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Abstract This study of fossils (pollen, plant

macrofossils, stomata and fish) and sediments

(lithostratigraphy and geochemistry) from the

Wendel site in North Dakota, USA, emphasizes

the importance of considering ground-water

hydrology when deciphering paleoclimate signals

from lakes in postglacial landscapes. The Wendel

site was a paleolake from about 11,500 14C yr BP

to 11,100 14C yr BP. Afterwards, the lake-level

lowered until it became a prairie marsh by 9,300
14C yr BP and finally, at 8,500 14C yr BP, an

ephemeral wetland as it is today. Meanwhile, the

vegetation changed from a white spruce parkland

(11,500 to 10,500 14C yr BP) to deciduous park-

land, followed by grassland at 9,300 14C yr BP.

The pattern and timing of these aquatic and

terrestrial changes are similar to coeval kettle

lake records from adjacent uplands, providing a

regional aridity signal. However, two local

sources of ground water were identified from

the fossil and geochemical data, which mediated

atmospheric inputs to the Wendel basin. First, the

paleolake received water from the melting of

stagnant ice buried under local till for about

900 years after glacier recession. Later, Holocene

droughts probably caused the lower-elevation

Wendel site to capture the ground water of up-

gradient lakes.

Keywords Climate � Ground water � Pollen �
Plant macrofossils �Geochemistry � North Dakota

Introduction

The climate of the northern Great Plains of the

USA today is semi-arid and droughts are com-

mon. As a result of this aridity, the native

vegetation of North Dakota, South Dakota and

Montana is grassland. During the late-glacial,

however, the climate of the northeastern part of

this region was cool and moist, supporting Picea

A. Dietr. (spruce) vegetation in areas closest to

the Laurentide Ice Sheet (e.g. Laird et al. 1998;

Dean and Schwalb 2000). This climate, recon-

structed from pollen and other proxy data, is

thought to have resulted from the nearby ice

sheet having both high albedo and a persistent

high-pressure atmospheric cell that generated

anticyclonic cold winds (Barnosky et al. 1987).

This climatic effect was diminished farther west of
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the ice sheet, where grassland was established on

the plains of Montana immediately after deglaci-

ation, at about 12,200 14C yr BP (Barnosky 1989).

This prairie vegetation was interpreted by

Barnosky (1989) to indicate a direct response to

greater summer insolation during the late-glacial.

In contrast, the appearance of aridity was delayed

in the eastern portion of the northern Great

Plains (the eastern Dakotas), closer to the glacier,

until the early Holocene (9,000–8,000 14C yr BP)

when the ice receded to the northeast (Laird et al.

1998; Dean and Schwalb 2000; Grimm 2001; Clark

et al. 2002). Thereafter, drought was a common

occurrence in the region and grassland vegetation

was widespread.

Few researchers have considered ground-

water/lake interactions in their paleoclimatic

interpretations. Some exceptions include Smith

et al. (1997) and Almendinger et al. (1999), who

proposed that ground water flowed along a

regional gradient to discharge into lower eleva-

tion lakes throughout the Holocene. Also, the

contribution of subsurface meltwater to lakes

during the Late Pleistocene from slowly ablating

stagnant ice buried under till has long been

recognized by geologists working in the region

(Clayton 1967), but not by paleolimnologists.

In this paper, we use of a variety of paleoin-

dicators to track past ground water and climate

changes at the Wendel site in southeastern North

Dakota, USA (Fig. 1), an ephemeral wetland that

was once a paleolake. Our primary indicators

include plant macrofossils, which have been

shown to reliably represent past macrophyte
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Fig. 1 Location map displays the physiographic features
of North Dakota and South Dakota. The inset shaded-
relief map shows the locations of the study site
(WE = Wendel site) and coeval fossil localities: KL = Ket-
tle Lake (Clark et al. 2002); RL = Rice Lake (Grimm
2001); DL = Devils Lake (Haskell et al. 1996); SP = Sei-
bold Pond (Newbrey and Ashworth 2004); MNL = Moon

Lake (Laird et al. 1996, 1998); CWL = Coldwater Lake
(Yansa 2002); CTL = Cottonwood Lake (Barnosky et al.
1987; E. Grimm data on NAPD website, www.ncdc.noaa.
gov/paleo/napd.html); MDL = Medicine Lake (Radle
et al. 1989); and PL = Pickerel Lake (Watts and Bright
1968; Dean and Schwalb 2000)
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populations (e.g. Zhao et al. 2006), and have been

used in a variety of paleoclimate studies (e.g.

Dieffenbacher-Krall and Nurse 2005; Velle et al.

2005). We also employ fossil pollen and stomata

to reconstruct local and subregional vegetation

changes for the paleoclimate information they

provide (e.g. Grimm 2001; Grimm and Jacobson

2004). In addition, we include fossil fish remains

in our analysis, because fish populations are

sensitive to lake chemistry, which is controlled

by ground-water hydrology and climate (e.g.

Newbrey and Ashworth 2004). The bulk geo-

chemistry and organic carbon data we obtain

indicate shifts in the levels of oxygen, nutrients

and salts in the paleolake water, which provide

information about the relative contribution of

ground water and precipitation to the lake during

various times in the past (e.g. Gorham et al. 1983;

Dean and Schwalb 2000). By correlating these

proxy datasets we reconstruct the interplay

between climate and ground-water hydrology

and its effects on limnology, vegetation and fish

from about 11,500 to 8,100 14C yr BP. During this

time there was draw down of the lake, which

caused subaerial exposure of part of the basin.

