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Although the bias-corrected (BC) bootstrap is an oft recommended method for obtaining 

more powerful confidence intervals in mediation analysis, it has also been found to have 

elevated Type I error rates in conditions with small sample sizes. Given that the BC 

bootstrap is used most often in studies with low power due to small sample size, the focus 

of this study is to consider alternative measures of bias that will reduce the elevated Type 

I error rate without reducing power. The alternatives examined fall under two categories: 

bias correction and transformation. Although the bias correction methods did not 

significantly decrease Type I error rate, the associated confidence intervals were similar 

to the original BC bootstrap. The transformations, however, did not produce confidence 

intervals with more accurate Type I error rate.  
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A Comparison of Alternative Bias-Corrections in the Bias-Corrected Bootstrap Test of 

Mediation 

 Experimental research studies are conducted in an attempt to understand the 

causal relationships between variables. In the social sciences, however, causal 

relationships are not always direct. Instead, causal relationships may involve one or more 

intermediate variables, known as mediators. The sampling distribution for these indirect 

causal effects are often not normally distributed, meaning the use of traditional normal-

theory statistical tests for mediators, known as statistical mediation analysis, may result in 

incorrect inferences (Lomnicki, 1967; Springer & Thompson, 1966). One solution is to 

use resampling methods that do not make a normality assumption, such as the bootstrap 

(Efron & Tibshirani, 1993).  

Many researchers have recommended using the bootstrap for mediation analysis 

(e.g., Shrout & Bolger, 2002), including MacKinnon, Lockwood, and Williams (2004) 

who compared the performance of multiple variations of the bootstrap for testing 

mediated effects, such as the percentile, bias-corrected, and accelerated bias-corrected 

bootstrap tests. They found that the bias-corrected bootstrap had the highest statistical 

power but also elevated Type I error rates in certain conditions. In a follow-up study, 

Fritz, Taylor, and MacKinnon (2012) found the Type I error rates for the bias-corrected 

bootstrap were most inflated when the sample size was small. Given that the bias-

corrected bootstrap is most likely to be used in studies with low statistical power due to 

small sample sizes, the exact situation where the Type I error rates for the bias-corrected 

bootstrap are the worst, there is a need to determine if the bias-corrected bootstrap can be 

modified in order to reduce the Type I error while maintaining the increased statistical 
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power. Therefore, the purpose of this study is to identify and compare alternative 

corrections for bias in bootstrap tests of mediation.   

Literature Review 

Differentiating Mediation and Moderation 

 The terms mediation and moderation are often incorrectly used synonymously. 

Baron and Kenny’s (1986) widely cited distinction between moderation and mediation is 

that a moderator “affects the direction and/or strength of the relation between an 

independent or predictor variable and a dependent or criterion variable” (p. 1174) and a 

mediator “accounts for the relation between the predictor and the criterion” (p. 1176). 

Moderation examines the when, mediation defines the how or why. Another way to 

conceptualize the difference is that moderation refers to the interaction effect between 

two variables (e.g., “At which level does the effect occur?” or “For which group of 

people is the treatment effective?”), while mediation is an indirect effect on the dependent 

variable through an intervening variable. This study focuses on issues of statistical 

mediation analysis, and we begin by discussing the single-mediator model.  

The Single-Mediator Model 

 A total effect model involves the independent variable (X) causing the dependent 

variable (Y), as illustrated in Figure 1.  

 

 

Figure 1. Path diagram for the total effect model.  
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The total effect model can be represented by the regression equation 

Yi = 𝑖1 + 𝑐Xi + 𝑒1     (1)  

where i1 is the intercept, c is the effect of X on Y, and e1 is the part of Y that is not 

explained by the relation between X and Y. 

 Mediation analysis examines the effect of an intermediate variable within a causal 

sequence. Mediation occurs when the mediator (M) comes between X and Y so that X is 

the effect on M, and M is the effect on Y, as illustrated in Figure 2. Other common 

terminology used to describe X and Y are antecedent variables (X) and consequent 

variables (Y).  

 

Figure 2. Path diagram for a mediation model.  

