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Abstract—In this paper, we study a real-time information improvement helps power suppliers reduce extra fuel cost
based demand-side management (DSM) system with advancedcaused by dramatic and unpredictable margin fluctuations in
communication networks in smart grid. DSM can smooth peak-  q\yer generation. Less fuel burning also helps reduce emis-
to-average ratio (PAR) of power usage in the grid, which in tun . f h f th t M
reduces the waste of fuel and the emission of greenhouse gas.Slon 0 _green ouse gas Irom those power generators. qre-
We first target to minimize PAR with a centralized scheme. To OVer, since the control center gets the energy consumption
motivate power suppliers, we further propose another centalized schedule beforehand [10]=]13], the renewable sources asich
scheme targeting minimum power generation cost. However, photovoltaics (PV) farm and wind turbine field, which aresles
customers may not be motivated by a centralized scheme sincegiapie and less controllable compared with the convernttiona

such a scheme requires total control and privacy from them. t t id ficient]
A centralized scheme also requires too much real-time data power generalors, can support power grid more €einciently.

exchange for frequent DSM deployment. To tackle these issge A higher proportion of such renewable sources will further
we propose game theoretical approaches so that most of thereduce fuel burning from the conventional power generators

computation is performed locally. In the proposed game, all  |n this paper, we first propose a centralized optimization
the customers are motivated by extra savings if participatng. problemP1 in order to reduce PAR to its minimum. Although

Moreover, we prove that all parties benefit from the DSM systen . PAR is obvi v b ficial to th . t
to the same level because both the centralized schemes and® MiNIMuUM IS obviously beneficial to the environment,

the game theoretical approach minimize global PAR. Such an however, it motivates neither power suppliers nor custsmer
analysis is further demonstrated by the simulation resultsand Especially power suppliers must deploy and maintain a more
discussions. Additionally, we evaluate the performance odeveral complicated cyber system than what AMI can offer to gather
(pa(;“a'lly) distributed approaches in order to find the bestway  anq distribute a huge amount of detailed information in real
to deploy DSM system. time. Therefore, a monetary incentive is needed to motivate
power suppliers. Another centralized optimization probie2
I. INTRODUCTION is then prop(_)sed to reduce the total energy generatin_g_ tost o
. ] ] power suppliers. Although power suppliers may be willing to
The world has been changing revolutionarily towards &dopt the DSM system based @2, it is based ondirect
higher efficiency in many agpects due to_the fast pace agaq control(DLC) [I0], [Z4], [15], which could be defective.
vancements of communication technologies. Among them, terms of communications, even if the massive centralized
traditional power grid is evolving temart grid lately based proplem can be solved efficiently, the transmission ovethea
on two-way communication networks that connect Serviggi| jay a huge burden on the communication network and
providers and customers![1]+{3]. For example, the advancgdyyire more advanced technical upgrade as well as more
metering infrastructure (AMI)[4],L[5] equips each custamegequent maintenance. Moreover, the customers could be-rel
with a smart meter, whose basic function is to gather thgnt to adopt such a DSM system for two reasons. One reason
energy consumption status and upload the information to tRethat the control center takes over the energy consumption
control center (also known as power distributer or servicgheduling from customers with no clear incentive for them t
provider). A smart meter is also capable of receiving cdntrgg so. The other reason is that DLC requires too much privacy
information (e.g., price and tariff bills) from the contr#nter. fom the customers.
Such_a two—_way information exchange is assumed to be neafq tackle those issues, we must have a DSM system that
real-time ultimately [[4]. clearly benefits customers, protects their privacy, andires
A demand-side management (DSM, also known as demaggich less real-time information exchange compared With
response) systern|[6]={8] further utilizes real-time imhation o P2, We formulate a game with two approaches based on
in order to let power grid generate and consume energiart pricing which is another major technique applied to the
more efficiently while reducing unnecessary waste. A DS\ system. In one approach, the customers get to compute
system is widely agreed to be effective on reducing the peake dynamic price based on their own load schedule with the
to-average ratio (PAR) of energy consumption [7]-[9]. Thigytal load of the power grid given. In the other approach, the
_ _ _ _ control center computes the price based on the total loaueof t
This work was supported by the National Science FoundatiteuGrant o id and t t that fixed pri hedule tHat wi
Feng Ye and Vi Qian are with the Department of Electrical aminButer not be affected by their local scheduling load. In either gam
ani”e‘gﬂgv kU”iVEFSI“Vd of Ne,bfaéka':-i”dco'”' Omaha, NESAJ e-mails:  theoretical approach, the payoff functions lead custornex t
eng.ye@huskers.unl.edu, yi.gian@unl.edu. . )
Rose Qingyang Hu is with the Department of Electrical and pater En- MOr€ €nergy cost saving. Therefo_r_e’ customers are mafivate
gineering, Utah State University, Logan, UT, USA. e-mailse.hu@usu.edu. to adopt this DSM system. In addition, customers reserve the
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rights to control their power consumption, and by doing soesidential customers, and a two-stage Stackelberg gaeae th
they keep the privacy to themselves by submitting only treetical approach where power suppliers as the leaders tend
energy consumption schedule, which is always a request etermaximize their profit and customers as the followers tend
in traditional power grid. Moreover, since most of the cédeu to minimize their cost. Since [7] mostly targeted residainti
tion is performed locally at the customer side, the appreactcustomers, the benefits for other parties in the system ware n
are mostly distributed instead of centralized. The disted clearly stated, and some impractical situation where tta to
game theoretical approach largely relieves the transamssioad goes negative was carefully avoided.[Ih [8], the awghor
overhead. More importantly, we prove that &, P2 and proposed an efficient game theoretical approach for resalen
game theoretical approach with locally computed dynamaustomers without storage unit based on dynamic smarngrici
smart pricing lead to the same minimum PAR. Therefor&g reduce the PAR. While the computational efficiency was
while all parties get enough motivation to participate, XM demonstrated, the global optimal PAR was not guaranteed by
system can be deployed in a distributed way. the distributed approach. The authors[of/[10] are amongeof th
We summarize the main contributions in the following. first to minimize PAR by distributed game theoretical apgioa

