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A Real-Time Information Based Demand-Side
Management System in Smart Grid

Feng Ye,Student Member, IEEE,Yi Qian, Senior Member, IEEE,Rose Qingyang Hu,Senior Member, IEEE

Abstract—In this paper, we study a real-time information
based demand-side management (DSM) system with advanced
communication networks in smart grid. DSM can smooth peak-
to-average ratio (PAR) of power usage in the grid, which in turn
reduces the waste of fuel and the emission of greenhouse gas.
We first target to minimize PAR with a centralized scheme. To
motivate power suppliers, we further propose another centralized
scheme targeting minimum power generation cost. However,
customers may not be motivated by a centralized scheme since
such a scheme requires total control and privacy from them.
A centralized scheme also requires too much real-time data
exchange for frequent DSM deployment. To tackle these issues,
we propose game theoretical approaches so that most of the
computation is performed locally. In the proposed game, all
the customers are motivated by extra savings if participating.
Moreover, we prove that all parties benefit from the DSM system
to the same level because both the centralized schemes and
the game theoretical approach minimize global PAR. Such an
analysis is further demonstrated by the simulation resultsand
discussions. Additionally, we evaluate the performance ofseveral
(partially) distributed approaches in order to find the best way
to deploy DSM system.

I. I NTRODUCTION

The world has been changing revolutionarily towards a
higher efficiency in many aspects due to the fast pace ad-
vancements of communication technologies. Among them,
traditional power grid is evolving tosmart grid lately based
on two-way communication networks that connect service
providers and customers [1]–[3]. For example, the advanced
metering infrastructure (AMI) [4], [5] equips each customer
with a smart meter, whose basic function is to gather the
energy consumption status and upload the information to the
control center (also known as power distributer or service
provider). A smart meter is also capable of receiving control
information (e.g., price and tariff bills) from the controlcenter.
Such a two-way information exchange is assumed to be near
real-time ultimately [4].

A demand-side management (DSM, also known as demand
response) system [6]–[8] further utilizes real-time information
in order to let power grid generate and consume energy
more efficiently while reducing unnecessary waste. A DSM
system is widely agreed to be effective on reducing the peak-
to-average ratio (PAR) of energy consumption [7]–[9]. This
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improvement helps power suppliers reduce extra fuel cost
caused by dramatic and unpredictable margin fluctuations in
power generation. Less fuel burning also helps reduce emis-
sion of greenhouse gas from those power generators. More-
over, since the control center gets the energy consumption
schedule beforehand [10]–[13], the renewable sources suchas
photovoltaics (PV) farm and wind turbine field, which are less
stable and less controllable compared with the conventional
power generators, can support power grid more efficiently.
A higher proportion of such renewable sources will further
reduce fuel burning from the conventional power generators.

In this paper, we first propose a centralized optimization
problemP1 in order to reduce PAR to its minimum. Although
a minimum PAR is obviously beneficial to the environment,
however, it motivates neither power suppliers nor customers.
Especially power suppliers must deploy and maintain a more
complicated cyber system than what AMI can offer to gather
and distribute a huge amount of detailed information in real
time. Therefore, a monetary incentive is needed to motivate
power suppliers. Another centralized optimization problemP2
is then proposed to reduce the total energy generating cost of
power suppliers. Although power suppliers may be willing to
adopt the DSM system based onP2, it is based ondirect
load control(DLC) [10], [14], [15], which could be defective.
In terms of communications, even if the massive centralized
problem can be solved efficiently, the transmission overhead
will lay a huge burden on the communication network and
require more advanced technical upgrade as well as more
frequent maintenance. Moreover, the customers could be reluc-
tant to adopt such a DSM system for two reasons. One reason
is that the control center takes over the energy consumption
scheduling from customers with no clear incentive for them to
do so. The other reason is that DLC requires too much privacy
from the customers.

To tackle those issues, we must have a DSM system that
clearly benefits customers, protects their privacy, and requires
much less real-time information exchange compared withP1
or P2. We formulate a game with two approaches based on
smart pricing, which is another major technique applied to the
DSM system. In one approach, the customers get to compute
the dynamic price based on their own load schedule with the
total load of the power grid given. In the other approach, the
control center computes the price based on the total load of the
power grid and customers get that fixed price schedule that will
not be affected by their local scheduling load. In either game
theoretical approach, the payoff functions lead customer to a
more energy cost saving. Therefore, customers are motivated
to adopt this DSM system. In addition, customers reserve the
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rights to control their power consumption, and by doing so,
they keep the privacy to themselves by submitting only the
energy consumption schedule, which is always a request even
in traditional power grid. Moreover, since most of the calcula-
tion is performed locally at the customer side, the approaches
are mostly distributed instead of centralized. The distributed
game theoretical approach largely relieves the transmission
overhead. More importantly, we prove that allP1, P2 and
game theoretical approach with locally computed dynamic
smart pricing lead to the same minimum PAR. Therefore,
while all parties get enough motivation to participate, theDSM
system can be deployed in a distributed way.