The mediation model can be represented by the following regression equations: 

Yi = 𝑖2 + 𝑐′Xi + 𝑏𝑀𝑖 + 𝑒2    (2) 

Mi = 𝑖3 + 𝑎Xi +  𝑒3     (3) 

In these two equations, 𝑖2 and 𝑖3 are the intercepts, a is the relation between X and M, b 

is the relation between M and Y adjusted for the effects of X, and 𝑒2 and 𝑒3 are the 

unexplained or error variability.  
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 In the presence of a mediator, the X to M to Y relationship can be referred to in 

three different ways: the indirect effect, the mediated effect, or the quantity ab. The 

quantity ab describes the amount of change between X and Y indirectly through M, 

which is equivalent to saying it is the effect of X on M (parameter a) multiplied by the 

effect of M on Y (parameter b). On the other hand, 𝑐′ is the direct effect of X on Y, 

accounting for the mediator effect. Another way to calculate the mediated effect is by 

using 𝑎𝑏 = 𝑐 − 𝑐′ because the difference between the total effect and the direct effect is 

the indirect effect (Judd & Kenny, 1981). In a sample estimate, however, the notation for 

a, b, c, and 𝑐′ would be 𝑎̂, 𝑏̂, 𝑐̂, and 𝑐′̂, respectively, where    ̂ denotes estimates of the 

parameters. 

Assumptions of Mediation Analysis 

 Mediation analysis is based on a number of assumptions, where violating the 

assumptions may result in incorrect interpretation of the data. MacKinnon (2008) lists the 

assumptions for the mediation regression equations and the single-mediator model. 

1. Correct functional form. Equations 1 thru 3 assume that the variables have a 

linear relationship; when the independent variable changes by 1 unit, the 

dependent variable also changes in a specified amount. For example, when X 

changes by 1 unit, there are 𝑎̂ units change in M. Equations 1 thru 3, however, 

do not always have to be used, in which case this assumption is not made. For 

example, if the relations among variables are nonlinear, the correct 

transformations are made to reflect a nonlinear relation. Additionally, the 

variables are additive; there is no interaction between variables.  
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2. No omitted influences. The three variables in the single-mediator model 

represent the true underlying model, and there are no other variables that 

affect or are related to these three variables.   

3. Accurate measurement. The measures used to examine variables X, M, and 

Y are reliable and valid.  

4. Well-behaved residuals. The errors, or residuals, for one observation are not 

correlated with errors from other observations. Error variances are also 

constant at each predictor value. 

5. Normally distributed X, M, and Y. Each of these variables has a normal 

distribution.  

6. Temporal precedence. There is an ordering of the variables over time, such 

that X comes before M, and M comes before Y. 

7. Measurement timing. There is a true timing of change between the 

independent variable, mediator, and dependent variable, and the mediational 

chain being measured is representative of this true timing.   

8. Micro versus macro mediational chain. In relation to temporal precedence, 

a single-mediator model may be derived from a mediational chain which 

consists of many links or steps. The researcher’s job is to distinguish the 

macromediational from the micromediational chain and determine which steps 

to measure accordingly. Given restrictions on resources and measurement of 

only a single-mediator, however, it may be that only a small section of a long 

mediational chain is measured.  Thus, the results may be that either the correct 



6 

 

steps in the micromediational chain are measured or a real mediation effect is 

missed.   

9. Theoretical versus empirical mediator. The possibility of a statistically 

significant mediated effect may not be the true effect and may instead be a 

proxy for another mediator.  

Tests of the Mediated Effect 

 Judd and Kenny (1981) originally proposed a series of regression tests in order to 

detect mediation when three conditions are met. The first condition states that there must 

be an effect of treatment on the outcome variable. Second, in a causal chain, all variables 

affect the variable that follows when all previous variables are controlled for. Third, if the 

mediator is controlled, the treatment has no effect on the outcome variable. Baron and 

Kenny (1986) expanded Judd and Kenny’s (1981) method by introducing more leniency 

towards partial mediation (MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002). 

Baron and Kenny illustrate how each of the causal effects are individually tested for 

significance, rendering hierarchical and stepwise regression unnecessary. In order to 

establish a mediation effect, the three regression models (represented by Equations 1 thru 

3) should be estimated.   

 MacKinnon (2008) frames the causal steps method in terms of the estimated 

regression coefficients 𝑎̂,  𝑏̂,  𝑐̂, and  𝑐′̂:  

1. The coefficient 𝑐,̂ which tests the relation between X and Y, must be 

statistically significant. If it is not, we assume there is no mediated effect and 

the tests end here.  
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2. The coefficient 𝑎̂, which tests the relation between X and M, must be 

statistically significant.  