« In order to benefit the entire society and the environme@nong customers. Similarly, the storage unit was consitlere
we propose a DLC based Centra”zed approach to m"ﬁs their future Work, and the global Optlmal PAR was not
mizing the PAR. guaranteed.

o In order to show the benefits to the power suppliers,
we propose another DLC based centralized approach to I1l. SYSTEM MODEL
minimizing the power generation cost, and the powe. The Demand-Side Power Management System
generation cost model considers all conventional, non-
expanding green energy sources, and expanding renew- o
able energy sources. —— - commieten

« In order to motivate the customers to adopt the DSM /)& Power line
system and protect their privacy, we propose smart pricing 3
based game theoretical approaches that can maximize ; =
the customer savings by adopting such a DSM sytem.
The game theoretical approaches are mostly distributeg
and thus they alleviate the communication burden of the
network.

« We prove that the proposed DLC based and one of
the smart pricing based distributed game theoretical ap-
proaches yield to the same optimal solution (minimurg- 1. Demand-side power management system.

PAR), and therefore the distributed game theoretical
approach can be applied for real application while all The demand-side power management (DSM) system under
parties observe clear benefits from the DSM system. Study mainly consists of three parties, namely control eent

« We provide extensive numerical analysis and simulatid¥Pwer suppliers, and customers, as illustrated in [Hig. W-Po
results to demonstrate our analysis. We also compdte generators include all major types, from fuel consuming
several distributed approaches in order to find the benventional power generators to renewable power gensrato
way to deploy the DSM system. For simplicity, micro grid that can be attached/detachethé&

The rest of this paper is organized as follows. In sedfbn jower grid is not considered, and customers do not have power

we discuss the related work. In section Ill, we illustrate thg’fane_:tratprs. Control center is mainly responsible for power
DSM system under study in this paper. In sectiad IV, w istribution. It also gathers data (e.g., energy consumpti

formulate and analyze two centralized optimization protse and distributes control information (e.g., price, tarifida

as well as several game based distributed approaches.erl?1ergency control sig_nal). The information is available du
section[¥ we show the numerical analysis and simulatidf} & tWo-way communication network in the DSM system. At

results. And finally we conclude the work in sectio VI each customer side, there is a smart meter that is respensibl
' " for reporting the power consumption and possible schegulin

to the control center through the communication network. It
is also responsible for receiving price, tariff as well akewt
DSM in smart grid has been studied by many researchesntrol information from the control center.
recently [6]-[13], [16], [17]. However, most of the workscias According to [18], major customers in U.S.A. include
on one of the parties (e.g., power suppliers when applyingsidential, business and industrial ones as shown in[Fig. 2
DLC or customers when adopting smart pricing) in the systefihose customers have different characteristics when consu
only, without clarification on why to overlook others. Gaméng electric energy. For example, residential customerg ma
theoretical approach and smart pricing have also been widebnsume most of the power from afternoon through mid-
adopted in most of the works as efficient approaches. Thight, business customers consume most of the energy during
most related work to this paper includés [7]] [€].][10]. Theffice hours, while industrial customers may have a longer
authors of[[7] proposed a non-cooperative game played amgepk consumption schedule due to different but continuous

Control center

==
Business

Conventional
il
Hydroelectric ~ § 2 ﬁ@
é ) % PV

Nuclear

Residential

Industrial

II. RELATED WORK
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5

15X ‘ ‘ ‘ ‘ (assuming one day for simplicity). Therefore, fdf, it must
7 I satisfy _ _
I 17x! = B!, 1)
where 1 is a column vector ofls and () calculates the
10t . transposition. Appliance?, has an on/off operating scheduling

sett! = {0,1}/7!, where1 indicates thata’ is allowed
to operate wherea8 indicates off status ofi!,. The on/off
operating schedule can model the operating status more pre-

Retail sales of electricity (MKWh).