Study area

The Wendel site (46�25¢ N, 98�20¢ W; 423 m asl)

in LaMoure County, North Dakota (Fig. 2), tem-

porarily holds water after snowmelt and heavy

rainfall, and typically dries out by mid-summer.

This site is situated at the northern end of a partly

drained lake bed within a palimpsest meltwater

channel situated on the Glaciated Till Plain

(Fig. 2). We named this channel the Twin Lakes

channel; it has a maximum relief of 14 m, an
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Fig. 2 Simplified
topographic map
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inset that shows the Twin
Lakes channel and the
locations of the WE-1 and
WE-3 cores
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average width of 610 m and length of 16 km, and

runs roughly parallel to the James River valley.

The climate of the study area (eastern Dako-

tas) is classified as sub-humid continental. The

meteorological station at LaMoure, North Dako-

ta, for the climate normal years 1961–1990

reported average temperatures of –13.3�C for

January and 21.6�C for July, and a mean annual

precipitation of 520 mm (Owenby and Ezell

1992). Most of this precipitation occurs during

the spring and summer, but is lost through

evapotranspiration, causing a moisture deficit

(Winter 1989). Lake levels are controlled by the

amount of autumn precipitation and snowmelt,

because even though this accounts for less of the

annual moisture, little of it is lost through

evapotranspiration (Winter and Rosenberry

1995). Perennial lakes are thus rare in this region,

but playas and ephemeral wetlands (sloughs or

prairie potholes) are common. Summer droughts

in the northern Great Plains occur whenever

zonal westerly flow of the Pacific air mass

dominates, because it diverts the Gulf moisture

eastward into the Midwest (Bradbury et al. 1993).

The vegetation in the eastern Dakotas is

mixed-grass prairie, which is a mixture of tall

grass and forb species more common to the east

and short-grass prairie plants of the western

plains. Trees in the study area are restricted to

river valleys and around the few existing peren-

nial lakes where the soils are moist. The most

common tree species in these habitats are Pop-

ulus tremuloides Michx. (quaking aspen), Ulmus

americanus L. (American elm) and Quercus

macrocarpa Michx. (bur oak) (Great Plains Flora

Association 1986).

Materials and methods

Sediment cores were collected at the Wendel site

at two locations, 400 m apart (Fig. 2, inset), using

a split-spoon core barrel attached to a CMETM

hollow-stem drill rig. Based on lithologies and

fossil assemblages, we consider the WE-1 core

(6.1 m long) to represent a ‘‘nearshore’’ location

and the WE-3 core (9.1 m long) as representative

of an ‘‘offshore’’ location within a bay of a

paleolake (Figs. 2 and 3). We analyzed pollen,

plant macrofossils, stomata and fish fossils, as well

as lithology and geochemistry from the sediments

of the WE-3 core. For the WE-1 core, we only

studied the plant macrofossils and fish remains to

provide additional data.

Methods used in fossil analysis followed stan-

dard procedures for pollen (Faegri and Iverson

1975) and plant macrofossils (Birks 2001). Sam-

pling intervals were every 5 cm for pollen
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(1 cm3 volume) and every 2.5 cm for plant

macrofossils (50 cm3). Cyperaceae, members of

the sedge family, occupy both upland and

lowland habitats. The exceedingly high pollen

counts for Cyperaceae and the numerous seeds

of Carex spp. (sedges), Scirpus spp. (bulrushes),

and other members of this family suggest that

most of the Cyperaceae pollen grains are prob-

ably of wetland types. Hence the Cyperaceae

pollen data were excluded from the pollen sum,

which is based on the total pollen count of

upland plants. Macrofossil data are counts,

except for leaves and stems of a species of

Drepanocladus (C. Mull.) G. Roth (sickle-

branch moss), statoblast of Cristatella mucedo

Cuvier (a bryozoan), and bones of Perca flaves-

cens Mitchill (yellow perch), which were evalu-

ated using relative abundance on a 0–4 scale. In

TiliaTM spreadsheets, macrofossil data were en-

tered and pollen percentages were calculated

based on counts of about 300 pollen grains of

upland taxa (excluding Cyperaceae) per sample.

Abundance data of the more common taxa iden-

tified from pollen and plant macrofossils were

plotted using a combination of Tilia.graphTM,

TGViewTM, and Adobe IllustratorTM. CONISS

was used to distinguish the plant macrofossil and

pollen zones in the diagrams (Grimm 1987). Plant

taxonomy and habitat information were based on

the Great Plains Flora Association (1986). Ter-

restrial plant materials were used to obtain 14C

ages from both cores (Table 1).

A fossil specimen of Esox lucius L. (northern

pike) was recovered in 1971 during excavation of

a livestock watering hole at the site (A. Ashworth

pers. commun.). Decades later we collected the

WE-1 core within 50 m of this watering hole.

Bones of Perca flavescens from the WE-1 and

WE-3 cores were identified by M. Newbrey (pers.

commun.) from the same samples analyzed for

plant macrofossils.

