias in the relationship, is then justified. This is 
achieved by the generation of 2500 samples using a multivari-
ate normal distribution based on the mean and standard devia-
tion from Table 2 and correlations from Table 4.

In summary, the synthetic datasets produced by the four 
sampling strategies vary in size (66,066 samples for sampling 
#1, 2401 samples for sampling #2, 2500 samples for samplings 
#3 and #4), as well as in structure. For each dataset, we calcu-
late the associated reflectance spectra from 400 to 2500 nm (1 
nm increments). Gaussian noise corresponding to 2% of the re-
flectance is then applied to the spectra, in order to decrease the 
effect of auto-correlation and possible minor model inaccu-
racies. This value used for Gaussian noise corresponds to the 
RMSE between the measured and modeled reflectances calcu-
lated by Féret et al. (2008).

Table 3. Leaf variables used to build a 66,066 spectra synthetic data-
set based on sampling #1.

 Minimum Maximum Step

Cab (μg.cm− 2) 10 110 10
Cxc (μg.cm− 2) 2.5 25 2.5
EWT (cm) 0.004 0.024 0.004
LMA (g.cm− 2) 0.002 0.014 0.001
N 1.1 2.3 0.2

Table 4. Correlation matrix for the five leaf variables obtained from 
the compilation of leaf datasets (Cab, Cxc, EWT and LMA), or by in-
version of PROSPECT (N).

 Cab Cxc EWT LMA N

Cab 1    
Cxc 0.86 1   
EWT 0.19 0.27 1  
LMA 0.19 0.43 0.63 1 
N − 0.15 − 0.02 0.28 0.13 1
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2.4. Methods to estimate leaf chemicals from optical properties

Three methods for leaf chemical estimation differing by the 
amount of spectral information needed are compared. They are 
presented in increasing order of spectral information required. 
Their performance in retrieving leaf properties was assessed by 
means of the RMSE between measured and retrieved values.

2.4.1. Spectral indices
Spectral indices present the easiest and most popular method 
to estimate leaf chemical constituents. Based on a limited num-
ber of wavebands, usually between two and four, they are fairly 
accurate when estimating Cab, Cxc, EWT, and LMA. Simple re-
flectance, reflectance difference and ratio, and normalized dif-
ference are the most common forms. There is a body of litera-
ture regarding Cab retrieval using spectral indices, as recently 
reviewed by Ustin et al. (2009), highlighting the recognized im-
portance of chlorophyll to physiological processes (Khamis et 
al., 1990) and its major influence on leaf optical properties in 
the VIS. Thus Cab assessment has various applications in agri-
culture, forestry, ecology, and environmental science. The lit-
erature offers many spectral indices using diverse combina-
tions of wavelengths so that the choice of an appropriate one 
is difficult. Moreover, most indices are tested on only one spe-
cies or one type of vegetation, thus they are not widely appli-
cable due to the dependence of the relationship upon an exper-
imental dataset. Some publications compare the performance of 
different indices applied to the same dataset to aid in the selec-
tion of an adapted one (e.g. Gitelson and Merzlyak, 2004; Gitel-
son et al., 2003; le Maire et al., 2004; Richardson et al., 2002; Sims 
and Gamon, 2002). The main disadvantage of spectral indices is 
their empirical base, which can result in a lack of generality. Fig-
ure 2 illustrates this issue: The relationship found by Richard-
son et al. (2002) for Cab retrieval based on the NDVIred edge with 
red edge wavelength at 705 nm (Gitelson and Merzlyak, 1994, 
1997) is first applied to BIRCH 2, the dataset used in the original 
publication, and then to the entire database. The quasi-linear re-
lationship found by the authors is well adapted to BIRCH 2 but 
cannot be applied to the whole database with much higher Cab 
contents. It means that either index (i.e. NDVIred edge) or spectral 
bands used were not optimal for whole database.