3. The coefficient 𝑏̂, which tests the relation between M and Y when X is 

controlled, must be statistically significant.  

4. The coefficient  𝑐′̂ , the direct effect, must be nonsignificant. This step does 

not take into account partial mediation, so recent changes have been made to 

require that 𝑐′̂ < 𝑐̂.  

 Since the development of the causal steps approach, alternative methods for 

detecting mediated effects have been proposed. MacKinnon et al. (2002) compared 

fourteen methods used to test for the statistical significance of mediation effects. The 

authors separated these approaches into three categories: causal steps, difference in 

coefficients, and the product of coefficients. The causal steps approach is consistent with 

Judd and Kenny (1981) and Baron and Kenny’s (1986) proposed methods. In the second 

category, the difference in coefficients tests cover a wider set of relations between the 

independent and dependent variables to assess the effect of the intervening variable. 

Different pairs of coefficients can be compared, such as regression coefficients (𝑐̂ − 𝑐′̂) 

or correlation coefficients. The coefficients tests give an estimate of the intervening 

variable effect along with its standard error. The third category is the product of 

coefficients method which takes the indirect effect, 𝑎̂𝑏̂, and divides it by its standard 

error. Both the difference in coefficients tests and the product of coefficients tests 

compare the estimate of the intervening variable effect to a known sampling distribution 

(Fritz & MacKinnon, 2007; MacKinnon et al., 2002).  
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 Fritz and MacKinnon (2007) and MacKinnon et al. (2002) have demonstrated that 

the causal steps approach, while commonly used, is often underpowered. MacKinnon 

(2008) further notes that in order to establish mediation, only steps 2 and 3 need to be 

statistically significant. If 𝑎̂ and 𝑏̂ are both found to be significant, mediation is present. 

This is called the joint significance test. An issue with both the difference in coefficients 

tests and the product of coefficients tests is their basis on the assumption of normally 

distributed random variables, which is not the case often observed in mediation analysis. 

Additionally, these tests do not actually test for ab, which becomes problematic when 

testing more complex models with multiple mediators. 

Calculating Confidence Intervals for a Mediated Effect 

 Alternatively, MacKinnon (2008) suggests confidence intervals be constructed to 

statistically test for mediated effects. Confidence intervals allow researchers to provide a 

range of possible values for the effect so the result is neither a single value nor a push for 

researchers to make a definite choice between ‘reject’ or ‘fail to reject’. There are two 

ways to categorize confidence intervals: parametric versus nonparametric.  

Parametric Methods 

 One way to calculate confidence intervals is by assuming the data are distributed 

normally and using the z-distribution such that the confidence intervals are calculated 

using 

𝐶𝐼: 𝑎̂𝑏̂ ± 𝑧𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 ∗ 𝜎𝑎̂𝑏̂    (4) 

where 𝑎̂𝑏̂ is the mediated effect, 𝑧𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 is the z critical value on a standard normal 

distribution with the specified 𝛼 Type I error rate, and 𝜎𝑎̂𝑏̂ is the standard error of the 

mediated effect.  
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 Indirect effects, however, have been shown to be skewed, so asymmetric 

confidence limits are calculated instead (MacKinnon et al., 2004). MacKinnon, Fritz, 

Williams, and Lockwood (2007) developed a test involving the calculation of confidence 

intervals with a Fortran program known as PRODCLIN. The program uses standardized 

values of 𝛼̂, 𝛽,̂  and Type I error rate to automatically calculate asymmetric confidence 

intervals. If zero falls within a confidence interval, the mediated effect is not significantly 

different from zero and is therefore not statistically significant. Another way to create 

asymmetric confidence limits is through nonparametric resampling methods. 

Nonparametric Methods 

Parametric methods (e.g., normal theory and PRODCLIN) are based on the 

assumption that the data were collected from a known distribution where the form of the 

population distribution is “completely specified except for a finite number of parameters” 

(Higgins, 2004, p. 7). Higgins explains that data analysis often begins by ascertaining the 

fit of a normal distribution to the data. The data, however, do not always come from a 

normal distribution, nor do they always meet parametric assumptions. This is the issue 

with estimating indirect effects in mediation analysis; the distribution is observed to be 

skewed. Contrary to parametric methods, nonparametric methods (e.g., permutations and 

resampling methods) are considered for analyzing non-normal data because they operate 

under minimal assumptions about distribution form. 