The entire length of the WE-3 core was

sampled for geochemistry and organic carbon at

20-cm intervals. The results of samples younger

than 7,800 14C yr BP are not reported here,

because they provided an invariant signal,

presumably due to homogenizing of the sediment

by erosion and redeposition within what was then

an ephemeral wetland. Dried samples were

analyzed for weight percentages of total carbon

(TC) and inorganic carbon (IC) by coulometric

titration of carbon-dioxide following extraction

from the sediment by combustion at 950�C and

acid volatilization, respectively (Engleman et al.

1985). Percent total organic carbon (TOC) was

calculated as the difference (TC–IC), and percent

CaCO3 was calculated as

CaCO3 = IC/0.12 ð1Þ

where 0.12 is the fraction of carbon in CaCO3. The

accuracy and precision of this method, determined

from hundreds of replicate standards, usually are

better than 0.10 wt % for both TC and IC.

Samples were analyzed for 40 major, minor,

and trace elements by inductively coupled, argon-

plasma, atomic emission spectrometry (ICP-

AES) by SGS Laboratories, Toronto, Canada.

Rock standards (USGS) were included with the

sediment samples, and 10% of the samples were

duplicated. The precision, determined by analyz-

ing rock standards and duplicate sediment sam-

ples, is better than 10%, and usually is better than

5%, at a concentration of ten times the limit of

detection. Only results for phosphorus (P), man-

ganese (Mn), molybdenum (Mo), and nickel (Ni)

will be discussed here.

Results

Lithology and dating

The lithologies of the WE-1 and WE-3 cores

contain three stratigraphic units (from bottom to

top): diamicton (Unit A); fossiliferous silty clay

(Unit B); and massive sandy clay lacking plant

and fish fossils (Unit C) (Fig. 3A, B). Unit A, a

very dark gray (MunsellTM 5Y 3/1) diamicton

composed of sandy clay with pebbles and gravel,

is essentially barren of fossils.

The contact between units A and B in the WE-1

core (Fig. 3B) is delineated by two closely spaced

Picea glauca (white spruce)-needle litter layers

(identified to species based on needle stomata and

seed wings), which provide 14C ages of

11,550 ± 90 yr BP and 11,550 ± 65 yr BP (Ta-

ble 1). This litter layer is absent in the ‘‘offshore’’
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WE-3 core where the contact between units A and

B is gradational (Fig. 3A), and dateable terrestrial

organics are absent (Fig. 4). Hence, we assign the

age of 11,500 14C yr BP from the WE-1 core

(Fig. 3B) to the base of the plant macrofossil and

pollen records (Figs. 4 and 5) of the WE-3 core

(Fig. 3A). Seeds from the WE-3 core provide an

age of 11,100 ± 410 14C yr BP (Table 1) for the

top of a laminated section in Unit B (Fig. 3A).

Radiocarbon ages for levels upcore are shown in

Table 1 and are displayed in Fig. 3A.

Unit B in the WE-3 core is divided into three

subunits based on lithologies and fossils. The

basal Unit B1 is comprised of massive, olive gray

(MunsellTM 5Y 4/2) silty clay containing few

macrofossils, which may have been redeposited

(Fig. 4). The pollen record (Fig. 5) begins

abruptly in the upper part of this unit with

exceedingly rare and degraded grains at depths

below. Fossil abundance and species diversity are

greatest from the sediments of the subunits B2

(laminated sediment, 5Y 4/2 and 3/2) and B3

(massive sediment, 5Y 3/2), as evident by the

macrofossil and pollen assemblages and abundant

bones of Perca flavescens (Figs. 4 and 5).

The contact between units B (top of B3) and C

is delineated by a paleosol (Fig. 3). In the WE-3

core, this buried soil is 5-cm thick, includes a root

cast, and occurs at a depth of 405–400 cm. This

paleosol is thinner in the WE-1 core and is found

at a depth of 215 cm. The overlying massive

sediment of Unit C (5Y 3/2) contains no pre-

served plant or fish fossils, but gastropod shells

and oogonia of Chara L. (stonewort, a green alga)

are found at certain levels.

Above the depth of 470 cm (<9,920 14C yr BP)

in the WE-3 core, no seeds, wood or charcoal were

recovered. So terrestrial plant rootlets were dated

from the paleosol (Table 1; Fig. 3A), providing an

age of 6,485 ± 50 14C yr BP, which we suspect to

be too young based on several reasons. First,

rootlets can penetrate to some depth, providing
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younger ages. Second, it seems unlikely that

deposition of about 70 cm of sediment took as

long as 3435 14C years, given the sedimentation

rates of nearby lakes and ponds (e.g. Laird et al.

1998). And, finally, correlation of the pollen

record from the WE-3 core to those of other lakes

in the region indicate that truncation of the fossil

record of the Wendel site occurred before 8,000
14C yr B.P (e.g. Laird et al. 1996, 1998; Grimm

2001). Thus, for the WE-3 core we excluded the

age of 6,485 ± 50 14C yr BP from our linear

interpolation between dates and thus estimate

the age of the paleosol at about 8,100 14C yr BP

(Fig. 3A). The youngest age we obtained for the

‘‘nearshore’’ WE-1 core, 7,465 ± 45 14C yr BP, is

for a depth of 20 cm below the paleosol (Table 1,

Fig. 3B). This date was obtained from mainly

terrestrial plant rootlets with a few Typha L. and

Scirpus L. seeds and thus is probably younger than

its true age for this depth.