We summarize the main contributions in the following.

• In order to benefit the entire society and the environment,
we propose a DLC based centralized approach to mini-
mizing the PAR.

• In order to show the benefits to the power suppliers,
we propose another DLC based centralized approach to
minimizing the power generation cost, and the power
generation cost model considers all conventional, non-
expanding green energy sources, and expanding renew-
able energy sources.

• In order to motivate the customers to adopt the DSM
system and protect their privacy, we propose smart pricing
based game theoretical approaches that can maximize
the customer savings by adopting such a DSM sytem.
The game theoretical approaches are mostly distributed
and thus they alleviate the communication burden of the
network.

• We prove that the proposed DLC based and one of
the smart pricing based distributed game theoretical ap-
proaches yield to the same optimal solution (minimum
PAR), and therefore the distributed game theoretical
approach can be applied for real application while all
parties observe clear benefits from the DSM system.

• We provide extensive numerical analysis and simulation
results to demonstrate our analysis. We also compare
several distributed approaches in order to find the best
way to deploy the DSM system.

The rest of this paper is organized as follows. In section II,
we discuss the related work. In section III, we illustrate the
DSM system under study in this paper. In section IV, we
formulate and analyze two centralized optimization problems,
as well as several game based distributed approaches. In
section V we show the numerical analysis and simulation
results. And finally we conclude the work in section VI.

II. RELATED WORK

DSM in smart grid has been studied by many researches
recently [6]–[13], [16], [17]. However, most of the works focus
on one of the parties (e.g., power suppliers when applying
DLC or customers when adopting smart pricing) in the system
only, without clarification on why to overlook others. Game
theoretical approach and smart pricing have also been widely
adopted in most of the works as efficient approaches. The
most related work to this paper includes [7], [8], [10]. The
authors of [7] proposed a non-cooperative game played among

residential customers, and a two-stage Stackelberg game the-
oretical approach where power suppliers as the leaders tend
to maximize their profit and customers as the followers tend
to minimize their cost. Since [7] mostly targeted residential
customers, the benefits for other parties in the system were not
clearly stated, and some impractical situation where the total
load goes negative was carefully avoided. In [8], the authors
proposed an efficient game theoretical approach for residential
customers without storage unit based on dynamic smart pricing
to reduce the PAR. While the computational efficiency was
demonstrated, the global optimal PAR was not guaranteed by
the distributed approach. The authors of [10] are among of the
first to minimize PAR by distributed game theoretical approach
among customers. Similarly, the storage unit was considered
as their future work, and the global optimal PAR was not
guaranteed.

III. SYSTEM MODEL

A. The Demand-Side Power Management System

Power line

Communication 

link

Conventional
Wind turbine

PV

Nuclear

Hydroelectric

Residential

Industrial

Business

Control center

Fig. 1. Demand-side power management system.

The demand-side power management (DSM) system under
study mainly consists of three parties, namely control center,
power suppliers, and customers, as illustrated in Fig. 1. Pow-
er generators include all major types, from fuel consuming
conventional power generators to renewable power generators.
For simplicity, micro grid that can be attached/detached tothe
power grid is not considered, and customers do not have power
generators. Control center is mainly responsible for power
distribution. It also gathers data (e.g., energy consumption)
and distributes control information (e.g., price, tariff and
emergency control signal). The information is available due
to a two-way communication network in the DSM system. At
each customer side, there is a smart meter that is responsible
for reporting the power consumption and possible scheduling
to the control center through the communication network. It
is also responsible for receiving price, tariff as well as other
control information from the control center.

According to [18], major customers in U.S.A. include
residential, business and industrial ones as shown in Fig. 2.
Those customers have different characteristics when consum-
ing electric energy. For example, residential customers may
consume most of the power from afternoon through mid-
night, business customers consume most of the energy during
office hours, while industrial customers may have a longer
peak consumption schedule due to different but continuous
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Fig. 2. Power sale to the customers in U.S.A.

shifts. The deployment of energy storage units and popularity
of plug-in hybrid vehicles (PHEV) are increasing rapidly.
Such devices/appliances will increase energy consumptionand
change the current peak time schedule. For example, it is
reasonable to assume most of the customers will charge their
PHEV during the night time. For simplicity, PHEV is observed
as a hybrid of a normal energy consuming appliance and an
energy storage unit in the studied DSM system.

B. Mathematical Modeling

Table I lists the key notations of sets and variables we use
throughout the paper. LetN = {1, 2, . . . , N} be the set of
all customers, whereN , |N | is the total number customers.
Although the DSM system can be modeled for any arbitrary
time period to satisfy the assumptions, we consider a daily
model in this work without loss of generality. Let one day be
divided into several uniform time intervals, denoted asT =
{1, 2, . . . , |T |}.

TABLE I
KEY SETS AND VARIABLES.