sl il cisely than the model using an operating time period, which
il B is more widely adopted[]7],[[8],[110]. For example, with
%Egi‘r’fgﬂl an on/off operating schedule, it is able to model a 2-hour
I Industrial pause of an air-conditioning (AC). However, if modeled by
0 B Others the operating time period, it must break the time period into
2002 2004 2006 2008 2010 2012 2014 three co-related sessions with extra constraints. Witlotiieff
vearto date operating scheduling sef,, Eq.[1 can be rewritten into
Fig. 2. Power sale to the customers in U.S.A. (t:l)TX':L —E.. 2)

For an appliance which needs to be used for several
shifts. The deployment of energy storage units and pogylariimes daily (e.g., a coffee machine), it can be observed as
of plug-in hybrid vehicles (PHEV) are increasing rapidlymultiple independent appliances with corresponding gnerg
Such devices/appliances will increase energy consumptidn requirements and on/off schedules. For this reason, we twant
change the current peak time schedule. For example, itemphasize thatl,, may not necessarily be the exact number
reasonable to assume most of the customers will charge thefirappliances of customen but the number that counts
PHEYV during the night time. For simplicity, PHEV is observeddependent appliances.
as a hybrid of a normal energy consuming appliance and anWhena!, is operating, its energy consumption is bounded
energy storage unit in the studied DSM system. by y™ir and~y™2x and mathematically,

n,i n,i

Tni b = X 2 Yl b @)

B. Mathematical Modeling

Tablel] lists the key notations of sets and variables we useBe€Sides the appliances, let each customer (ex.pe
throughout the paper. Let¥’ = {1,2,..., N} be the set of Sduipped with an energy storage unit with a design capac-
all customers, wherd/ 2 |A] is the total number customers.Y n- For simplicity, we assume that the storage unit has
Although the DSM system can be modeled for any arbitra?0% discharging/charging efficiency, and the energy can be
time period to satisfy the assumptions, we consider a da i trlbutgd_ for all the appliances within the power grid hwit
model in this work without loss of generality. Let one day baV07 efficiency. In other words, the storage units can be used
divided into several uniform time intervals, denotedfas= @ Support the appliances of customers themselves as well as

(1,2,...,|T]}. to sell the energy to the power grid. Lgt = {s, (¢)|t € T}
o be the discharging scheduling set, andsjet= {s,: (¢)|t € T}
TABLE | be the charging scheduling set. Similar to the applianceggne

KEY SETS AND VARIABLES. consumption, the discharging/charging energy in each time

Clobal interval is bounded by the safety threshod$*/s#*, which
N=1{1,2,... N} set of customers are expressed as

T=A{12,...,|T|} set of time intervals

L={L{#t)teT} daily energy consumption scheduling 0=s, <521, (4)
C={C(L)|teT} set of total cost for each time interval

p={p(LW)|t €T} set of unit price for each time interval 0 < st < gmaxy, (5)
Local (for customer n) - = n

an = Eaé,(a)gi,.-.%ﬁ"} Zetlof appliancehs i ok, To be more precise, the storage unit should not discharge
xt = {z! (t)|t € aily energy scheduling set ; -

E. — {él;;\i < An} Energy requirement set and charge at the same time for efficiency, so we have

th = {0, 1}I71 on/off operating scheduling set of, s osh =0, (6)
s, ={sn ()t €T} discharging scheduling of storage unit '

st ={st ()|t eT} charging scheduling of storage unit where 0" is the entrywise/Hadamard producand 0 is the
I = {ln ()]t € T} daily energy consumption scheduling set  ¢olymn vector with allDs. Eq.[8 will help convert the storage

unit model into a lossy one easily.

Each customern has a set of appliances, = |ets, — {s,(t)|t € T} be the set of remaining energy at

{a,,...,a;"}, where A, = |a,|. Each appliance (e.g.,the beginning of each time interval,

a!) has a daily energy consumption scheduling sgt = B

{x;,(t)|t € T}, which records the needed or consumed ener Y(t) = { Sn, t=1

for each time interval. Moreover, each applianégalso has sp(t—1)—s,(t—1)+st(t—1), t=€T\{1}
a pre-determined energy requiremdt for a time period (7
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where §,, is the initial remaining capacity. Let, be the
designed capacity of the storage unit, then

O S §TL S g”b’

8
)

Let the daily energy consumption schedule for customer
bel, = {i,.(t)|t € T}. With the previous modeling, we now
have

0<s,—5, +s' <35,1

cost can be viewed as a fixed cestplus a linear cost
w.r.t power transmission capacity as

C}(U =ayl+cy. (13)

« Expandable renewable sourcesince most of the cost
comes from the management of the facilitiés][20], by
assuming the facilities can be on/off based on the load
requirement, the total cost is increasing w.r.t the load re-
quirement. However it increases slower than the conven-
tional generatord [21], especially whearbon tax[22]
applies. Therefore we adopt the following cost model for

L=> (x5)—s, +st.
=1

(10)
expandable renewable sources.