Fossils

The first vegetation recorded at the Wendel site is

indicated by the plant macrofossils (Zone MI in

Fig. 4), pollen (zones PIa and PIb in Fig. 5), and

stomata of the upper part of subunit B1, which

dates from c. 11,500 to 11,100 14C yr BP. These

data indicate that Picea glauca (white spruce) and

herbs were the major constituents of the vegeta-

tion, whereas deciduous trees (some pollen ten-

tatively identified as Populus tremuloides) were

minor elements. The macrofossil flora also indi-

cates an abundance of wetland plants (Fig. 4).

Bones (ribs, vertebrae, otoliths, etc.) of Perca

flavescens (yellow perch) are also common

(Fig. 4), as well as those of unidentified minnows,

indicating early colonization of the Wendel

paleolake by fish (M. Newbrey pers. commun.).

Stratigraphic provenance of the sole specimen of

Esox lucius (northern pike) collected over

30 years ago is uncertain, but it was buried under

several meters of sediment near the WE-1 coring

location (A. Ashworth pers. commun.). There-

fore, we can assume that it was coeval with its

prey, yellow perch.

The vegetation and limnology underwent a

transition from c. 11,100 and 10,500 14C yr BP,

driven by warming temperatures and lowering of

the local water table. As indicated by Fig. 4

(lower part of Zone MIIa) and Fig. 5 (Zone PIc),

deciduous trees became more common and local

abundance of spruce began to decline. There was

a dramatic increase in the coverage of aquatic and

emergent herbs. Yellow perch still inhabited the

lake at this time.

A parkland of deciduous trees and herbs

occupied the area from about 10,500 to 9,300
14C yr BP, as indicated by the pollen zones PIIa

and PIIb (Fig. 5) and from plant macrofossils (the
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upper part of Zone MIIa and lower part of Zone

MIIb in Fig. 4). The drying trend continued

during this phase, as indicated by an increase in

species diversity and coverage of herbs that

occupy shallow-water, shoreline, and upland hab-

itats. The fish populations were probably dissem-

inated during this phase.

With the disappearance of deciduous trees in

the area around 9,300 14C yr BP, grassland

became the exclusive vegetation cover, as indi-

cated by Zone PIIC (Fig. 5). The Wendel basin in

the coring locations contained shallow water, first

as an extensive prairie marsh (9,300–8,700 14C yr

BP; Zone MIIb in Fig. 4) and subsequently as a

seasonal (ephemeral) wetland (zones MIII and

MIV in Fig. 4). A soil formed by about 8,100
14C yr BP (Figs. 3–5), truncating the fossil record.

Geochemistry

Initially, the waters of the Wendel paleolake

waters were well oxidized, as indicated by high

concentrations of Mn in Unit B1, most likely as

manganese oxyhydroxides, and high concentra-

tions of adsorbed Mo and Ni (Fig. 6). Nutrient

levels were low (low concentrations of P) so

productivity was low (low concentrations of TOC;

Fig. 6). By about 11,250 14C yr BP, the time that

laminated sediments of Unit B2 were deposited,

nutrients had increased, stimulating higher pro-

ductivity in the lake and increased burial of TOC.

Lakes in the eastern Dakotas have high concen-

trations of dissolved sulfate (Gorham et al. 1983),

so sulfate reduction caused the sediments and

possibly the bottom waters in the Wendel site

basin to become anoxic. Such an event is indi-

cated by the abrupt decrease in Mn in the

laminated sediments of Unit B2 (Fig. 6) as

manganese oxyhydroxides were reduced, releas-

ing adsorbed Mo and Ni. This change in dissolved

oxygen levels occurred during the spruce park-

land phase. Lake productivity was still fairly high

during the transition from spruce to deciduous

parkland vegetation (lower part of Unit B3;

Fig. 6), but subsequently declined, as indicated

by a marked decrease in TOC. In contrast, the

influx of nutrients (P) continued to increase

during the deciduous parkland phase, probably

because of upslope soil erosion. These nutrients

were utilized by increasing populations of aquatic

emergents (Fig. 4). The abundance of Chara also

increased, which increased the amount of CaCO3

in the sediments, peaking at about 8,700 14C yr

BP (Fig. 6). There may have been a period of

anoxia at about 8,500 14C yr BP, as indicated by

high concentrations of Mo and Ni, followed by

decreasing concentrations of these elements

(Fig. 6). The continued low concentrations of

Mn indicate that Mo and Ni were being precip-

itated as sulfides and were not adsorbed on

manganese oxyhydroxides as they were in sedi-

ments deposited prior to 11,250 14C yr BP.