Two interesting approaches may improve these spectral in-
dices. The first consists of searching for the optimal set of spec-
tral bands that apply to a given type of index (le Maire et al., 
2004, 2008). The second, a semi-analytical method, is based on  
 
 
 
 
 
 
 
 
 
 

the prior study of correlations between chemical and optical 
properties of leaves (Gitelson et al., 2003, 2006; Gitelson and 
Merzlyak, 2004). Unlike most of the spectral indices that are 
based on narrow-band reflectances, those resulting from this 
method use wide spectral bands that integrate the spectral 
variability between species. This approach produces indices 
that have proven particularly well suited for Cab and Cxc esti-
mation. A preliminary comparison of several indices from the 
literature also shows good results in terms of pigment retrieval 
when applied to our experimental dataset. In this paper, we 
selected Chlred edge and Carred edge, two indices published by 
Gitelson et al. (2006). It seems that there are no broadband in-
dices for EWT and LMA. Two studies (Ceccato et al., 2001; 
Danson and Bowyer, 2004) referred to MSI as a very suitable 
index to estimate EWT, so we selected it. Finally, to estimate 
LMA from leaf reflectance, le Maire et al. (2008) created a nor-
malized difference index called NDLMA and applied it to the 
ANGERS dataset with moderate success. They stressed the 
challenge of such a task, particularly when using spectral indi-
ces adjusted with a synthetic dataset. The four spectral indices 
selected to estimate leaf chemical constituents are shown in 
Table 5. Gitelson et al. (2006) noted that Chlred edge and Carred 
edge are quasi-linearly correlated to Cab and Cxc, respectively, le 
Maire et al. (2008) fitted the relationship NDLMA versus LMA 
by a second-order polynomial, and Danson and Bowyer (2004) 
preferred to use a power function between MSI and EWT.

For each sampling strategy presented in Section 2.3, a statis-
tical relationship (polynomial or power function according to 
the type of index) is established between the leaf chemical con-
tent and the spectral index. This relationship is then applied to 
the experimental database for validation. In addition, a leave-
one-out cross-validation (LOOCV) is implemented to predict 
the performance of the spectral indices when designed using 
observations. Assume that a single sample is temporarily re-
moved from the n data points of the experimental dataset: the 
relationship is trained on the remaining n − 1 data points and 
the error on the validation sample is reported. This is repeated 
n times such that each observation is used once as a validation 
sample. The average RMSE is then calculated as a criterion to 
judge the performance of the relationship. The LOOCV is ex-
pected to give the best results since the relationships are di-
rectly fitted on the experimental dataset. It is presented here 
only as a reference, keeping in mind the fact that the generic 
nature of the indices fitted this way is not guaranteed.

2.4.2. Partial least square (PLS) regression
PLS is an extension of multiple linear regression modeling that 
statistically determines the relative contribution of each chem-
ical constituent to leaf reflectance (or transmittance) (Asner et 
al., 2009; Asner and Martin, 2008). PLS utilizes the continuous, 
full-range spectrum rather than a band-by-band analysis. The 
number of measured spectra required is much higher than for 
spectral indices, and the resulting model associates one coeffi-
cient to each wavelength. When applied to experimental data, 
the general approach of PLS theoretically allows a better assess-

Figure 2. Assessment of Cab using NDVIred edge adjusted on BIRCH 
2 (black dots, 98 samples) and applied to the compiled leaf database 
(grey dots, 1417 samples). Dashed line = 1:1.

Table 5. Spectral indices selected for assessment of leaf chemical 
constituents.

Biochemical  Spectral   
constituent index Formula Relationship Reference

Cab Chlred edge  Polynomial Gitelson et al.  
    (2003, 2006) 
Cxc Carred edge  Polynomial Gitelson et al.  
    (2003, 2006) 
EWT MSI  Power function Hunt and 
Rock  
    (1989)
LMA NDLMA  Polynomial le Maire et al.  
    (2008)
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ment of chemistry than do spectral indices, but there is a risk 
of overfitting that would lead to inaccurate relationships when 
checking the model on a very different dataset to the training 
one. To decrease this risk, the prediction residual error sum of 
squares (PRESS) statistic is minimized to determine the number 
of factors in the PLS analysis (Chen et al., 2004). For each chem-
ical constituent and the spectral domains defined in Section 2.1, 
PLS-PRESS is performed with three synthetic datasets (sam-
plings #2 to #4), as well as the experimental data. No result is 
available with sampling #1 because of the large size of this data-
set that prevents the application of such a method.