Global
N = {1, 2, . . . , N} set of customers
T = {1, 2, . . . , |T |} set of time intervals
L = {L(t)|t ∈ T } daily energy consumption scheduling
C = {C(L(t))|t ∈ T } set of total cost for each time interval
p = {p(L(t))|t ∈ T } set of unit price for each time interval
Local (for customer n)
an = {a1n, a

2
n, . . . , a

An
n } set of appliances

xi
n = {xi

n(t)|t ∈ T } daily energy scheduling set ofain
En = {Ei

n|i ≤ An} Energy requirement set
tin = {0, 1}|T | on/off operating scheduling set ofain
s−n = {s−n (t)|t ∈ T } discharging scheduling of storage unit
s+n = {s+n (t)|t ∈ T } charging scheduling of storage unit
ln = {ln(t)|t ∈ T } daily energy consumption scheduling set

Each customern has a set of appliancesan =
{a1n, . . . , a

An

n }, where An , |an|. Each appliance (e.g.,
ain) has a daily energy consumption scheduling setxi

n =
{xi

n(t)|t ∈ T }, which records the needed or consumed energy
for each time interval. Moreover, each applianceain also has
a pre-determined energy requirementEi

n for a time period

(assuming one day for simplicity). Therefore, forain, it must
satisfy

1Txi
n = Ei

n, (1)

where 1 is a column vector of1s and (·)T calculates the
transposition. Applianceain has an on/off operating scheduling
set tin = {0, 1}|T |, where 1 indicates thatain is allowed
to operate whereas0 indicates off status ofain. The on/off
operating schedule can model the operating status more pre-
cisely than the model using an operating time period, which
is more widely adopted [7], [8], [10]. For example, with
an on/off operating schedule, it is able to model a 2-hour
pause of an air-conditioning (AC). However, if modeled by
the operating time period, it must break the time period into
three co-related sessions with extra constraints. With theon/off
operating scheduling settin, Eq. 1 can be rewritten into

(tin)
Txi

n = Ei
n. (2)

For an appliance which needs to be used for several
times daily (e.g., a coffee machine), it can be observed as
multiple independent appliances with corresponding energy
requirements and on/off schedules. For this reason, we wantto
emphasize thatAn may not necessarily be the exact number
of appliances of customern but the number that counts
independent appliances.

Whenain is operating, its energy consumption is bounded
by γmin

n,i andγmax
n,i , and mathematically,

γmin
n,i t

i
n � xi

n � γmax
n,i tin. (3)

Besides the appliances, let each customer (e.g.,n) be
equipped with an energy storage unit with a design capac-
ity s̄n. For simplicity, we assume that the storage unit has
100% discharging/charging efficiency, and the energy can be
distributed for all the appliances within the power grid with
100% efficiency. In other words, the storage units can be used
to support the appliances of customers themselves as well as
to sell the energy to the power grid. Lets−n = {s−n (t)|t ∈ T }
be the discharging scheduling set, and lets+n = {s+n (t)|t ∈ T }
be the charging scheduling set. Similar to the appliance energy
consumption, the discharging/charging energy in each time
interval is bounded by the safety thresholdssmax

n−
/smax

n+ , which
are expressed as

0 � s−n � smax
n−

1, (4)

0 � s+n � smax
n+ 1. (5)

To be more precise, the storage unit should not discharge
and charge at the same time for efficiency, so we have

s−n ◦ s+n = 0, (6)

where “◦” is the entrywise/Hadamard product, and0 is the
column vector with all0s. Eq. 6 will help convert the storage
unit model into a lossy one easily.

Let sn = {sn(t)|t ∈ T } be the set of remaining energy at
the beginning of each time interval,

sn(t) =

{

s̃n, t = 1

sn(t− 1)− s−n (t− 1) + s+n (t− 1), t =∈ T \{1}
(7)
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where s̃n is the initial remaining capacity. Let̄sn be the
designed capacity of the storage unit, then

0 ≤ s̃n ≤ s̄n, (8)

0 � sn − s−n + s+n � s̄n1. (9)

Let the daily energy consumption schedule for customern
be ln = {ln(t)|t ∈ T }. With the previous modeling, we now
have

ln =

An
∑

i=1

(

xi
n

)

− s−n + s+n . (10)

For the whole DSM power system, the global load schedule
L = {L(t)|t ∈ T } is calculated as

L =

N
∑

i=1

ln. (11)

C. Energy Cost and Unit Price

Based on [19], power suppliers are categorized into three
types, namely fuel (e.g., coal) consuming conventional gener-
ators, non-expandablegreensources (hydroelectric, nuclear),
and expandablerenewablesources (PV field, wind farm). The
net capacity of those generators/sources is shown in Fig. 3.
Conventional generators are still the major energy producers,
however their proportion is decreasing. The proportion of
non-expandable generators is slowly decreasing since the
total energy is increasing. Although the proportion of the
expandable renewable energy is low, it is increasing in a faster
pace. Therefore, we need to take into consideration all three
categories of power suppliers for a more precise modeling.
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Fig. 3. Existing net capacity by energy source and producer type [19].