Discussion

The Wendel site record offers new insights

into distinguishing between local hydrological

influences on lakes compared to those caused by
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regional atmospheric processes, because this

record is the first for the extensive Glaciated Till

Plain. Previously, our understanding of the

regional paleoclimate was derived from the proxy

records from lakes in other hydrologic settings

(Table 2). These settings included: kettle lakes

and ponds situated in the hummocky moraine

uplands of the Missouri Coteau (Coldwater,

Kettle, Rice, and Cottonwood Lakes and Seibold

Pond) and the Prairie Coteau (Pickerel and

Medicine Lakes); an isolated kettle lake in an

outwash channel (Moon Lake); and a remnant of

a glacial lake (Devils Lake). Timing of terrestrial

and lacustrine events at the Wendel site is

comparable to those of other lakes in the region,

as shown in Table 2.

Spruce parkland and paleolake (>11,500–

10,500 14C yr BP)

The Wendel site probably does not record the

earliest stages of primary plant succession and

lake development, because of initial landscape

instability associated with deglaciation. Well-log

data in the Wendel site area indicate that under-

neath the Twin Lakes Channel lies a larger tunnel

valley, which extends to a depth of at least 250 m.

Bluemle (1979) proposed, after mapping the study

area, that this valley was ridden over and partially

filled with ice and debris when the James Lobe of

the Laurentide glacier briefly readvanced to the

southwest during the latter part of local deglaci-

ation. The surface expression of this partly-filled

tunnel valley (see Patterson 1998) is the Twin

Lakes Channel. With subsequent ice retreat, the

surface in the vicinity of the WE-3 coring location

was eroded by glacial meltwater prior to the

formation of a paleolake in the Twin Lakes

channel. In some places, such as where the WE-1

core was collected, small kettles and other ice-

disintegration features are visible (Bluemle 1979).

Thus, the water source for this paleolake was

probably initially derived from the surficial accu-

mulation of meltwater and later supplemented by

the slow melting of buried ice protected from

insolation by thick supraglacial debris.

We interpret that the white spruce trees and

the other plants were rooted in till overlying

blocks of stagnant ice within the Twin Lakes

channel and that the melting of this ice provided a

reliable moisture source to the local vegetation

for several centuries. Detritus of these plants

were probably redeposited locally into the Wen-

del paleolake, as indicated by white spruce litter

at the base of the WE-1 core. This interpretation

has been previously used to explain the existence

of ‘‘trash layers’’ of spruce macrofossils at the

bottoms of kettle lakes in the region (e.g. Wright

1976; Dean and Schwalb 2000; Grimm 2001).

Pollen grains at the Wendel site were thus

deposited by airborne accumulation and slope-

wash during this phase, and so the high Picea

values of 41–74% for zones PIa and PIb (Fig. 5)

should not directly compared to modern pollen

rain data. Consequently, based on these data we

interpret that the late-glacial vegetation was more

open, that of a spruce parkland instead of a forest,

which is described further in Yansa (2006).

The Picea glauca trees at the Wendel site, and

presumably those of upland lakes within the

region, were probably restricted to where soils

were consistently moist, such as along lakeshores,

whereas the drier soils upslope were covered by

prairie/steppe vegetation. Species of Cyperaceae

(sedge family), mudflat herbs (e.g. Mentha arven-

sis L. (field mint)), and Salix L. (willow) were also

important constituents of the flora, particularly in

local wetlands. The suite of shallow-water aquat-

ics was limited to Chara (stonewort) and two

species of Potamogeton L. (pondweed).

Other pollen studies of lakes on the northern

Great Plains likewise report pioneering spruce

vegetation associated with a high regional water

table at approximately the same time as at the

Wendel site, 11,500 to 10,500 14C yr BP (see

Table 2). A high water table across the region was

probably derived from the melting of glacial ice,

because paleoclimate models simulate a low

precipitation regime during the late-glacial (e.g.

Bartlein et al. 1998). These models also propose

that winters were cooler than modern, and

summers were relatively mild for the time, though

still a few degrees cooler than today.

The water of the Wendel paleolake was fresh

during the spruce phase, as it was at other lake

sites throughout the northeastern Great Plains

(Table 2). The productivity of the Wendel paleo-

lake increased through time because of 1) soil
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erosion, which flushed nutrients into the water

body, and 2) gradual warming and lengthening of

the growing season. These events are suggested

by abrupt increases in TOC and P in the

sediments of Unit B2 (Fig. 5). The lake waters

were initially well oxidized, as suggested by high

concentrations of Mn in Unit B1, with high

concentrations of adsorbed Mo and Ni. The

abrupt decrease in Mn in the overlying laminated

sediments of Unit B2 (Fig. 6), indicates anoxic

conditions in the sediments and possibly in the

water column.

This increased lake productivity supported fish

populations in the Wendel paleolake. Initial

waterway interconnections between the Wendel

site basin and other waterbodies explain how

minnows (unidentified), Perca flavescens (Fig. 4)

and Esox lucius entered the basin before the

water-table dropped, trapping them in a closed

paleolake within the Twin Lakes channel (Fig. 2).

A similar explanation was used to explain the

presence of early Holocene fish fossils recovered

from Seibold Pond (Fig. 1), a kettle pond located

on the Missouri Coteau in central North Dakota

(Newbrey and Ashworth 2004).