Permutations. A large class of nonparametric methods is categorized as 

permutations. Permutation tests are based on calculating sample statistics from all 

possible combinations of data randomly sorted to each of the treatment groups. Given m 
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units in treatment 1 and n units in treatment 2, the number of observed data units would 

be m + n. The number of possible permutations equals 

(𝑚+𝑛
𝑚

) =
(𝑚+𝑛)!

𝑚!𝑛!
     (5) 

The problem with the permutation test is that the number of possible replications 

increases rapidly. For example, when m = 3 and n = 2, the number of possible 

permutations equals 10. However, when m = 10 and n = 15, there would be 3,268,760 

possible permutations. The number of possible permutations quickly escalates, and the 

possibility of obtaining all possible replications for a study will eventually become 

tedious or impossible. The bootstrap method reduces the number of samples and is 

therefore an alternative to permutation tests. 

Bootstrapping. In 1979, Bradley Efron proposed the bootstrap as a 

nonparametric method that samples with replacement. Its name is derived from the idea 

of “pulling oneself up by one’s bootstrap” (Efron & Tibshirani, 1993, p. 5). The power of 

the modern computer allows statisticians to use bootstrapping as a means for making 

certain statistical inferences and to estimate the accuracy of the sample statistics in 

relation to the population parameter (Higgins, 2004). Bootstrap sampling is an 

application of the plug-in principle, which is a method of using the sample to estimate 

parameters for the population (Efron & Tibshirani, 1993).  

 Bootstrapping treats the existing sample data as the population, wherein samples 

are taken out of the existing dataset as if to sample from the population (Higgins, 2004). 

Given a sample size n, a new sample size n will be drawn from the existing sample, and 

statistics will be calculated. This process is repeated a large amount of times (usually 

upwards of 1000 replications) and the distribution for the bootstrap samples is formed. 
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Each time a number is drawn, it is returned to the sample so that each number has an 

equal chance of being selected again (replacement). Therefore, there is a possibility of 

drawing any one specific number 0, 1, 2, 3,…n times in the bootstrap sample.  

Mediation and Bootstrap 

 In considering statistical mediation analysis, a bootstrap sample is drawn from the 

original data and the mediated effect is calculated. Calculating the mediated effect is 

repeated for each bootstrap sample (e.g., 1,000) and the estimates are used to form a 

distribution. There are many different flavors of bootstrapping, but we discuss three in 

particular that are used to calculate confidence intervals: the percentile bootstrap, the 

bias-corrected bootstrap, and the accelerated bias-corrected bootstrap.  

Percentile bootstrap. The simplest form of bootstrapping is the percentile 

bootstrap where the bootstrap samples are ordered from smallest to largest, and the exact 

percentiles corresponding to the set alpha level are used as the upper and lower bounds. 

Instead of using a z-score from a standard normal table, bootstrapping constructs a new 

distribution around the mediated effect and takes the percentiles from the new 

distribution. For example, given 1000 bootstrap samples, a 95% confidence interval is 

calculated by finding the exact values at the 2.5th and 97.5th percentiles such that the new 

confidence interval is 

𝑎̂𝑏̂∗(.025) ≤ 𝑎̂𝑏̂ ≤ 𝑎̂𝑏̂∗(.975)    (6) 

where 𝑎̂𝑏̂∗(.025) and 𝑎̂𝑏̂∗(.975) are the 25th and 975th values on the bootstrapped 

distribution. 