• Fuel consuming conventional generators: a quadratic cost
function is widely adopted for this type of generators [6]–
[10] as

Cc(l) = acl
2 + bcl + cc. (12)

• Non-expandable green sources: assuming the produced
energy is predetermined by the fixed facilities, the total

cost can be viewed as a fixed costcf plus a linear cost
w.r.t power transmission capacity as

Cf (l) = af l + cf . (13)

• Expandable renewable sources: since most of the cost
comes from the management of the facilities [20], by
assuming the facilities can be on/off based on the load
requirement, the total cost is increasing w.r.t the load re-
quirement. However it increases slower than the conven-
tional generators [21], especially whencarbon tax [22]
applies. Therefore we adopt the following cost model for
expandable renewable sources.

Cr(l) = arl ln(l + 1) + cr. (14)

Taking into consideration the proportions of all the genera-
tors/sources, the overall energy cost is modeled as,

C(l) = Cc(βcl) + Cf (βf l) + Cr(βrl), (15)

where βc, βf and βr are the proportions of three power
suppliers respectively, andβc + βf + βr = 1. Let C =
{C(L(t))|t ∈ T } be the set of total cost for each time interval.
At the customer side, the unit price ($ per kWh) is more
important than the total cost. For simplicity, let the energy be
generated uniformly during a time period, the unit price is
calculated as

p(l) = Ċ(l) = C(l)/l. (16)

Finally let p = {p(L(t))|t ∈ T } be the set of unit prices
for each time interval.

IV. PROBLEM FORMULATION AND ANALYSIS

A. Minimize PAR

One of the ultimate goals of applying DSM is to reduce the
peak-to-average ratio, which raises the first problem:

P1 : min
supt∈T L
1

|T | (1
TL)

(17)

s.t. Constraints(4), (5), (6), (7), (8), (9), (10), ∀n ∈ N

Constraint(11).

Lemma 1. LetL be the set of all possible daily load schedul-
ing patterns (L is convex because of the convex, compact
and non-empty constraints). ThenP1 has a unique optimal
solutionL⋆

1 = argmin(sup
t∈T

L), ∀L ∈ L.

Proof: First, since all appliances (including the storage
units) consume energy from the power generators/sources, and
each appliance has a daily energy requirement, thus the daily
total load1TL = Γ is observed as a constant. Therefore

P1 , P1.1 : min sup
t∈T

L

with the same constraints. Let the objective function forP1.1
be f(L) = sup

t∈T
{L(t)|t ∈ T }, which satisfies, for0 ≤ θ ≤ 1,

f(θL1 + (1− θ)L2) = sup
t
(θL1(t) + (1 − θ)L2(t))

≤θ sup
t

L1(t) + (1− θ) sup
t

L2(t)

=θf(L1) + (1− θ)f(L2)

(18)
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Thus f(L) is convex. Additionally, the constraint set is
compact, convex and non-empty. Therefore,P1.1 has a unique
solutionL⋆

1 and doesP1.
Note that although the existence of an optimal solution

always stands, the uniqueness of the solution only stands when
L is considered as the variable set because multiple solutions
to Eq. 11 may exist with a givenL. Although minimizing PAR
is a benevolent objective, it may not be convincing enough for
power suppliers or customers to adopt such a DSM system.
For this reason, we further formulate another problem with a
monetary incentive objective function.

B. Minimize Total Cost

In the electricity energy market, power generators/sources
are not fully competitive to each other yet since some of the
technologies are still too expensive to apply and they operate
based on government subsidy [23]. Moreover, sophisticated
regulatory mechanisms are needed to avoid arbitrarily high
price led by monopoly and rigid electric energy demand.
Therefore, we focus on a cost-oriented instead of profit-
oriented objective. In short,P2 minimizes the total cost of
the power suppliers, such that

P2 : min pTL (19)

s.t. Constraints(4), (5), (6), (7), (8), (9), (10), ∀n ∈ N

Constraint(11).

Lemma 2. P2 has a unique optimal solutionL⋆
2 =

argminpTL, ∀L ∈ L.

Proof: The objective function ofP2 is

pTL =
∑

t

(p (L(t))L(t)) =
∑

t∈T

C (L(t)) (20)

For simplicity, letx , L(t) be the argument in this proof.
It is obvious thatC(x) is increasing and strict convex. Since
Eq. 20 is a composition ofC(x), thus

∑

t∈T (p(L(t)) · L(t))
is strict convex w.r.tL(t). With the same compact, convex
and non-empty constraint set compared toP1, P2 thus has a
unique optimal solution.

Let functiong(L) , pTL. Then the optimal solution toP2
can be found by solving the necessary and sufficient conditions
of KKT [24].