2.4.3. Model inversion
This approach already proved to be accurate in estimating leaf 
chemical constituents from leaf spectra. Model inversion aims 
at finding the optimal set of input variables (θ), namely Cab, Cxc, 
EWT, LMA and N, by comparing modeled to measured leaf op-
tical properties. This problem is addressed using a minimiza-
tion algorithm based on the merit function J(θ) defined by:
                       λmax

     J(θ)  = ∑ [(R*(λ) – Rmod(λ, θ))2 + (T*(λ) – Tmod(λ, θ))2]  (1)
                      λmin

Where R* and T * are the measured and Rmod and Tmod are the 
modeled reflectance and transmittance. A quasi-Newton opti-
mization routine (E04JAF, NAG Fortran library) is applied to 
minimize J(θ) and the accuracy of the inversion and the fit can 
be assessed by the RMSE. When transmittance is not available, 
the second term in Equation (1) disappears but the problem 
becomes ill-posed and N cannot be assessed properly, which 
impacts on the accuracy of the other retrieved variables. For 
that reason, inversion is only performed on reflectance and 
transmittance, when available simultaneously. In our study, 
various combinations of initial guesses have been tested dur-
ing model inversion. Although the convergence toward the 
global minimum is not guaranteed by the quasi-Newton al-
gorithm, the minimum search performed when inverting re-
flectance and transmittance is not influenced by the initial 
guess for leaf chemical and structural properties, and in prac-
tice, global optimization does not improve the retrieval of leaf 
chemistry. Optical measurements in the VIS and the NIR are 
necessary to assess leaf pigment, while EWT and LMA require 
measurements in the NIR and the SWIR.

3. Results and discussion

3.1. Comparison of published spectral indices, PLS PRESS, 
and model inversion

In this section we calculate the four vegetation indices of Ta-
ble 5 using the reflectance spectra generated according to the 
four strategies presented in Section 2.3, and the experimental 
reflectance spectra. We fit the relationships between the indi-
ces and the leaf chemical constituents. Their validation is then 
assessed using the experimental database. The performance of 
spectral indices is also compared to that of PLS-PRESS, PROS-
PECT-5 inversion, and LOOCV. This assists in defining and 
selecting the best overall strategy. Table 6 summarizes the re-
sults obtained with these different methods for leaf chemical 
constituents’ retrieval.

Table 6 shows that the normal distribution and the normal 
multivariate distribution (samplings #3 and #4) allow better as-
sessment of leaf chemical constituents than the uniform distri-
bution (samplings #1 and #2). This observation is valid both 
when applying spectral indices and PLS-PRESS. A pairwise t-
test (α = 0.05) is applied to compare the residuals from sampling 
#3 and sampling #4. The difference between these two sam-
plings is not significant, except for the assessment of Cxc based 
on PLS-PRESS: using correlation between leaf constituents for 
the dataset simulation allows improvement in Cxc retrieval.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, the optical dataset simulated by sampling #4 is cho-
sen to assess optimal indices in the next section. The pairwise t-
test (α = 0.05) is also used to compare results using the synthetic 
datasets obtained by the different sampling strategies with 
the result of the LOOCV applied to the experimental dataset. 
It shows that there is a significant difference in the retrieval of 
chemical traits when the relationship used has been adjusted on 
experimental data or synthetic data, except for Cab. Each chem-
ical constituent result reported in Table 6 is discussed hereafter.

3.1.1. Chlorophyll content
For this constituent only, the PLS-PRESS is less accurate than 
the spectral indices when trained on synthetic data. This sug-
gests that PROSPECT-5 lacks accuracy in some spectral do-
mains: increasing the level of noise decreases the RMSE. This 
higher noise may lessen the significance of some spectral do-
mains which make the PLS-PRESS model too sensitive to vari-
ations in Cab. Best performances are shown when PLS-PRESS 
is trained on experimental data. This is not observed when the 
index Chlred edge is used, suggesting the reliability of PROS-
PECT-5 to simulate accurate reflectances in the spectral do-
mains used by this index (690–720 nm and 760–800 nm). It is 
also notable that a unique relationship derived from a spec-
tral index provides a fairly good assessment of Cab for various 
species and physiological status represented in the experimen-
tal dataset. This result confirms that statistical relationships 
obtained by spectral indices and ground truth should be cal-
ibrated on a wide set of data in order to be robust and widely 
applicable as already underlined by Figure 2.