Cr(l) =alln(l+1) +cp. (14)

Taking into consideration the proportions of all the genera
tors/sources, the overall energy cost is modeled as,

C(Z) = Cc(ﬁ(l) + C(f (Bfl) + CT(BTZ)v

where 3., B8y and 3, are the proportions of three power

C. Energy Cost and Unit Price suppliers respectively, and. + 8 + 5, = 1. Let C =

Based on[[19], power suppliers are categorized into thre& (L))t € T} be_the set of tc_)tal cost for each time interval.
types, namely fuel (e.g., coal) consuming conventionabgen’\t the customer side, the unit pricé per kW) is more
ators, non-expandablgreensources (hydroelectric, nuclear),Important thar_1 the total C?OSt' qu S|mpl|<_:|ty, let the _eryep@ )
and expandableenewablesources (PV field, wind farm). The 9enerated uniformly during a time period, the unit price is
net capacity of those generators/sources is shown in[Fig.c3/culated as .
Conventional generators are still the major energy prodyce p(l) =C(1) =C)/L. (16)
however their proportion is decreasing. The proportion of Finally let p = {p(L(¢))|t € T} be the set of unit prices
non-expandable generators is slowly decreasing since fbeeach time interval.
total energy is increasing. Although the proportion of the
expandable renewable energy is low, it is increasing in ®ffas IV. PROBLEM FORMULATION AND ANALYSIS
pace. Therefore, we need to take into consideration alethr&. Minimize PAR

categories of power suppliers for a more precise modeling. one of the ultimate goals of applying DSM is to reduce the
peak-to-average ratio, which raises the first problem:

For the whole DSM power system, the global load schedule
L ={L(t)|t € T} is calculated as

N
L= Zln.
=1

(11) (15)

80 ‘ , : L
0—*4—6—9—9—9_9_9_6\1, P1l: min 751;“67 (7)
b = (1TL)

. 70 - \Tl(
< —6— Conventional
< 60{| —B— Non-expandable green 1 s.t. Constraintsd), @), @), @, @), @), @), Yn e N
2 —A— Expandable renewable ;
o Constraint(LT]).
$ 507 —»— others ] ( ) )
s Lemma 1. LetL be the set of all possible daily load schedul-
840’ ' 1 ing patterns L is convex because of the convex, compact
< 30t , and non-empty constraints). Thénl has a unique optimal
2 solutionL} = argmin(supL), VL € L.
8 teT
o . . . . .
& Proof: First, since all appliances (including the storage

units) consume energy from the power generators/sourgds, a
each appliance has a daily energy requirement, thus the dalil
total load1”L = I' is observed as a constant. Therefore

P12 P1.1: min sup L
teT
Fuel consuming conventional generataasyuadratic cost with the same constraints. Let the objective function7dr.1
* oo ; be f(L) = L(t)|t € T}, which satisfies, fop < 6 < 1,
function is widely adopted for this type of generatars [6]— J(L) 521?{ €T} - -

[1Q] as

2006
Year to Date.

2008 2010 2012

Fig. 3. Existing net capacity by energy source and produges {19].

F(OL1 + (1~ O)Lz) =sup(6L1 () + (1~ 6) La(t)
<Osup L(t) + (1 — 0) sup Ly(t) (18)
=0f(L) + (1 - 0)f(L2)

Co(l) = acl® + bel + ce. (12)

« Non-expandable green sourcesssuming the produced
energy is predetermined by the fixed facilities, the total
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Thus f(L) is convex. Additionally, the constraint set isL,emma 4. If L* is the optimal solution t¢P1, it is also the
compact, convex and non-empty. TherefdpPé,1 has a unique optimal solution toP2.
solution L} and doesP1. [ |

. . . Proof: Let x = {z4|t € T} £ L} be the optimal solution
Note that although the existence of an optimal solutlocr;fpl' and lety — {y|t € T} 2 L; be the optimal solution of

always stands, the uniqueness of the solution only stanel:snwg)2 in this proof. Also, reorganize, y to be non-descending
L is considered as the variable set because multiple sotution ' ' ’

to Eq.LI1 may exist with a giveh. Although minimizing PAR Sets such thak; < @ij1, yi < i1, @ € T for better

. T L illustration. Note thatup, x = z|7|, andsup,y = y7|. We
is a benevolgnt objective, it may not be convincing enough f en prove this lemma by contradictory. Assuming£ .
power suppliers or customers to adopt such a DSM system. .

