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Abstract—The cubic spline interpolation method is proba-
bly the most widely-used polynomial interpolation method for
functions of one variable. However, the cubic spline method
requires solving a tridiagonal matrix-vector equation with an
O(n) computational time complexity where n is the number of
data measurements. Even an O(n) time complexity may be too
much in some time-ciritical applications, such as continuously
estimating and updating the flight paths of moving objects.
This paper shows that under certain boundary conditions the
tridiagonal matrix solving step of the cubic spline method could
be entirely eliminated and instead the coefficients of the unknown
cubic polynomials can be found by solving a single recurrence
equation in much faster time.

I. INTRODUCTION

Cubic spline interpolation is a widely-used polynomial
intepolation method for functions of one variable [2]. Cubic
splines can be described as follows. Let f be a function from
R to R. Suppose we know about f only its value at locations
x0 < . . . < xn. Let f(xi) = ai. Piecewise cubic spline
interpolation of f is the problem of finding the bi, ci and di
coefficients of the cubic polynomials Si for 0 ≤ i ≤ n − 1
written in the form:

Si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 (1)

where each piece Si interpolates the interval [xi, xi+1] and
fits the adjacent pieces by satisfying certain smoothness con-
ditions. Taking once and twice the derivative of Equation (1)
yields, respectively the equations:

S′i(x) = bi + 2ci(x− xi) + 3di(x− xi)2 (2)

S′′i (x) = 2ci + 6di(x− xi) (3)

Equations (1-3) imply that Si(xi) = ai, S′i(xi) = bi
and S′′i (xi) = 2ci. For a smooth fit between the adjacent
pieces the cubic spline interpolation requires that the following
conditions hold for 0 ≤ i ≤ n− 2:

Si(xi+1) = Si+1(xi+1) = ai+1, (4)

S′i(xi+1) = S′i+1(xi+1) = bi+1 (5)

S′′i (xi+1) = S′′i+1(xi+1) = 2ci+1 (6)

This paper is organized as follows. Section II review the
usual solution for cubic splines by solving a tridiagonal matrix.
Section ??

II. THE TRIDIAGONAL MATRIX-BASED SOLUTION

In this section we review the usual tridiagonal matrix-based
solution for cubic splines. Let hi = xi+1 − xi. Substituting
Equations (1-3) into Equations (4-6), respectively, yields:

ai + bihi + cih
2
i + dih

3
i = ai+1 (7)

bi + 2cihi + 3dih
2
i = bi+1 (8)

ci + 3dihi = ci+1 (9)

Equation (9) yields a value for di, which we can substitute
into Equations (7-8). Hence Equations (7-9) can be rewritten
as:

ai+1 − ai = bihi +
2ci + ci+1

3
h2i (10)

bi+1 − bi = (ci + ci+1)hi (11)

di =
1

3hi
(ci+1 − ci). (12)

Solving Equation (10) for bi yields:

bi = (ai+1 − ai)
1

hi
− 2ci + ci+1

3
hi (13)

which implies for j ≤ n− 3 the condition:

bi+1 = (ai+2 − ai+1)
1

hi+1
− 2ci+1 + ci+2

3
hi+1 (14)
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Substituting into Equation (11) the values for bi and bi+1

from Equations (13-14) yields:

(ai+1 − ai)
1

hi
− (2ci + ci+1)

hi
3

+ (ci + ci+1)hi =

(ai+2 − ai+1)
1

hi+1
− (2ci+1 + ci+2)

hi+1

3

The above can be rewritten as:

hici + 2(hi + hi+1)ci+1 + hi+1ci+2 =

3

hi
ai −

(
3

hi
+

3

hi+1

)
ai+1 +

3

hi+1
ai+2

The above holds for 0 ≤ i ≤ n− 3. However, changing the
index downward by one the following holds for 1 ≤ j ≤ n−2:

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =

3

hi−1
ai−1 −

(
3

hi−1
+

3

hi

)
ai +

3

hi
ai+1 (15)

The above is a system of n − 1 linear equations for the
unknowns ci for 0 ≤ i ≤ n. By Equation (3) S′′0 (x0) = 2c0
and by extending Equation (6) to j = n−1, S′′n−1(xn) = 2cn.

The cubic spline interpolation allows us to specify several
possible boundary conditions regarding the values of c0, cn.
A commonly used boundary condition called a natural cubic
spline assumes that c0 = cn = 0, which is equivalent to
setting the second derivative of the splines at the ends to zero.
Alternatively, in the clamped cubic spline interpolation, the
assumed boundary condition is b0 = f ′(x0) and bn = f ′(xn)
where the derivatives of the f at x0 and xn are known
constants.