Bias-corrected bootstrap. The bias-corrected (BC) bootstrap also uses 

percentiles as the lower and upper confidence limits, but these limits may not be the same 
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as the percentile method. Instead, the endpoints of the confidence interval are 

recalculated using the bias-correction, 𝑧̂0. Specific to the mediated effect, 𝑧̂𝑎̂𝑏̂ will be 

used to denote the bias-correction. The bias-correction is obtained by calculating the 

proportion of bootstrap replications of 𝑎̂𝑏̂, denoted by 𝑎̂𝑏̂∗(𝑏), that are less than the 

original estimate of the mediated effect 𝑎̂𝑏̂,  

𝑧̂𝑎̂𝑏̂ = 𝛷−1 (
#{𝑎̂𝑏̂∗(𝑏)<𝑎̂𝑏̂}

𝐵
)    (7) 

where 𝛷−1(∙) is the inverse function of a standard normal cumulative distribution 

function, B is the number of bootstrap samples, and #{𝑎̂𝑏̂∗(𝑏) < 𝑎̂𝑏̂} means the number 

of bootstrap replications that are less than 𝑎̂𝑏̂. The proportion is used on the standard 

normal distribution to find the corresponding z-score. The following equations from 

Efron and Tibshirani (1993) are used to define the BC confidence limits:  

BC ∶ (𝑎̂𝑏̂𝑙𝑜, 𝑎̂𝑏̂𝑢𝑝) = (𝑎̂𝑏̂∗(𝛼1), 𝑎̂𝑏̂∗(𝛼2))    (8) 

where 

𝛼1 =  Φ(2𝑧̂𝑎̂𝑏̂ + 𝑧(𝛼))     (9) 

𝛼2 =  Φ(2𝑧̂𝑎̂𝑏̂ + 𝑧(1−𝛼))     (10) 

given that Φ(∙) is the standard normal cumulative distribution function, 𝑧̂𝑎̂𝑏̂ is the 

measure of bias for the indirect effect, and 𝑧(𝛼) is the 100𝛼th percentile point of a 

standard normal distribution. Considering 𝛼 =  .05, the the lower confidence bound is 

calculated using 2𝑧̂𝑎̂𝑏̂ − 1.96, and the upper confidence bound is calculated using 2𝑧̂𝑎̂𝑏̂ +

1.96. If the proportion below 𝑎̂𝑏̂ is .50, the bias-corrected bootstrap is equivalent to the 

percentile bootstrap.  
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Accelerated bias-corrected bootstrap. The accelerated bias-corrected (BCa) 

bootstrap is an improvement over the percentile bootstrap due to its higher accuracy 

(Efron & Tibshirani, 1993). The BCa accounts for two components, the bias-correction 

(𝑧̂0) and the acceleration (𝑘̂). The bias-correction is calculated using equation 7. 

Acceleration refers to the rate of change in the standard deviation of 𝑎̂𝑏̂ as 𝑎𝑏 varies and 

is calculated by 

𝑘̂ =
∑ (𝑎̂𝑏̂ (∙)−𝑎̂𝑏̂(−𝑖))

3
𝑛
𝑖=1

6[∑ (𝑎̂𝑏̂
 (∙)

−𝑎̂𝑏̂(−𝑖))
2

𝑛
𝑖=1 ]

3/2    (11) 

 where 𝑎̂𝑏̂ (−𝑖) is the estimate of 𝑎𝑏 with case i deleted from the original data set, also 

called the ith jackknife estimate of 𝑎𝑏, and 𝑎̂𝑏̂ (∙) is the mean of all the jackknife estimates 

of 𝑎𝑏. Equation 8 is also applicable to the BC𝑎 with the difference being in the values of 

𝛼1 and 𝛼2 where 𝑘̂ ≠ 0:  

𝛼1 =  Φ (𝑧̂𝑎̂𝑏̂ +
𝑧̂𝑎̂𝑏̂+𝑧(𝛼)

1−𝑘̂(𝑧̂𝑎̂𝑏̂+𝑧(𝛼))
)     (12) 

𝛼2 =  Φ (𝑧̂𝑎̂𝑏̂ +
𝑧̂𝑎̂𝑏̂+𝑧(1−𝛼)

1−𝑘̂(𝑧̂𝑎̂𝑏̂+𝑧(1−𝛼))
).   (13) 

When 𝑘̂ = 0, the BCa reduces to the BC.  