3.1.2. Carotenoid content
The difference between the spectral index and the PLS-PRESS 
previously observed with Cab tends to diminish (sampling 
#2) and is even opposite (samplings #3 and #4) in favor of 
PLS-PRESS. Moreover, increasing the level of noise does not 
change the results obtained with PLS-PRESS, contrary to the 
observations made when assessing Cab. This suggests that the 
level of noise applied to the simulations decreases the signifi-
cance of wavelengths which show excessively high correlation 
with Cxc on synthetic data compared to experimental data. 
Carred edge may not use an optimal combination of wavelengths, 
as PLS outperforms it. However, finding out such a combina-
tion is quite a complicated process and a significant improve-

Table 6. RMSE obtained for the retrieval of four leaf constituents 
(Cab, Cxc, EWT and LMA) using different methods (spectral index, 
PLS-PRESS, model inversion) and sampling strategies. The spectral 
indices, presented in Table 5, and PLS-PRESS are calibrated on the 
synthetic datasets, and the LOOCV experimental dataset for refer-
ence. The validation dataset for all methods is the whole experimen-
tal dataset presented in Table 2.

 Synthetic data   Experimental  
     data
 Sampling Sampling Sampling  Sampling  LOOCV 
 #1 #2 #3 #4 

Cab (μg.cm− 2)
Spectral index 7.85 7.91 6.31 6.33 6.32
PLS-PRESS n/a 14.12 8.62 8.01 5.38
Model inversion   5.84  

Cxc (μg.cm− 2)
Spectral index 4.11 4.20 3.50 3.47 3.27
PLS-PRESS n/a 4.37 3.20 2.46 1.90
Model inversion   2.69  

EWT (cm)
Spectral index 0.0053 0.0051 0.0043 0.0044 0.0037
PLS-PRESS n/a 0.0036 0.0034 0.0032 0.0025
Model inversion   0.0027  

LMA (g.cm− 2)
Spectral index 0.0027 0.0025 0.0022 0.0022 0.0021
PLS-PRESS n/a 0.0025 0.0021 0.0020 0.0007
Model inversion   0.0031  



2748 fé r e t e t al. i n Rem ot e Sen S i n g of envi R on me nt 115 (2011) 

ment of the results may require more than two or three spec-
tral bands. The main assumption of the three-band model for 
Carred edge is equal specific Cab absorption coefficients in the 
red edge range and in the green around 520 nm. It also as-
sumes that Cab and Cxc are independent variables. Very strong 
correlation between Cxc and Cab (Table 4) probably makes im-
possible independent retrieval of Cxc and Cab using Carred 
edge. The difference between the PLS-PRESS trained on exper-
imental data and PROSPECT-5 inversion is also significant. 
The strong correlation between Cab and Cxc in the experimen-
tal data may induce an overestimation of PLS performances in 
Cxc retrieval. The doubt is that PLS is evidencing mainly the 
bands correlated with Cab. This leads to a good estimation of 
both the leaf constituent in case of correlation between Cab and 
Cxc, but leads to a decrease of Cxc estimation accuracy in case 
of senescent leaves characterized by a low Cab:Cxc ratio.

3.1.3. Equivalent water thickness
The first attempt to find a good MSI vs. EWT relationship us-
ing synthetic data was unsuccessful. A reanalysis of the initial 
synthetic datasets showed that the noise applied to the reflec-
tance spectra was too strong, leading to overestimated scat-
tering compared to experimental data. By reducing it to 0.5% 
reflectance, a better relationship could be obtained (Table 6). 
The performance of PROSPECT inversion is now similar to 
that obtained with the PLS-PRESS trained using experimental 
data. The spectral domain is restricted to 800–1600 nm, so that 
some water absorption features are not taken into account. Im-
proved results are to be expected if the spectral domain used 
to perform PLS-PRESS is extended to 800–2500 nm. The better 
performance of PLS-PRESS compared to MSI when adjusted 
on synthetic data also indirectly suggests that other optimal 
wavelengths could be used to build a better spectral index.