. - _thén it must be
For this reason, we further formulate another problem with a

monetary incentive objective function. LTI < YT (22)
> wmipla) > Y yip(yi) (23)
B. Minimize Total Cost i€T i€T

In the electricity energy market, power generators/sairce Furthermore, inequalitf{23) indicates that

are not fully competitive to each other yet since some of the Z (zip(zi) — yir(vi)) > yirp(yim) — =7 p(2)7)
technologies are still too expensive to apply and they dpera ;e {73

based on government subsidy [23]. Moreover, sophisticated (24)
regulatory mechanisms are needed to avoid arbitrarily high
price led by monopoly and rigid electric energy demand.
Therefore, we focus on a cost-oriented instead of profki
oriented objective. In shortP2 minimizes the total cost of
the power suppliers, such that

The left hand side of inequality (24) is maximized when
=y, =0,4i€T\{T|} sincel’x =17y =1TL =Tis

e daily total load and functionp(xz) = xp(x) is increasing
and strict convex w.r.t, we have

P2: min p’L (29) (I = 2)7)p(T = 27) — (T = y7)p((L = y7))
s.t. Constraintsd), @), @), @, @), @), @A), Yn e N - Z (zip(z:) () (25)
) su ip(%i) — YiP(Yi
Constraint(IT]). _x=ygL i€T\{|T|} ! "
Lemma 2. P2 has a unique optimal solutionl = (Note that we applysupremeinstead ofmaximumin in-
argminp” L, VL € L. equality [25) for the reason that the maximum value may
Proof: The objective function o2 is not be ac.hieved ifc; # 0 for somei.) However, because
of inequality [22), then
L= L(t))L(t)) = » C(L(t
P D LML) =Y CLM) (2 w1 < T — a7 < a7
t teT (26)

For simplicity, letz 2 L(t) be th in thi f ym-1 L= < U

or simplicity, letz = L(¢) be the argument in this proof.

It is obvious thatC'(z) is increasing and strict convex. Sinceand the fact that

Eq. is a composition o@(_x), thus>, . (p(L(1t)) - L(1)) -z =T =y =y7 — 27 (27)
is strict convex w.rtL(t). With the same compact, convex

and non-empty constraint set comparedPb, P2 thus has a We must then have

unique optimal solution. [ | sup (zip(z:) — yip(y:))

Let functiong(L) = p”'L. Then the optimal solution t&2 xy€eL Z.GT%‘TT}
can be found by solving the necessary and sufficient comditio r r r r (28)
of KKT [24]. <(C = a17)p(L = 27)) — (T = yy77)p(C = yj77)

<yirpy 1) — 21 p(@)77)
Note that inequality[(28) contradicts inequalify]24), and
thusx =y (or Ly = L} = L* after proper ordering), which
completes the proof. [ ]

Lemma 3. Let v be the Lagrange multiplier of the equality
constraint of P2 (1L = I'), and letv* minimize the dual
problem of P2 overwv. The optimal solutiorLy = {L}(¢)|t €
T} to P2 is calculated as
Theorem 1. Minimizing the total cost reaches the minimum
L%(t) = max {— > s arg (ggL((I;)) + U*)} ,VteT PAR: P2 £ P1.
neN L® Although power suppliers may be willing to adopt a DSM
v* = arg (Z Li(t) = F) ) system according t®2 so that they can reduce their total
voo\teT 21) cost, it still has three major issues to solve for eitlidr or
P2. Customer privacy is the first issue. Since b@h and
Note that solution in Ed_21 is unique w.iLt and it may 72 are exclusively executed at the control center side (often
have multiple solutions w.r.t the detailed energy consumnpt regarded as DLC schemes), all the customers must subniit thei
scheduling patterns to all the appliances. detailed information to the control center and willingly the
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control center schedule their power usage. The incentive fo 1) GA1: locally computed smart pricing.

the customers to adopt a DSM system is the second issudn this approach, we assume that each customer submits
Although a DSM system smooths PAR and reduces the total initial load scheduld) = {i%(¢)|t € T}, Vi € N to the
cost, it is not clear whether customers can benefit ffdmor  control center, and then the control center broadcastsitia i

P2 or not. Third, bothP1 andP2 are centralized optimization total load scheduld.’ = {Lo(¢)|t € T} = >, 1Y to the
problems, which can get quite complicated and computatiotustomers. In this approach, let the price computing famncti
consuming to solve. Even if the problems can be solvéd Eq.[I6 be known to all customers. Then each customer will
efficiently, the huge overhead of raw data gathering lays tbe able to compute the smart pricing schedule as

much burden on the communication network. Therefore, we

need a distributed DSM system that also protects the customé’ (L@l L), (1) = pi (LO(t) = B (8) + Li(t)), Ve €T

. . . 33)
by letting them control their own appliances. (
y g PP Let p; = {p; (L°(t) —19(t) + Li(t)) |t € T}. Customeri

will need to solve the following problem to fink},

C. Game Theoretical Approaches P3:  min p; L;, (34)
i €L

Smart pricing is another widely adopted cost strategy in :
order to attract customers’ interests. Moreover, a game the st. Constraintd), @, @, @, @. @, @@
oretical approach is an efficient way to solve a problememma 5. With given1? and L°, P3 has a unique optimal
in a distributed fashion with some limited shared informasolution w.rtl; = {1;(¢)|t € T}.
tion. Therefore, we formulate a non-cooperative gagne- o . )
IV, {L;}, {hi(-)}], whereL; is the strategy set (all possible Proof: The objective function ofP3 is analogous to that

load scheduling patterns) of player (customer hereafter fgf P2 and thus is monotonically increasing and strictly convex.