Issues surrounding current bias-corrected bootstrap. Although the bias-

corrected bootstrap has been found to have relatively higher statistical power, Type I 

error rate has also been found to be elevated in certain conditions. Fritz et al. (2012) 

found that Type I error rates occur as an interaction effect between path size and sample 

size, “such that elevated Type I error rates occur when the sample size is small and the 

effect size of the nonzero path is medium or larger” (p. 61). The estimate 𝑧̂0 measures the 

median bias of the bootstrapped sample instead of the mean bias. In referencing the 
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accelerated bias-corrected bootstrap, Efron and Tibshirani note that “it is in fact easier to 

get a good estimate for ‘a’ than for 𝑧0” (1993, p. 327). Based on this, Fritz et al. (2012) 

suggest the need to find a better estimate of bias.  

Current Study 

 The following eight bias-correction methods are proposed as alternatives to Efron 

and Tibsharani’s 𝑧0 that will not have elevated Type I error rates when calculating 

confidence levels for mediated effects with small samples. The alternatives can be 

categorized into two groups: measures of bias and transformations.  

Alternative Measures of Bias 

Median (z𝑚𝑒𝑑𝑖). Instead of using the estimate of 𝑎̂𝑏̂, perhaps a measure of central 

tendency would be a better bias-correction. One alternative is to find the proportion of 

bootstrap replications that fall below the median of the bootstrap sampling distribution. 

Considering the proportion that should fall below the median (50%), however, the bias-

correction should equal zero and the values for the median confidence interval are 

expected to equal the percentile bootstrap interval. The confidence interval is equal to 

BCmedi ∶ (𝑎̂𝑏̂∗(𝛼𝑚𝑒𝑑𝑖1), 𝑎̂𝑏̂∗(𝛼𝑚𝑒𝑑𝑖2))    (14) 

where 

𝛼𝑚𝑒𝑑𝑖1 =  Φ(2𝑧̂𝑚𝑒𝑑𝑖 + 𝑧(𝛼/2))    (15) 

𝛼𝑚𝑒𝑑𝑖2 =  Φ(2𝑧̂𝑚𝑒𝑑𝑖 + 𝑧(1−𝛼/2))    (16) 

The bias-correction can be calculated by 

𝑧̂𝑚𝑒𝑑𝑖 = 𝛷−1 (
#{𝑎̂𝑏̂∗(𝑏)<𝑎̂𝑏̂𝑚𝑒𝑑𝑖𝑎𝑛

∗ }

𝐵
).              (17) 
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The bias-correction is multiplied by two and added to the 100αth percentile point of a 

standard normal distribution percentile values at the 𝛼/2 and the 1 − 𝛼/2 level on a 

standard normal cumulative distribution.  

Mean (𝑧𝑚𝑒𝑎𝑛). The second alternative is to use another measure of central 

tendency. As an alternative to calculating the proportion of bootstrap replications that fall 

below the value 𝑎̂𝑏̂, the proportion of bootstrap replications that fall below the mean of 

the bootstrap sampling distribution will be calculated. The confidence interval is equal to 

BCmean ∶ (𝑎̂𝑏̂∗(𝛼𝑚𝑒𝑎𝑛1), 𝑎̂𝑏̂∗(𝛼𝑚𝑒𝑎𝑛2))    (18) 

where 

𝛼𝑚𝑒𝑎𝑛1 =  Φ(2𝑧̂𝑚𝑒𝑎𝑛 + 𝑧(𝛼/2))    (19) 

𝛼𝑚𝑒𝑎𝑛2 =  Φ(2𝑧̂𝑚𝑒𝑎𝑛 + 𝑧(1−𝛼/2))    (20)  

The bias-correction is calculated by 

𝑧̂𝑚𝑒𝑎𝑛 = 𝛷−1 (
#{𝑎̂𝑏̂∗(𝑏)<𝑎̂𝑏̂𝑚𝑒𝑎𝑛

∗ }

𝐵
)   (21) 

Calculating the confidence interval uses the same method as described above for the 

median. The only value that changes is the bias-correction; 𝑧̂𝑚𝑒𝑎𝑛 is used in place of 

𝑧̂𝑚𝑒𝑑𝑖. 

Traditional measure of sample skewness—𝑔1 (𝑧𝑔1). Another way to take bias 

into account is to consider the skewness of the product distribution. The traditional 

measure of skewness—𝑔1 is defined by 

𝑔1 =
𝑚3

𝑚2
3 2⁄        (22) 

𝑚𝑟 =
1

𝑛
Σ(𝑥𝑖 − 𝑥̅)𝑟      (23) 
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where n denotes sample size (Joanes & Gill, 1998). For the numerator of 𝑔1, the sum of 

the differences between each score and the mean are raised to the third power and divided 

by the sample size. The denominator is the sum of the differences between each score and 

the mean squared, divided by the sample size.  