In addition, in sovling a cubic spline a uniform sampling
is also commonly assumed and available, that is, each hi has
the same constant value h. Then dividing Equation (15) by h
yields:

ci−1 + 4ci + ci+1 =
3

h2
(ai−1 − 2ai + ai+1) (16)

Since the values of ai are known, the values of ci can be
found by solving the tridiagonal matrix-vector equation Ax =
B. Under the natural cubic spline interpolation, we have:

A =



1 0 0 0 . . . 0 0 0 0
1 4 1 0 . . . 0 0 0 0
0 1 4 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 1 4 1 0
0 0 0 0 . . . 0 1 4 1
0 0 0 0 . . . 0 0 0 1


the vector of unknowns is:

x =


c0
c1
...
cn


and the vector of constants is:

B =


0

3
h2 (a0 − 2a1 + a2)

...
3
h2 (an−2 − 2an−1 + an)

0

.

Similarly, under the clamped spline interpolation we have:

A =



2 1 0 0 . . . 0 0 0 0
1 4 1 0 . . . 0 0 0 0
0 1 4 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 1 4 1 0
0 0 0 0 . . . 0 1 4 1
0 0 0 0 . . . 0 0 1 2


the same vector of unknowns:

x =


c0
c1
...
cn


and the following vector of constants:

B =


3
h2 (a1 − a0)− 3

hf
′(x0)

3
h2 (a0 − 2a1 + a2)

...
3
h2 (an−2 − 2an−1 + an)

3
hf
′(xn)− 3

h2 (an − an−1)

.

Both the natural cubic spline and the clamped cubic spline
boundary conditions yield a system of n+ 1 linear equations
with only n + 1 unknowns. Such a system normally yields a
unique solution except in some special cases. Moreover, either
system is a tridiagonal matrix sytem that can be solved in O(n)
time. Once the ci values are found, the di and the bi values
also can be found by Equations (12) and (13), respectively.
Computating the bi and di coefficients can be done also within
O(n) time.

III. A NEW RECURRENCE EQUATION-BASED SOLUTION

In our solution to the cubic spline interpolation problem, we
chose a boundary condition that requires solving the following
tridiagonal system where xi are rational variables, di are
rational constants and r 6= 0 is a rational constant, and A
is:
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A =



r 1 0 0 . . . 0 0 0 0
1 4 1 0 . . . 0 0 0 0
0 1 4 1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . 1 4 1 0
0 0 0 0 . . . 0 1 4 1
0 0 0 0 . . . 0 0 0 1


.

Furthermore,

x =


x1
x2
...

xn−1
xn

 and b =


e1
e2
...

en−1
en

.

A. Relationship to Clamped and Natural Cubic Splines
Our new matrix is closely related to clamped cubic splines.

Consider the first equation for the clamped cubic spline, which
can be written as:

2c0 + c1 =
3

h

(
(a1 − a0)

h
− f ′(x0)

)
The above equation becomes the following after multiplying

by r/2:

rc0 +
r

2
c1 =

3r

2h

(
(a1 − a0)

h
− f ′(x0)

)
Adding (1− r/2)c1 yields:

rc0 + c1 =
3r

2h

(
(a1 − a0)

h
− f ′(x0)

)
+

(
1− r

2

)
c1

Hence the first row of our new matrix A is equivalent to
first row of the clamped cubic spline for any r 6= 0 if e1 is:

e1 =
3r

2h

(
(a1 − a0)

h
− f ′(x0)

)
+

(
1− r

2

)
c̃1.

where c̃1 is an estimate for the value of c1.
The last row of the new matrix allows fixing the value of

cn. This is a generalization of natural cubic spline which fixes
the value to be 0.

B. A Recurrence Equation-Based Solution
In this section, we solve the new system using the value

r = 2+
√
3 ≈ 3.732. In that case, the first three equations can

be written as:

rx1 + x2 = e1

x1 + 4x2 + x3 = e2

x2 + 4x3 + x4 = e3

Multiplying the second row by r, subtracting from it the
first row, and then dividing it by r gives:

rx1 + x2 = e1

rx2 + x3 = e2 −
e1
r

x2 + 4x3 + x4 = e3

Multiplying now the third row by r, subtracting from it the
second row, and then dividing it by r gives:

rx1 + x2 = e1

rx2 + x3 = e2 −
e1
r

rx3 + x4 = e3 −
e2
r

+
e1
r2

Continuing this process until the last row, we get:

rxn−3 + xn−2 = en−3 − en−4

r + en−5

r2 − . . .+ (−1)n−4 e1
rn−4

rxn−2 + xn−1 = en−2 − en−3

r + en−4

r2 − . . .+ (−1)n−3 e1
rn−3

rxn−1 + xn = en−1 − en−2

r + en−3

r2 − . . .+ (−1)n−2 e1
rn−2

xn = en

Dividing each row except the last one by r yields:

xn−3 +
xn−2

r = en−3

r − en−4

r2 + . . .+ (−1)n−4 e1
rn−3

xn−2 +
xn−1

r = en−2

r − en−3

r2 + en−4

r3 − . . .+ (−1)n−3 e1
rn−2

xn−1 +
xn

r = en−1

r − en−2

r2 + en−3

r3 − . . .+ (−1)n−2 e1
rn−1

xn = en

Note that each row 1 ≤ i ≤ n− 1 will be the following:

xi +
xi−1
r

=
∑

0≤k≤(i−1)