3.1.4. Leaf mass per area
As for EWT, the noise is decreased from 2% to 0.5% of reflec-
tance to adjust a relationship derived from spectral indices. It 
is notable that model inversion performs poorly compared to 
synthetic models based on PROSPECT simulation. Contrary 
to le Maire et al. (2008) who showed that NDLMA is badly ad-
justed on synthetic data, the RMSE obtained with NDLMA 
trained on synthetic (sampling #3 and #4) and experimental 
data are not significantly different. The readjustment applied 
to the noise level may be the main explanation for this better 
relationship, as the assessment of LMA based on sampling #2 
is fair. Therefore we can expect improved results if a new at-
tempt to select the optimal wavelengths is done, based on an 
updated sampling method and an appropriate noise level. 
The PLS-PRESS directly applied to experimental data shows 
far better results than any other method, and notably PROS-
PECT inversion, which is usually not very different from PLS 
applied to experimental data. This certainly indicates inaccu-
racies inherent to PROSPECT when modeling the influence of 
LMA on the leaf optical properties.

3.2. Design of optimal spectral indices

As shown by le Maire et al. (2004, 2008), testing all possible com-
binations of wavebands may help to build better models. In this 
section, we use the leaf optical data simulated by sampling #4, 
to design optimized spectral indices, i.e. the set of wavelengths 
that best explain the variation of leaf biochemical constituents, 
using the criterion of minimum RMSE between assessed and ac-
tual content. Two families of indices are tested: the ratio index 
(RI) and the normalized difference (ND). These indices are se-
lected because only two wavelengths are required to compute 
them, which make systematic computing of all possible combi-
nations of wavelengths achievable in a reasonable time. More-
over these indices showed better results than other indices such 
as simple reflectance and difference of reflectance. Besides these 

classical indices, a semi-analytical spectral index is tested for Cab 
and Cxc retrieval, based on the results obtained by Gitelson et 
al. (2003, 2006). It is built using three large spectral bands, then 
six optimal wavelengths are required for the lower and upper 
bounds of each band. The three spectral domains explored to 
obtain a semi-analytical spectral index are 680–730 nm, 750–800 
nm, and 750–800 nm for Cab; 480–530 nm, 650–800 nm, and 750–
800 nm for Cxc. These semi-analytical spectral indices are not 
tested on EWT and LMA because of the large spectral domains 
to explore: the selection of six optimal wavelengths, defining 
the lower and upper bound for three spectral domains would 
be too time-consuming.

Table 7 summarizes the RMSE resulting from the applica-
tion to the experimental data of all the relationships derived 
from optimal spectral indices adjusted on synthetic data. The 
level of noise is the same as in Section 3.1. These results show 
that the optimal spectral indices perform as well (LMA) or bet-
ter (Cab, Cxc and EWT) than those taken from the literature. The 
optimal combination of wavelengths is based on the minimum 
RMSE obtained with the calibration dataset, however the com-
parison of performances obtained with Chlred edge (Table 6) and 
ChlRE opt (Table 7) shows that this combination does not neces-
sarily match with the combination leading to the minimum 
RMSE obtained when applying the relationships derived from 
simulated dataset to the experimental data. This may be due to 
some left over inaccuracies inherent to PROSPECT and could be 
corrected, for example, by adapting a specific level of noise to 
each wavelength, based on the uncertainties of the model. At-
tempts to adjust the global level of noise were not conclusive. 
However, this problem does not occur with the optimal ND in-
dex, which is in reality NDVIred edge with red edge band at 712 
nm. The optimal combination of wavelengths allows adjusting 
the relationship showing the best performance when applied 
to experimental data (Table 7), contrary to the relationships ob-
tained with narrow band RI and wide band Chlred edge spectral in-
dices. It shows that optimizing spectral bands allows significant 
improvement performances of vegetation indices. The use of 
spectral band at 712 nm instead of 705 nm in NDVIred edge (pre-
sented in Figure 2) allowed to increase the accuracy of Cab esti-
mation. Also worth noting, that all three optimal models for Cab 
estimation use red edge range of the spectrum as term sensitive 
to Cab. Remarkably, reflectance at wavelengths up to 730 nm 
remains sensitive to Cab; this spectral region is 60 nm far from 
range of maximal Cab absorption in situ around 670 nm. In two 
of three optimal models obtained for the assessment of Cxc (RI 
and ND) only one band sensitive to Cxc (around 530 nm) is em-
ployed. However, reflectance in this spectral region is affected 
by both Cab and Cxc. It means that very strong correlation be-
tween Cxc and Cab was a main factor affecting choice of optimal 
spectral band for Cxc retrieval. The results obtained for the two 
remaining chemical constituents are satisfying, and the wave-
lengths selected for spectral indices applied to LMA are very 
close to those obtained by le Maire et al. (2008). This confirms 
that a correct level of noise, combined with an appropriate sam-
pling strategy, can improve the fit between modeled and exper-
imental data, extending the generic nature of the results. Results 
obtained for carotenoid retrieval with optimal indices are also 
significantly better than those obtained using indices from the 
literature. The coefficients given in Table 7 correspond to the 
polynomial relationship linking the chemical constituent con-
tent to the value of the index.