consistency)i (the notation of a customer is changed fronTEe conshtralnt set is also colmplac_t, convex and non-empty.
n to i, which is more generic for game theoretical approach)/US 3 has a unique optimal solution. u

H _ 1. .
and h;(-) is the payoff function of customer which is Let function ¢(1;) = p;l;, and I'; be the total energy
requirement for customer Then the optimal solution t@3

hi(1) = (T — p™)1, can be found by solving the necessary and sufficient comditio
1) = @~ p")L, @9 T oA

where(2 is a flat rate price vector if smart pricing strategy isemma 6. Let v; be the Lagrange multiplier of the equality
not applied. This payoff function shows the saving of a cugonstraint, andv minimizes the dual problem 63 over v;.
tomer from adopting this particular DSM system. Intuitivef  The optimal solutiod* = {I*(¢)|t € T} to P3 is

adopting a DSM system reduces their cost, customers are will

ing to participate. In this game, each customer calculabesh I*(t) = max { —s™, arg (ag(l) + U*) Vte T
response* with a givenl_; = {ly,.... L1, Liy1,....1n} T, Vo) ’
such that,
o =arg (o) =)
vi \teT
hi(I7,15) > hi(l;,15), V1; € L. (30) (35)

i i ) Definition 1. (Nash equilibrium (NE)): a scheduling set
The best response in Eg.130 is the same as calculating ;. _ (15,15 1) is an NE ofG = [N, {Li}, {h:(-)}] if
- I yrr o EN - ) 1S (2 ’

Vi€ N,V € L, hi(I5,1%,) > hi(1;,1*,), wherel*, =

i = argmax hi(li, 1), G, 11,
Lemma 7. G has a unique NE by7A1l.
s.t. Constraintsd), @), @), @, @, @, @0@). Proof: First, the payoff function (Eq[29) is strictly

concave, and the constraint set for this approach is compact
Note that Eq[_31 has an incentive physical meaning, whiclonvex and non-empty, thus NE exisfs [7]._][25]. Second,
is to find the set of load scheduling patterns that maximiee temmal® guarantees that the best response of each player can
energy cost saving for customeby adopting a DSM system. be found uniquely. Therefore NE exists uniquelydell. m
Since each customer has a constant total daily energylhe NE of GAL can be found by Algl]1.
consumption, i.e.y", l;(t) = I';, Vi € N, the flat rate price Lemma 8. Alg.

. I converges to NE.
yields a constant cost for each customer, therefore, tHeqmro g

in Eq.[31 equals the following one. Proof: According to Eq[3D, the payoff of each customer
increases after each iteration. Because the payoff is kealjnd
1¥ = argmin p”l;, (32) the algorithm will converge to an equilibrium, which is the

L;eL; NE. |

) Theorem 2. The NE ofG by GA1 is also the optimal solution
s.t. Constraintdd), @), @), @, &), @), 0. to P2.
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Algorithm 1 Algorithm to find NE by G Al has no guarantee to the optimal solution/Af or P2. In the
Input: s, ti, By, s/, s0%, 5, Vie N, T mixed approach, large energy consumption customers adopt
Output: 1f, Vi e NV; GA1l (e.g., business and industrial customers) and regular
1: Each player computes a feasilife energy consumption customers (e.g., residential cus®mer
2: while NE is not achievedlo adoptGA2. In the numerical analysis and simulation section
3 L% « Y, 1% /I Computed and distributed by thewe will show that the mixed approach converges to the
control center minimum PAR in practice.
4 19« 1I¥ = argP3, Vi € N; Il Computed by customer
¢ ) D. Precision and Truthfulness of the Proposed DSM Systems
2 En?_\’\{gljlew € A': Il Output NE Because customers could have exceptional energy consump-

tion, one time scheduling approach [7]] [8]..[10] can hardly
be followed strictly. In order to increase the precision lué t
proposed DSM system, the system should run at the beginning
Proof: According to the definition of the best responseyf each time interval for the rest of the day. The control eent

we have and the computing device of each customer (e.g., the smart
Z hi(1F,1_;) > Z hi(1;,1;), V1; € L_; meter) shOl_JId save the previogs status and subtrgct it from
Y Y the constraints when approaching the load scheduling fr th
L _ _ rest of the day. With the DSM system following schedule,
éz;/ (17, 1-) ZA:/ (I, 1-4), V1 € Li and since the payment is collected after each time interval
< o LET based on the real energy usage in that interval,Far P2
= Z (I;,15;) <P'L, VLeL (36) andGAl, the minimum PAR, the minimum total cost and the
N maximum local saving will only be achieved when customers
=pi(I},1*,) Y 1y <P'L, VLeL report the load schedules truthfully. The conclusion istgui
ieN intuitive because lying about the load will deviate custesne
- Z (I¥) = argminPTL from the optimal solution. Therefore, the truthfulness loé t
Y LeL proposed DSM systems should be guaranteed.

|

Theoren2 demonstrates th@td1 not only favors the cus-
tomers, but also minimizes the total cost and thus favorsspow®. Setting for the numerical analysis
suppliers. SoGA1 minimizes PAR according to theorelh 1. Assume that power suppliers are available to support cus-
However, control center may not want to release the prieemers with any energy requirement. The control centerlis ab
calculating function to customers. We then propose another gather/distribute information from/to the power supi
approach based on pre-calculated fixed pricing schedule. and the customers in real-time (e.00 ms). The customers

2) GA2: semi-fixed smart pricing. are categorized into residential, business and indusyoes.