Lemma 3. Let v be the Lagrange multiplier of the equality
constraint ofP2 (1TL = Γ), and let v⋆ minimize the dual
problem ofP2 over v. The optimal solutionL⋆

2 = {L⋆
2(t)|t ∈

T } to P2 is calculated as


















L⋆
2(t) = max

{

−
∑

n∈N
smax
n−

, arg
L(t)

(

∂g(L)
∂L(t) + v⋆

)

}

, ∀t ∈ T

v⋆ = arg
v

(

∑

t∈T

L⋆
2(t) = Γ

)

.

(21)

Note that solution in Eq. 21 is unique w.r.tL and it may
have multiple solutions w.r.t the detailed energy consumption
scheduling patterns to all the appliances.

Lemma 4. If L⋆ is the optimal solution toP1, it is also the
optimal solution toP2.

Proof: Let x = {xt|t ∈ T } , L⋆
1 be the optimal solution

of P1, and lety = {yt|t ∈ T } , L⋆
2 be the optimal solution of

P2 in this proof. Also, reorganizex,y to be non-descending
sets such thatxi ≤ xi+1, yi ≤ yi+1, i ∈ T for better
illustration. Note thatsupt x = x|T |, and supt y = y|T |. We
then prove this lemma by contradictory. Assumingx 6= y,
then it must be

x|T | < y|T | (22)
∑

i∈T

xip(xi) >
∑

i∈T

yip(yi) (23)

Furthermore, inequality (23) indicates that
∑

i∈T \{|T |}

(xip(xi)− yip(yi)) > y|T |p(y|T |)− x|T |p(x|T |)

(24)

The left hand side of inequality (24) is maximized when
xi = yi = 0, i ∈ T \{T |} since1Tx = 1Ty = 1TL = Γ is
the daily total load and functiong(x) = xp(x) is increasing
and strict convex w.r.tx, we have

(Γ− x|T |)p(Γ− x|T |)− (Γ− y|T |)p((Γ− y|T |))

≥ sup
x,y∈L





∑

i∈T \{|T |}

(xip(xi)− yip(yi))





(25)

(Note that we applysupremeinstead ofmaximumin in-
equality (25) for the reason that the maximum value may
not be achieved ifxi 6= 0 for some i.) However, because
of inequality (22), then

x|T |−1 ≤ Γ− x|T | < x|T |

y|T |−1 ≤ Γ− y|T | < y|T |

(26)

and the fact that

Γ− x|T | − Γ− y|T | = y|T | − x|T | (27)

We must then have

sup
x,y∈L

∑

i∈T \{|T |}

(xip(xi)− yip(yi))

≤(Γ− x|T |)p(Γ− x|T |)− (Γ− y|T |)p(Γ− y|T |)

≤y|T |p(y|T |)− x|T |p(x|T |)

(28)

Note that inequality (28) contradicts inequality (24), and
thusx = y (or L⋆

1 = L⋆
2 = L⋆ after proper ordering), which

completes the proof.

Theorem 1. Minimizing the total cost reaches the minimum
PAR:P2 , P1.

Although power suppliers may be willing to adopt a DSM
system according toP2 so that they can reduce their total
cost, it still has three major issues to solve for eitherP1 or
P2. Customer privacy is the first issue. Since bothP1 and
P2 are exclusively executed at the control center side (often
regarded as DLC schemes), all the customers must submit their
detailed information to the control center and willingly let the
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control center schedule their power usage. The incentive for
the customers to adopt a DSM system is the second issue.
Although a DSM system smooths PAR and reduces the total
cost, it is not clear whether customers can benefit fromP1 or
P2 or not. Third, bothP1 andP2 are centralized optimization
problems, which can get quite complicated and computation-
consuming to solve. Even if the problems can be solved
efficiently, the huge overhead of raw data gathering lays too
much burden on the communication network. Therefore, we
need a distributed DSM system that also protects the customers
by letting them control their own appliances.

C. Game Theoretical Approaches

Smart pricing is another widely adopted cost strategy in
order to attract customers’ interests. Moreover, a game the-
oretical approach is an efficient way to solve a problem
in a distributed fashion with some limited shared informa-
tion. Therefore, we formulate a non-cooperative gameG =
[N , {Li}, {hi(·)}], whereLi is the strategy set (all possible
load scheduling patterns) of player (customer hereafter for
consistency)i (the notation of a customer is changed from
n to i, which is more generic for game theoretical approach),
andhi(·) is the payoff function of customeri, which is

hi(li) = (ΩT − pT )li, (29)

whereΩ is a flat rate price vector if smart pricing strategy is
not applied. This payoff function shows the saving of a cus-
tomer from adopting this particular DSM system. Intuitively, if
adopting a DSM system reduces their cost, customers are will-
ing to participate. In this game, each customer calculates abest
responsel⋆i with a given l−i = {l1, . . . , li−1, li+1, . . . , lN}
such that,

hi(l
⋆
i , l−i) ≥ hi(li, l−i), ∀li ∈ Li. (30)

The best response in Eq. 30 is the same as calculating

l⋆i = argmax
li∈Li

hi(li, l−i), (31)

s.t. Constraints(4), (5), (6), (7), (8), (9), (10).