At the Wendel site, a transitional phase in

vegetation and limnology was identified from

c. 11,100 to 10,500 14C yr BP. Warmer summers

explain the declining pollen values for spruce and

corresponding greater abundance of those of

deciduous trees and herbaceous plants (Zone

PIc in Fig. 5). The residual meltwater source

derived from the slow melting of stagnant ice was

probably diminished at the Wendel site by 11,100
14C yr BP, based on several indicators of lake

shallowing. For example, there is a pronounced

pollen spike of Cyperaceae (top of Zone WE-3

PIb in Fig. 5), associated with macrofossils of this

family, Carex cf. C. sychnocephala Carey. (long-

beaked sedge) and Scirpus validus Vahl. (com-

mon bulrush) (MIIa in Fig. 4), which indicate the

expansion of shallow-water areas along the lake

shore. Also occupying this habitat were the

aquatic-emergent Typha latifolia (common cat-

tail) and the fen-type moss Drepanocladus. Stato-

blasts of Cristatella mucedo are restricted to Zone

MIIa (Fig. 4), and indicate that colonies of this

freshwater bryozoan were attached to the sub-

merged stems of emergent plants. Submerged

aquatics, such as Potamogeton filiformis Pers.

(slender-leafed pondweed), P. vaginatus Turcz.

(sheathed pondweed, not shown in Fig. 4), and

Zannichellia palustris L. (horned pondweed)

occupied the shallow water along the lakeshore.

Bones of Perca flavescens from Zone MIIa

(Fig. 4) are as common as before and indicate

continued fish mortality.

The upcore abundance increase in macrofossils

of damp-ground herbs (Fig. 4) indicates the areal

expansion of a mudflat along the shore with

declining lake levels. This shallowing also resulted

in the spreading out of Chara beds, leading to the

formation of a marl layer closer to shore (evident

in WE-1 core, Fig. 3B), and the incorporation of

CaCO3 from Chara in the offshore sediments

(WE-3 core, Fig. 6). Increasing concentrations of

TOC and P in the sediments (Fig. 6) also suggest

that the productivity of the lake remained high.

Holocene deciduous parkland and lake

shallowing (c. 10,500–9,300 14C yr BP)

The fossils (plant and fish), sediments (TOC and

P), and stratigraphy of the Wendel site indicate

that this trend of warming temperatures and

increasing lake productivity continued into the

early Holocene. Local populations of white

spruce trees were extirpated at about 9,900
14C yr BP (boundary between zones PIIa and

PIIb in Fig. 5), whereas Populus (poplar) and

other deciduous trees that arrived earlier became

more abundant in the local area. Most significant

are the pollen spikes of Ulmus and Betula (Zone

PIIb in Fig. 5), which along with moderate values

for the shrubs Salix and Corylus (hazelnut), are

good indicators of high soil moisture, at least

locally. Grasses (members of Poaceae) and herbs,

such as Artemisia L. and Ambrosia L.-type,

became more numerous and widespread, indicat-

ing the expansion of dry upland habitats within

the Glaciated Till Plain.

The shift from spruce parkland to deciduous

parkland at the Wendel site (at 10,500 14C yr BP)

is coeval to those reported for nearby upland sites

in North Dakota (Table 2). This vegetation

change has been attributed to the transition from

cool late-glacial to warmer post-glacial climates

(see Grimm and Jacobson 2004; Webb et al.
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2004). The precipitation regime was probably still

low (e.g. Bartlein et al. 1998) and the hardwoods

were most likely restricted to the lakeshore with

prairie on the uplands, as before.

Lowering of the regional water table during the

deciduous parkland phase is reported for

the Wendel site and multiple other localities in

the northern Great Plains (Table 2). At the

Wendel site, the abundant mudflat herbs contrib-

uted to the declining water table (Fig. 4). These

herbs are today called ‘‘draw-down weeds’’ for

their ability to significantly lower local water

tables in the prairie marshes of North Dakota

(Kantrud et al. 1989). Numerous seeds and pollen

of Typha latifolia L. (broad-leaved cat-tail) (zones

MIIa and MIIb in Fig. 4) indicate that the water

depth in the coring location was probably about

0.5 m, considering that this is the optimal depth

for peak seed production of this species (Kantrud

et al. 1989). The bay of the Wendel paleolake,

thus, was becoming a shallow prairie marsh.

These and other aquatic-emergent and aquatic

plants contributed to the greater precipitation of

CaCO3 in the sediments (Fig. 6). This process

presumably occurred both by plant transpiration,

which increased the concentration of CaCO3 in

the lake, and by photosynthesis, which reduced

dissolved CO2 concentrations, thereby increasing

the pH and hence causing calcite precipitation

(McConnaughey et al. 1994). Evapotranspiration

rates must have been extremely high, considering

that the early and mid-Holocene summers were

warmer than those of historic times (where

evapotranspiration exceeds precipitation) (e.g.

Barnosky et al. 1987; Bartlein et al. 1998).

The fish population in the Wendel paleolake

was probably decimated during this phase,

because the bones in overlying sediments (Zone

MIII in Fig. 4) show signs of taphonomy. The fish

die-off was most likely in the form of winter kills,

resulting from low dissolved oxygen levels under

the ice in what was then a shallow lake. Winter

fish kills commonly occur today in shallow lakes

and ponds in North Dakota and adjacent areas

(Tonn and Magnuson 1982). Lake productivity

also declined as indicated by a marked decrease

in TOC, although influx of nutrients (P) contin-

ued to increase upcore probably because of

upslope soil erosion (Fig. 6).