(−1)k ei−k
rk+1

We define the values for α0, αi for 1 < i ≤ n− 1, and αn,
respectively, as follows:

α0 = 0

αi =
ei − αi−1

r
=

∑
0≤k≤(i−1)

(−1)k ei−k
rk+1

αn = en (17)

The solution to the linear equation system can be described
in terms of the α constants as follows:
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...

xn−3 = αn−3 −
αn−2

r
+
αn−1

r2
− αn

r3

xn−2 = αn−2 −
αn−1

r
+
αn

r2

xn−1 = αn−1 −
αn

r

xn = αn

Therefore, xi for each row 1 ≤ i ≤ n will be:

xn = αn

(18)

xi = αi−1 −
xi+1

r

The above can be solved in closed form as follows:

xi =
∑

0≤k≤(n−i)

(
−1
r

)k

αi+k (19)

Note that no matter what exactly are the initial values for
e, we have pre-solved the system. This can lead to a faster
evaluation of the cubic spline than solving the tridiagonal
system each time. We need only O(n) multiplications and sub-
tractions to compute the values of all the xi. Moreover, when
any new measurement is made, the conventional tridiagonal
matrix-based algorithm requires a complete redo of the entire
computation in O(n) time. In contrast, Equation (18) leads to
a faster update because to each xi for i ≤ n we need to add
only the term: (

−1
r

)n+1−i

αn+1.

We also need to make xn+1 = αn+1.. Afterward updating
the other αi constants can be done also similarly efficiently.

C. A Moving Object Example

Suppose that an object is released from a height of 400
feet with zero initial velocity. Suppose also that we measure
the object’s position to be 384, 336 and 256 feet from earth
at one, two and three seconds after release. We also suspect
that the object is in free fall with a gravitational acceleration
of 32ft/sec2 at one second after release and at three seconds
after release. Find a cubic spline approximation for the object’s
position at all times from the release to three seconds after.

We will measure the distance traveled from the release
point. The cubic polynomials we need to find for the intervals
[0, 1], [1, 2] and [2, 3] can be expressed as follows:

 S0(x) = a0 + b0x+ c0x
2 + d0x

3

S1(x) = a1 + b1(x− 1) + c1(x− 1)2 + d1(x− 1)3

S2(x) = a2 + b2(x− 2) + c2(x− 2)2 + d2(x− 2)3

We have n = 4, a0 = 400, a1 = 384, a2 = 336, a3 = 256
and the uniform step size is h = 1. By our assumptions of
zero initial velocity f ′(0) = 0 and free fall at one second
c1 = −16 and free fall at four seconds c3 = −16, which
implies e4 = −16. The matrix A and the vectors x and B are:

A =


r 1 0 0
1 4 1 0
0 1 4 1
0 0 0 1

, x =


c0
c1
c2
c3

 and B =


−16r − 16
−96
−96
−16



because B =



e1

e2

e3

e4


=



3r
2 (−16) +

(
1− r

2

)
(−16)

3(400− (2× 384) + 336)

3(384− (2× 336) + 256)

−16


By Equation (17), we have:

α1 =
e1
r

= −16− 16

r

α2 =
e2 − α1

r
= −16− 16

r

α3 =
e3 − α2

r
= −16− 16

r

α4 = e4 = −16

By Equation (18) we also have when calculating in reverse
order:

c3 = α4 = −16

c2 = α3 −
c3
r

= −16

c1 = α2 −
c2
r

= −16

c0 = α1 −
c1
r

= −16

Solving for the bi coefficients by Equation (13) gives:
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b0 = 1
1 (384− 400)− 1

3 (−16− 32) = 0

b1 = 1
1 (336− 384)− 1

3 (−16− 32) = −32

b2 = 1
1 (256− 336)− 1

3 (−16− 32) = −64

Solving for the di coefficients by Equation (12) gives:

d0 =
1

3
(−16− (−16)) = 0

d1 =
1

3
(−16− (−16)) = 0

d2 =
1

3
(−16− (−16)) = 0

The above values show that an object in free fall has
an increasing velocity but its acceleration remains constant.
Using the above values, the cubic spine interpolation can be
described as: S0(x) = 400− 16x2

S1(x) = 384− 32(x− 1)− 16(x− 1)2 = 400− 16x2

S2(x) = 336− 64(x− 2)− 16(x− 2)2 = 400− 16x2

Hence in each piece the cubic spline interpolation gives
400− 16x2, which agrees with the expected physics equation
for the position of a moving object that strarts with zero ve-
locity from an elevation of 400 feet and freely falls downward
with an acceleration of 32ft/sec2.

IV. CONCLUSION

The general method described in this paper can be used
in a wide variety of applications which require interpolation
of a function of one variable. For example, interpolation of
measurement data can generate constraint databases that can
be efficiently queried using constraint query languages [5],
[6]. The simple one-variable function interpolation can be
also extended to higher dimensions yielding interpolations of
higher-dimensional functions that describe surfaces [4] and
three-dimensional spatio-temporal or moving objects [1], [3].
This extension remains an interesting future work.
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