Note that Eq. 31 has an incentive physical meaning, which
is to find the set of load scheduling patterns that maximize the
energy cost saving for customeri by adopting a DSM system.

Since each customer has a constant total daily energy
consumption, i.e.,

∑

t li(t) = Γi, ∀i ∈ N , the flat rate price
yields a constant cost for each customer, therefore, the problem
in Eq. 31 equals the following one.

l⋆i = argmin
li∈Li

pT li, (32)

s.t. Constraints(4), (5), (6), (7), (8), (9), (10).

1) GA1: locally computed smart pricing.
In this approach, we assume that each customer submits

an initial load schedulel0i = {l0i (t)|t ∈ T }, ∀i ∈ N to the
control center, and then the control center broadcasts the initial
total load scheduleL0 = {L0(t)|t ∈ T } =

∑

i∈L l0i to the
customers. In this approach, let the price computing function
in Eq. 16 be known to all customers. Then each customer will
be able to compute the smart pricing schedule as

pi
(

li(t)i|L
0(t), l0i (t)

)

= pi
(

L0(t)− l0i (t) + li(t)
)

, ∀t ∈ T
(33)

Let pi = {pi
(

L0(t)− l0i (t) + li(t)
)

|t ∈ T }. Customeri
will need to solve the following problem to findl⋆i ,

P3 : min
li∈Li

pT
i li, (34)

s.t. Constraints(4), (5), (6), (7), (8), (9), (10).

Lemma 5. With givenl0i and L0, P3 has a unique optimal
solution w.r.tli = {li(t)|t ∈ T }.

Proof: The objective function ofP3 is analogous to that
of P2 and thus is monotonically increasing and strictly convex.
The constraint set is also compact, convex and non-empty.
ThusP3 has a unique optimal solution.

Let function g(li) = pT
i li, and Γi be the total energy

requirement for customeri. Then the optimal solution toP3
can be found by solving the necessary and sufficient conditions
of KKT [24].

Lemma 6. Let vi be the Lagrange multiplier of the equality
constraint, andv⋆i minimizes the dual problem ofP3 overvi.
The optimal solutionl⋆ = {l⋆(t)|t ∈ T } to P3 is



















l⋆(t) = max

{

−smax
i−

, arg
l(t).

(

∂g(l)
∂l(t) + v⋆

)

}

, ∀t ∈ T

v⋆i = arg
vi

(

∑

t∈T

l⋆(t) = Γi

)

(35)

Definition 1. (Nash equilibrium (NE)): a scheduling set
l⋆ = (l⋆1, l

⋆
2, . . . , l

⋆
N) is an NE ofG = [N , {Li}, {hi(·)}] if,

∀i ∈ N , ∀li ∈ Li, hi(l
⋆
i , l

⋆
−i) ≥ hi(li, l

⋆
−i), where l⋆−i =

(l⋆1, . . . , l
⋆
i−1, l

⋆
i+1, . . . , l

⋆
N).

Lemma 7. G has a unique NE byGA1.

Proof: First, the payoff function (Eq. 29) is strictly
concave, and the constraint set for this approach is compact,
convex and non-empty, thus NE exists [7], [25]. Second,
lemma 5 guarantees that the best response of each player can
be found uniquely. Therefore NE exists uniquely toGA1.

The NE ofGA1 can be found by Alg. 1.

Lemma 8. Alg. 1 converges to NE.

Proof: According to Eq. 30, the payoff of each customer
increases after each iteration. Because the payoff is bounded,
the algorithm will converge to an equilibrium, which is the
NE.

Theorem 2. The NE ofG byGA1 is also the optimal solution
to P2.
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Algorithm 1 Algorithm to find NE byGA1

Input: γi, ti, Ei, smax
i−

, smax
i+

, s̄i, ∀i ∈ N , T
Output: l⋆i , ∀i ∈ N ;

1: Each player computes a feasiblel0i
2: while NE is not achieveddo
3: L0 ←

∑

i∈N l0i ; // Computed and distributed by the
control center

4: l0i ← l⋆i = argP3, ∀i ∈ N ; // Computed by customer
i

5: end while
6: l⋆i ← l0i , ∀i ∈ N ; // Output NE

Proof: According to the definition of the best response,
we have

∑

i∈N

hi(l
⋆
i , l−i) ≥

∑

i∈N

hi(li, li), ∀li ∈ L−i

⇒
∑

i∈N

g(l⋆i , l−i) ≤
∑

i∈N

g(li, l−i), ∀li ∈ Li

⇒
∑

i∈N

g(l⋆i , l
⋆
−i) ≤ PTL, ∀L ∈ L

⇒pi(l
⋆
i , l

⋆
−i)

∑

i∈N

l⋆i ≤ PTL, ∀L ∈ L

⇒
∑

i∈N

(l⋆i ) = argmin
L∈L

PTL

(36)

Theorem 2 demonstrates thatGA1 not only favors the cus-
tomers, but also minimizes the total cost and thus favors power
suppliers. SoGA1 minimizes PAR according to theorem 1.
However, control center may not want to release the price
calculating function to customers. We then propose another
approach based on pre-calculated fixed pricing schedule.