Grassland and development of an ephemeral

wetland (c. 9,300–8,100 14C yr BP)

Shortly after 9,300 14C yr BP, the deciduous trees

in the vicinity of the Wendel site disappeared,

because of the continued aridity (upper part of

Zone PIIc in Fig. 5). These trees were replaced by

prairie herbs and possibly some shrubs. The

transition from deciduous parkland to grassland

at the Wendel site occurred at about the same

time as at other lakes in the region (Table 2).

By this time, the Wendel site was a prairie

marsh and with continued lowering of the local

water table it became an ephemeral wetland at

about 8,500 14C yr BP. Despite the draw down of

the lake there is a surprising lack of salinity

indicators in the geochemical and plant macro-

fossil records of the Wendel site (Figs. 4, 6). In

contrast, the paleolimnology of kettle lakes on the

coteaus documents the onset of saline and

hypersaline conditions at about this time

(Table 2). The exception is Pickerel Lake, South

Dakota, which has a geochemistry that indicates

that it received reliable ground water inflow to

counteract its evaporative losses under a warm

and dry climatic regime (Schwalb and Dean

1998). Similarly, we interpret the Wendel site as

receiving ground-water discharge, which medi-

ated the signal of atmospheric (precipitation)

input to this basin.

There is some evidence for fluctuating water

levels during the transition from prairie marsh to

ephemeral wetland at the Wendel site. Shallow,

eutrophic and calcareous water conditions pre-

vailed at c. 8,800–8,700 14C yr BP, as indicated

by a peak of Chara oogonia (Fig. 4), which

correlates with a maximum concentration of

CaCO3 in the sediments (Fig. 6). This input of

carbonate probably diluted the TOC contents of

the sediments.

Geochemical data suggest that there may have

been a period of anoxia at c. 8,600 14C yr BP, as

indicated by high concentrations of Mo and Ni,

followed by decreasing concentrations of these

elements (upper part of Unit B3 in Fig. 6). The

continued low concentrations of Mn indicate that

Mo and Ni were not adsorbed on manganese

oxyhydroxides as they were in sediments depos-

ited prior to 11,000 14C yr BP. Another line of
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evidence to suggest that local soils were moist at

about 8,600 14C yr BP is a decrease in P levels in

the uppermost sediments (Fig. 6), which suggests

a decrease in soil erosion.

This interpretation is further supported by the

pollen data, particularly by a peak of Artemisia

(sage) pollen, which dates between 8,500 and

8,100 14C yr BP (Fig. 5). Greater abundance of

this deep-rooted plant indicates sufficient winter

precipitation in the region (Grimm 2001) and,

according to Winter and Rosenberry (1995), lake

levels in North Dakota are controlled by the

amount of snowmelt rather than rainfall. The

existence of moist soils in the Wendel basin until

about 8,100 14C yr BP is also indicated by the high

pollen values for Poaceae (grass family), consid-

ering that the exine (pollen wall) of grass are

known to deteriorate readily when soils are

oxidized (Hall 1981). High values for Pediastrum

(an alga) also support our interpretation for moist

soils and stagnant pools of water in the drying

lake bed. Water probably persisted longer in the

lowest elevation areas within the Twin Lakes

channel than at our coring sites.

There are also several indicators for the erosion,

redeposition and periodic oxidation of sediments

in the area where the WE-3 core was collected,

starting at about 8,500 14C yr BP. By this time,

sediment filled in about half of the Wendel basin,

reducing its water-holding capacity. Macrofossil

abundance and species diversity declined dramat-

ically at this time (Zone MIII in Fig. 4). A spike of

pre-Quaternary palynomorphs in Zone PIII

(Fig. 5) indicates that the till underlying the

upland soil was exposed and particles of which

(containing the Cretaceous-age microfossils) were

redeposited in the Wendel basin along with some

older pollen grains (especially those of Picea).

Some of the grains in this uppermost zone are

deteriorated, which occurs when sediments under-

go repeated drying/wetting cycles (Hall 1981).

A root cast associated with a paleosol indicates

that a shrub invaded the vicinity of the WE-3

coring location to tap into the lowering water

table at c. 8,100 14C yr BP. The fossil record at the

Wendel site is truncated by this paleosol and the

only plant fossils preserved in the overlying Unit

C sediments are a few oogonia of Chara (Zone

MIV in Fig. 4), and occasional gastropod shells.

The estimated age of c. 8,100 14C yr BP for the

paleosol is further substantiated by the regional

pollen spectra. A peak of Ambrosia-type (rag-

weed) pollen at about 9,000–8,000 14C yr BP

(Table 2) characterizes the pollen records of

Kettle, Rice, Moon, and Coldwater Lakes

(Fig. 1; Laird et al. 1996, 1998; Grimm 2001;

Yansa 2002; Clark et al. 2002). In contrast, the

Wendel site pollen record lacks this ragweed peak

(Table 2), which suggests that this record was

truncated before this drought-adapted herb be-

came widespread.

The complete Holocene records of the deeper

kettle lakes in the Missouri and Prairie Coteau

uplands report low and fluctuating lake levels

beginning at about 9,000–8,000 14C yr BP, with

salinity maxima occurring somewhat later. This

aridity ensured that fossil preservation ceased for

the later part of the Holocene at the Wendel site.