In this approach, each customéralso submits an initial Without loss of generality, we assume that the daily energy
load scheduld?, however the price function is hidden fromconsumption of the customers follows the proportions oleti
customers. Only control center is able to calculate the fixé@dm the data in Fig[J2. Specifically, as shown in Fig. 4,

V. NUMERICAL ANALYSIS AND SIMULATION RESULTS

price vector with eaciL’ as, residential customers consist of three types (i.e., fasih big
- houses, families in townhouses, families in apartmenthe
b= {p(L°(1)|t € T} (37) With 55 kWh, 41 kWh and 33 kWh daily average energy
Then each customerwill solve the following problem to consumption respectively. Each residential customer tye
find 17, 50 customers. Business customers have two types (i.e., day-
P4: min p'L, (38) time based business and shopping malls), each24ith £Wh
Li€Ls and 2700 kW h daily average energy consumption respective-
s.t. Constraintgd), @), @), @, ®), @, @T0). ly, and each type hascustomer. Industrial customers have two

types (i.e., non-stop shift-based manufacturers and idag-t
Note thatP4 is a linear optimization problem, which can bébased industry), each withi00 kW h and 2500 kW h daily
solved with a unique solution. However the NE @ris not average energy consumption respectively, and each typé has
guaranteed since the objective function is no longer 8trictcustomer. Note that the settings for the customers are Rexib

concave. as long as the total energy consumption of each category
3) Mixed approach: adoptingrA1l and GA2 based on the follows the practical data.
property of customers. The granularity of time intervals is important to the DSM

As mentioned earliei7 A1 reveals the price function to thesystem. As shown in Fid]5, wheli | = 24, the total load
customers, which may not favor the control center. The totaf the power grid is constant throughout the day while it
load is also given to all customers. However, customers wiiactuates wherf7| = 8.
use a significant proportion of the energy may not want to Part of the detailed initial settings for residential cusérs
reveal such privacyGA2 does not have those issues but iare shown in Tablglll. We assume that each storage unit is able

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation infor|
10.1109/TPDS.2015.2403833, IEEE Transactions on Parallel and Distributed Systems

three DSM systems. Fidl] 7 shows the results for residential

. 60001 Total | customers. Note that’ A1 leads to a negative load for some
g o customers as shown in Fi§._7(c). It indicates that those
= 5000} , customers tend to sell extra energy from their storage unit
IS Total to maximize the savings.

I3 L
g 4000
3
c “‘*.AA*AAA*“‘*.AA*AAA —— P1: total load
g 30001 # o 600 k- P2; total load
é . - GA#1: total load
= = —+— P1.: total residential load
qc) 2000¢ 2 -+-P2: total residential load
[ .y <4 GA#1.: total residential load
> - 88g ° —o— P1: total business load
‘T 1000+ - a 09902, . -0~ P2: total business load
o o g 4 |0 GA#1: total business load
#1 #2 #3 8- ‘8‘6 . 5 —&— P1.: total industrial load
0 ‘ ° -o-P2: total industrial load
Residential Business Industrial it s 801 | B GA#1: total industrial load
A
. . ) 10 15 20
Fig. 4. Daily consumption of the customers. Time of a day.

Fig. 6. Load schedules b1, P2 and GAL.

700
00 Mookl 2°°°+I—*—*_*—t_*_ﬁ Load schedules for business customers and industrial cus-
R otal loac ) . . .
g0 ~ o nesnal | € 10 Terolead [ tOMeErS are shown in Fif] 8 and Fid. 9 respectively.
%400 —&— Industrial o —6—Business
< o —&— Industrial
% 300 ? 1000
H 2 2 h 50
=g * s i g =" I ol =z |
100 ©0- GAL B GAL =
z z £ 30 v-""ﬁ
% 5 10 15 20 % 5 10 15 20 Z Z 2 | :
Time of a day. Time of a day. P o o 20 B
@ |T]=24. (b) [T]=8. g g g
: : s
Fig. 5. Solution toP1 with different 7. g g g o DR S
40— —= : -
20( -8~ P2 -0 o comen
0 0 GAl 20 oo
to hold1/6 of daily power usage, each family has 2 PHEVs for  ° o zr_igeo‘}a_day.s ¢ bm . l%geﬁ?a_dalf.z w0 . “%_.ge é?a_d?yl.“ 1
type 1 and type 2 residential customers, the customerglivin (@) Residentiakzl. (b) Residentiali2. — (c) Residential7z3.