2) GA2: semi-fixed smart pricing.
In this approach, each customeri also submits an initial

load schedulel0i , however the price function is hidden from
customers. Only control center is able to calculate the fixed
price vector with eachL0 as,

p̃ = {p(L0(t))|t ∈ T }. (37)

Then each customeri will solve the following problem to
find l⋆i ,

P4 : min
li∈Li

p̃T li, (38)

s.t. Constraints(4), (5), (6), (7), (8), (9), (10).

Note thatP4 is a linear optimization problem, which can be
solved with a unique solution. However the NE forG is not
guaranteed since the objective function is no longer strictly
concave.

3) Mixed approach: adoptingGA1 andGA2 based on the
property of customers.

As mentioned earlier,GA1 reveals the price function to the
customers, which may not favor the control center. The total
load is also given to all customers. However, customers who
use a significant proportion of the energy may not want to
reveal such privacy.GA2 does not have those issues but it

has no guarantee to the optimal solution ofP1 or P2. In the
mixed approach, large energy consumption customers adopt
GA1 (e.g., business and industrial customers) and regular
energy consumption customers (e.g., residential customers)
adoptGA2. In the numerical analysis and simulation section
we will show that the mixed approach converges to the
minimum PAR in practice.

D. Precision and Truthfulness of the Proposed DSM Systems

Because customers could have exceptional energy consump-
tion, one time scheduling approach [7], [8], [10] can hardly
be followed strictly. In order to increase the precision of the
proposed DSM system, the system should run at the beginning
of each time interval for the rest of the day. The control center
and the computing device of each customer (e.g., the smart
meter) should save the previous status and subtract it from
the constraints when approaching the load scheduling for the
rest of the day. With the DSM system following schedule,
and since the payment is collected after each time interval
based on the real energy usage in that interval, forP1, P2
andGA1, the minimum PAR, the minimum total cost and the
maximum local saving will only be achieved when customers
report the load schedules truthfully. The conclusion is quite
intuitive because lying about the load will deviate customers
from the optimal solution. Therefore, the truthfulness of the
proposed DSM systems should be guaranteed.

V. NUMERICAL ANALYSIS AND SIMULATION RESULTS

A. Setting for the numerical analysis

Assume that power suppliers are available to support cus-
tomers with any energy requirement. The control center is able
to gather/distribute information from/to the power suppliers
and the customers in real-time (e.g.,100 ms). The customers
are categorized into residential, business and industrialtypes.
Without loss of generality, we assume that the daily energy
consumption of the customers follows the proportions obtained
from the data in Fig. 2. Specifically, as shown in Fig. 4,
residential customers consist of three types (i.e., families in big
houses, families in townhouses, families in apartments), each
with 55 kWh, 41 kWh and 33 kWh daily average energy
consumption respectively. Each residential customer typehas
50 customers. Business customers have two types (i.e., day-
time based business and shopping malls), each with2400 kWh
and 2700 kWh daily average energy consumption respective-
ly, and each type has1 customer. Industrial customers have two
types (i.e., non-stop shift-based manufacturers and day-time
based industry), each with2100 kWh and 2500 kWh daily
average energy consumption respectively, and each type has1
customer. Note that the settings for the customers are flexible
as long as the total energy consumption of each category
follows the practical data.

The granularity of time intervals is important to the DSM
system. As shown in Fig. 5, when|T | = 24, the total load
of the power grid is constant throughout the day while it
fluctuates when|T | = 8.

Part of the detailed initial settings for residential customers
are shown in Table II. We assume that each storage unit is able
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Fig. 5. Solution toP1 with different T .

to hold1/6 of daily power usage, each family has 2 PHEVs for
type 1 and type 2 residential customers, the customers living
in apartment have 1 PHEV each. Each PHEV holds9kWh
electricity. The power usage and rough schedules for other
appliances are estimations based on day-to-day experiences.
For simplicity, the on/off schedule is shown as start/end time.
Note that some of the appliances are observed as multiple
ones so that the modeling is more precise, for example AC
for residential users is observed as an all-day ventilationand
a fully operating one in the afternoon.

TABLE II
SETTING FOR THE CASE STUDY.