After 8,100 14C yr BP, however, the local water

table at the Wendel site must have been suffi-

ciently high to have preserved the fossils of Unit

B in saturated sediments. Again, this suggests at

least some ground-water discharge into the Wen-

del basin, although we recognize that precipita-

tion undoubtedly occurred.

Summary and conclusions

Our ability to distinguish between local hydro-

logic and regional atmospheric influences on

lakes relies upon comparison of our dataset from

the Glaciated Till Plain with those of upland

kettle lakes in the region. In particular, similar-

ities in the sequence and timing of terrestrial and

lacustrine changes shared between the Wendel

site record and those of other (kettle) sites in the

region provide a climate (temperature and pre-

cipitation) signal, whereas differences indicate the

relative influences of local ground-water hydrol-

ogy (Table 2, Fig. 1). These changes at the

Wendel site were reconstructed by the study of

fossils (pollen, plant macrofossils, stomata and

fish) and sediments (lithostratigraphy and geo-

chemistry) from two sediment cores collected

from this site in southeastern North Dakota.

The environmental changes we reconstructed

for the Wendel site include: 1) establishment of a
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paleolake within a palimpsest meltwater channel

at c. 11,500 14C yr BP, which was colonized by fish

and had a shoreline that was inhabited by a white

spruce parkland vegetation; 2) lake level lower-

ing, beginning at c. 11,100 14C yr BP, associated

with the replacement of spruce by deciduous trees

along the lake shore, expansion of prairie herbs,

and fish kills; 3) transition to an exclusive grass-

land vegetation occurred at c. 9,300 14C yr BP,

which was coeval with continued lake shallowing,

forming a prairie marsh and eventually an

ephemeral wetland; and 4) formation of a paleo-

sol at about 8,100 14C yr BP. Many of the upland

kettle records are not truncated, as is the Wendel

site record, but they too report the onset of peak

aridity at this time (Laird et al. 1996; Last et al.

1998; Dean and Schwalb 2000).

Differences in the proxy data from the

Wendel site, compared to those from most of

the kettle lakes of nearby uplands (Table 2),

provide a local ground-water signal, which is not

often recognized by researchers who reconstruct

paleoclimate records. We hypothesize that a

‘‘residual meltwater effect’’ from the slow melt-

ing of buried ice blocks contributed to the initial

high lake stands in the region. For some time it

provided a source of water in addition to the

melting of surficial ice and precipitation for the

Wendel paleolake and presumably other lakes.

The results of this study provide, for the first

time, a minimal age range for this subsurface

source of ground water on the Glaciated Till

Plain. Rapid shallowing of the Wendel paleo-

lake was first evident at about 11,100 14C yr BP

by a remarkably high spike (190%) of Cypera-

ceae pollen, which may signal termination of

meltwater contribution to this lake in the

subsurface. Deglaciation of the study area is

not dated, but we estimate from Clayton and

Moran’s (1982) ice margin chronology and the

establishment of vegetation at nearby Moon

Lake (Table 2; Laird et al. 1996, 1998) that the

Wendel site was deglaciated at about 12,000
14C yr BP. Thus, it took approximately

900 years for buried stagnant ice to melt at the

Wendel site, which is roughly comparable to a

previous estimate of 1000–3000 years for the

melting of supraglacial ice on the Missouri

Coteau by Clayton (1967).

Furthermore, to have preserved fossils (dated

from 11,500 to 8,100 14C yr BP) at the Wendel site

through subsequent dry spells, we reason that this

site must have received some ground-water dis-

charge from the recharging uplands (Missouri and

Prairie Coteaus). Our interpretation is based on

earlier work in North Dakota by Smith et al.

(1997) and Almendinger et al. (1999), who sug-

gest that severe mid-Holocene droughts caused

the ground-water capture areas to change. Spe-

cifically, they proposed that lower-elevation lakes

began to access catchment waters of up-gradient

lakes (causing those lakes to go dry) and so were

able to maintain their water levels.

Our paleoenvironmental data for the Wendel

site are most similar to those obtained for

Pickerel Lake, South Dakota, by Dean and

Schwalb (2000). Their geochemical and ostracode

study provided an invariant paleoclimate signal,

compared to other upland kettle lakes in the area,

which Dean and Schwalb (2000) attributed to the

influence of more-or-less continual ground-water

seepage into this lake. We propose that ground-

water discharge into the Wendel basin also

occurred, because of (1) the lack of salinity

indicators in the geochemistry and fossil assem-

blages of the early Holocene and (2) preservation

of fossils below the local water table.

In summary, the fossil and geochemical records

of the Wendel site provide valuable information

about late-glacial and early postglacial terrestrial

and lacustrine environmental changes for the

Glaciated Till Plain, a large (>60,000 km2) area

of the northern Great Plains which up until now

lacked a detailed multi-proxy study. Furthermore,

we were able, in part, to distinguish local hydro-

logic influences from atmospheric influences (pre-

cipitation) on the terrestrial and aquatic

environments of the Wendel basin. The results

of this investigation emphasize the importance of

considering the relative influence of local ground-

water hydrology upon lakes in glaciated land-

scapes when detecting paleoclimate signals from

proxy data.
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