in apartment have 1 PHEV each. Each PHEV hdl$V'h  Fig. 7. Average residential load schedules by differentrapghes.
electricity. The power usage and rough schedules for other

appliances are estimations based on day-to-day expesience

For simplicity, the on/off schedule is shown as start/entkti

Note that some of the appliances are observed as multip 2% 250
ones so that the modeling is more precise, for example A 4
for residential users is observed as an all-day ventilagiodh = ° 2200
. . 00
a fully operating one in the afternoon. g% 6 o2
(4] Q
g 140 B g 150
TABLE 1| s 2
SETTING FOR THE CASE STUDY 2 1204 H
o 2 100
App @ B2 (kWh) 7 IR Start End 100 o b
Residential o 0 GA1 . 0 GAL pa
Storage 1/6> E% —-E2/3 E&/3 0 24 T 214 16 18 20 2 2
PHEV 18,18,9 0 E¢/3 0 8 e ey il 4
27 a) Business#1. b) Business#2.
AC1 5,3,2 ES/48  ES/16 0 24 @ S# (b) st
AC2 5,3,2 Ly /4 En/4 14 18 Fig. 8. Different business load schedules by different aaghes
Cooking 21,1 0" ES/1  1717,18 20,2020 ' y '
Dish washer  2,1,1 0 E&/2 20,20,20  24,23,22
Washing/dryer 5,3, 2 0 E®/2  20,20,18 24,23,22
Electronics 2,2,2 E2/8 E2/3 18 24
Others 4,2,1 ER/48  ER/12 0 24 C. Comparison of Different Distributed Approaches.

Fig. [I0 shows the load scheduling results@fl1, GA2,

) mixed GA and a distributed approach when all customers
B. Comparison of’1, P2 and GAl intend to minimize their local PAR. From the simulation
Fig.[8 shows that thé@1, P2 and GA1 all reach the same results we can see that boffid1 and mixedGA converge
optimal result w.r.t the total load. However, each customé&r the optimal PAR while neitheA2 nor min local PAR

receives a different load scheduling. This is observed in ahinimizes PAR.
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Fig. 9. Different industrial load schedules by differenpeagaches. OT
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GAHL Fig. 11. GA2 illustration.
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0 5 10 15 20 Fig. 12. Load schedule bgZ A1 and mixed GA.

Time of a day.

Fig. 10. Load scheduling from different distributed apmtues.
erations, it requires much less data transmission compéted
the centralized approach, which needs much more detaited da

In fact, GA2 performs the worst in the simulation when alfrom the customers and the scheduled appliance load must
customers are considered. Because of the fixed given sni¥gtdelivered to each customer individually. Moreover, it is
price, customers will shift their load to the low price timevorth mentioning that the energy providers may not want to
intervals without considering the consequence of doing ddeclare the true cost function to all the customers in peracti
When all customers do so, the time intervals with a relatiiy adopting mixed GA, only a few customers are required to
low previous load will be scheduled with a higher load anignow the cost function and some confidential agreements can
the price will go up. Then customers will shift back baseie made.
on the updated price schedule. The simulation also indicate
that GA2 alone fluctuates between these two states without g =oAL
converging to the NE. Fid.__11 shows the two states of the L6l A Mixed ||
total load schedule by A2 for the first 8 time intervals. 2

Fig. 12 shows the average load schedulesdyl and
mixed G A for the first type of the customers in each category.
It appears thatGAl schedules a smoother load for each
customer because residential customers have better -asses
ments of the cost changes based on their updated scheduie
by GA1. When applying mixed GA, although each customdtig- 13. Number of iterations for calculating A1l and mixedG A.
does not affect the price much, they together still causega bi
impact. Therefore, both business and industrial customest

schedule their loads in a more fluctuating way to adapt to the .
residential load. D. The Impact from Storage Unit

Fig. [I3 shows that botlzA1 and mixedGA converge  From Fig.[I% we can see that the total load schedule is no
quickly to the NE. In game theoretical approaches, the kplifonger a straight line without the assistance of storagésuni
of the network transmits the load schedule of each customernd this causes a higher PAR for the power grid, as shown
the control center, and the control center broadcasts tia¢ tan Fig.[I3. However, a storage unit may not necessarily help
load schedule to all customers. Although it requires midtip reduce the PAR for each customer individually.

PAR
=
~

4 6 8
Number of iteration.

N F
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Fig. 14. Load schedule without storage units. and (b) the corresponding total cost estimation of yéHr4, 2018 and2020.
4 ‘ ‘ —— — ‘ — demonstrated the results, and compared several distlibute
) [ Jwithout storage unit . .
| Storage unit - | approaches. In the future work, detachable micro grids and
3.5 may not reduce ™ [ with storage unit > - g
Iocgl PAR customer-side power generator will be considered for a more
3r ] ] precise modeling of the DSM system. Other schemes where
Storage unit reduces h f ion is hidden f h ill al
256 B M gloabal PAR. the true cost function Is hidden from the customers will also
o mo[] M be studied.
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