App a Ea
n (kWh) γmin

n,i γmax
n,i Start End

Residential
Storage 1/6

∑
Ea

n −Ea
n/3 Ea

n/3 0 24
PHEV 18, 18, 9 0 Ea

n/3 0 8
AC1 5, 3, 2 Ea

n/48 Ea
n/16 0 24

AC2 5, 3, 2 Ea
n/4 Ea

n/4 14 18
Cooking 2, 1, 1 0 Ea

n/1 17,17,18 20,20,20
Dish washer 2, 1, 1 0 Ea

n/2 20,20,20 24,23,22
Washing/dryer 5, 3, 2 0 Ea

n/2 20,20,18 24,23,22
Electronics 2, 2, 2 Ea

n/8 Ea
n/3 18 24

Others 4, 2, 1 Ea
n/48 Ea

n/12 0 24

B. Comparison ofP1, P2 andGA1

Fig. 6 shows that theP1, P2 andGA1 all reach the same
optimal result w.r.t the total load. However, each customer
receives a different load scheduling. This is observed in all

three DSM systems. Fig. 7 shows the results for residential
customers. Note thatGA1 leads to a negative load for some
customers as shown in Fig. 7(c). It indicates that those
customers tend to sell extra energy from their storage unit
to maximize the savings.
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Fig. 6. Load schedules byP1, P2 andGA1.

Load schedules for business customers and industrial cus-
tomers are shown in Fig. 8 and Fig. 9 respectively.
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Fig. 7. Average residential load schedules by different approaches.
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Fig. 8. Different business load schedules by different approaches.

C. Comparison of Different Distributed Approaches.

Fig. 10 shows the load scheduling results ofGA1, GA2,
mixed GA and a distributed approach when all customers
intend to minimize their local PAR. From the simulation
results we can see that bothGA1 and mixedGA converge
to the optimal PAR while neitherGA2 nor min local PAR
minimizes PAR.
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Fig. 9. Different industrial load schedules by different approaches.
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Fig. 10. Load scheduling from different distributed approaches.

In fact,GA2 performs the worst in the simulation when all
customers are considered. Because of the fixed given smart
price, customers will shift their load to the low price time
intervals without considering the consequence of doing so.
When all customers do so, the time intervals with a relative
low previous load will be scheduled with a higher load and
the price will go up. Then customers will shift back based
on the updated price schedule. The simulation also indicates
that GA2 alone fluctuates between these two states without
converging to the NE. Fig. 11 shows the two states of the
total load schedule byGA2 for the first 8 time intervals.

Fig. 12 shows the average load schedules byGA1 and
mixedGA for the first type of the customers in each category.
It appears thatGA1 schedules a smoother load for each
customer because residential customers have better assess-
ments of the cost changes based on their updated schedule
by GA1. When applying mixed GA, although each customer
does not affect the price much, they together still cause a big
impact. Therefore, both business and industrial customersmust
schedule their loads in a more fluctuating way to adapt to the
residential load.

Fig. 13 shows that bothGA1 and mixedGA converge
quickly to the NE. In game theoretical approaches, the uplink
of the network transmits the load schedule of each customer to
the control center, and the control center broadcasts the total
load schedule to all customers. Although it requires multiple it-
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Fig. 12. Load schedule byGA1 and mixed GA.

erations, it requires much less data transmission comparedwith
the centralized approach, which needs much more detailed data
from the customers and the scheduled appliance load must
be delivered to each customer individually. Moreover, it is
worth mentioning that the energy providers may not want to
declare the true cost function to all the customers in practice.
By adopting mixed GA, only a few customers are required to
know the cost function and some confidential agreements can
be made.
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Fig. 13. Number of iterations for calculatingGA1 and mixedGA.

D. The Impact from Storage Unit

From Fig. 14 we can see that the total load schedule is no
longer a straight line without the assistance of storage units.
And this causes a higher PAR for the power grid, as shown
in Fig. 15. However, a storage unit may not necessarily help
reduce the PAR for each customer individually.
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Fig. 14. Load schedule without storage units.
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E. The Impact from Increasing Renewable Energy

In Fig. 16(a), we show the estimated proportion of different
power suppliers based on the data in Fig. 3 up to year2020.
Based on the estimations, the total energy cost of the customers
in 2014, 2018 and 2020 is shown in Fig. 16(b). Clearly, the
expanding renewable energy helps reducing the energy cost.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied DSM in smart grid. In order to
motivate and benefit all parties including the whole society
(environment), power suppliers and customers, we proposed
several approaches for the DSM system. First,P1 directly
minimizes PAR. Second, a DLC-based cost minimization
approachP2 motivates the power suppliers. However both
P1 and P2 fail to protect the customer privacy and the
communication overhead is too high to be deployed for a
real-time system. We further proposed two smart pricing-
based game theoretical approachesGA1 andGA2 to address
the shortcomings ofP1 and P2. We successfully proved
that bothP2 andGA1, where each customer calculates the
dynamic price locally, reach the solution toP1 (min PAR).
In the numerical analysis and the simulations, we further
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Fig. 16. (a) The estimation of the proportion of different power suppliers
and (b) the corresponding total cost estimation of year2014, 2018 and2020.

demonstrated the results, and compared several distributed
approaches. In the future work, detachable micro grids and
customer-side power generator will be considered for a more
precise modeling of the DSM system. Other schemes where
the true cost function is hidden from the customers will also
be studied.
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