4. Conclusion

This study aimed to assess the ability of synthetic datasets gen-
erated by PROSPECT-5 to provide statistical relationship be-
tween leaf reflectance and the main leaf chemical constituents: 
Cab, Cxc, EWT, and LMA. Four synthetic datasets distinct from 
one another by the distributions of leaf chemical and structural 
properties were tested: two uniform distributions totally dis-
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connected from the experimental database (only used to define 
the leaf constituent range of variation), and two normal distri-
butions based on the statistical properties of the experimental 
database. The experimental database was used for the valida-
tion and comparison of the different methodology tested.

Our main findings are that a synthetic dataset based on a 
normal distribution from measured experimental data, sam-
pling #4, was the best to adjust the relationship between any 
leaf constituent and a spectral index. Including correlations 
between leaf constituents also improved the assessment of Cxc, 
by removing unrealistic combinations of constituents. These 
relationships and the optimal relationships derived from ex-
perimental data performed very similarly. The selection of op-
timal wavelengths used to build spectral indices improved the 
assessment of Cab, Cxc, EWT, and LMA.

It is remarkable that the performance of the optimal indices 
fitted on the synthetic dataset reached and even exceeded that 
obtained with published indices directly fitted on the LOOCV 
experimental dataset for any leaf constituent analyzed. Beside 
this good result, PLS-PRESS applied to the experimental data-
set gave the best results. This study also showed that the level 
of noise applied to the modeled reflectance is a critical issue, 
whatever the model used. A value of 2% seemed to be correct 
to adjust a relationship to retrieve carotenoid content, whereas 
model inaccuracies could lead to the selection of non-optimal 
wavelengths for chlorophyll retrieval, and more than 0.5% 
noise prevented from a correct adjustment when trying to re-
trieve EWT and LMA with MSI and NDLMA. Further studies 
to adapt the level of noise, for instance as a function of PROS-
PECT inaccuracies, are required.

As for the spectral indices, PLS-PRESS worked better when 
applied to normally distributed synthetic datasets. Meanwhile, 
the results obtained with the PLS-PRESS applied to experimen-
tal data indicated slight but significant discrepancies in PROS-
PECT, which were particularly noticeable when studying LMA 
retrieval. The results obtained with LMA showed that a rela-
tionship based on leaf reflectance and properly adjusted gave 
very accurate LMA assessment (0.007 g.cm− 2), 60% lower than 
any other method based on PROSPECT modeling, suggesting 

possible difficulties to build an optimal spectral index based on 
model simulations.

The main criticism of the method developed in this paper 
is that the synthetic dataset is based on experimental distribu-
tions and correlations, which may not correspond to distribu-
tion and correlations existing among certain types of vegetation. 
Despite our efforts to gather as many leaf species as available, 
collected in various ecosystems to maximize the natural spec-
tral and biochemical variability, our experimental database is 
too small to represent universal distributions and correlations 
for leaf chemical properties. Therefore it is possible that the rela-
tionships derived here do not apply to all leaves. However, we 
expect a good agreement for the types of vegetation included 
in our dataset that already represent a wide range of terrestrial 
ecosystems. Our method is simple enough to update the distri-
butions with observed or expected values and create a new syn-
thetic dataset prior to readjustment of the relationship if it ap-
pears that our models cannot be applied to specific data.
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