 Although the measure of skewness is unbounded, a simulation using the 

parameters of this study was run to examine the range of possible skewness coefficients, 

which turned out to be [-3.48, 2.97]. The range of the skewness coefficients was deemed 

reasonable (e.g., between z-scores of  -4 and 4 as opposed to ranging to infinity) so the 

unbounded nature of 𝑔1 was not of major concern. The measure of skewness becomes the 

bias-correction so that the confidence interval is equal to 

BC𝑔1 ∶ (𝑎̂𝑏̂∗(𝛼𝑔11), 𝑎̂𝑏̂∗(𝛼𝑔12))     (24) 

where 

𝛼𝑔11 =  Φ(2𝑧̂𝑔1 + 𝑧(𝛼/2))     (25) 

𝛼𝑔12 =  Φ(2𝑧̂𝑔1 + 𝑧(1−𝛼/2))     (26)  

The bias-correction is  

𝑧̂𝑔1 = 𝑔1     (27) 

Given the skewness of the bootstrap sample, the corresponding z-score is used as the 

bias-correction.  

Medcouple (𝑧𝑚𝑐). The medcouple is a robust measure of skewness that 

“measures the (standardized) difference between the distances of 𝑥𝑗 and 𝑥𝑖 to the median” 

(Brys, Hubert, & Struyf, 2004, p. 998). It is more robust towards outliers than the classic 

measure of skewness. The median, 𝑚𝑛, is usually defined as 
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𝑚𝑛 =  {

𝑥𝑛 2⁄ +𝑥𝑛 2⁄ +1

2
               if 𝑛 is even

𝑥(𝑛+1)/2                    if 𝑛 is odd.
   (28) 

The medcouple, introduced by Brys, Huber, and Struyf (2003) is defined as  

MC𝑛 = med
𝑥𝑖≤𝑚𝑛≤𝑥𝑗

ℎ(𝑥𝑖, 𝑥𝑗)     (29) 

where for all 𝑥𝑖 ≠ 𝑥𝑗, the kernel function ℎ is defined as 

ℎ(𝑥𝑖 , 𝑥𝑗) =
(𝑥𝑗−𝑚𝑛)−(𝑚𝑛−𝑥𝑖)

𝑥𝑗−𝑥𝑖
      (30) 

 Given two values 𝑥𝑗  and 𝑥𝑖, the difference between each of the values and the 

median is calculated. Then the difference between (𝑥𝑗 − 𝑚𝑛) and (𝑚𝑛 − 𝑥𝑖) is calculated, 

and the value is divided by (𝑥𝑗 − 𝑥𝑖) to standardize it. Given the denominator(𝑥𝑗 − 𝑥𝑖), 

𝑀𝐶𝑛 will always lie between −1 and 1. Similar to the method of implementation for 𝑔1, 

the medcouple of the bootstrapped samples becomes the bias-correction so that the 

confidence interval is equal to 

BCmc ∶ (𝑎̂𝑏̂∗(𝛼𝑚𝑐1), 𝑎̂𝑏̂∗(𝛼𝑚𝑐2))    (31) 

where 

𝛼𝑚𝑐1 =  Φ(2𝑧̂𝑚𝑐 + 𝑧(𝛼/2))     (32) 

𝛼𝑚𝑐2 =  Φ(2𝑧̂𝑚𝑐 + 𝑧(1−𝛼/2))    (33)  

The bias-correction is  

𝑧̂𝑚𝑐 = 𝑀𝐶𝑛    (34) 

Transformations 

Hall’s transformation—Transformed normal approximation (𝑇1). Two 

version of Hall’s transformation will be used—the normal approximation versus the 

bootstrapped version. Hall’s transformation (1992) corrects for both bias and skewness 
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and consists of transforming an asymmetric statistic into another statistic with a 

symmetric distribution. A one-sided 1 − 𝛼 level confidence interval for 𝑎̂𝑏̂ was originally 

presented by Hall (1992) as defined by  

𝑇1𝑢𝑝𝑝 = (−∞, 𝑎̂𝑏̂ − 𝑛−1 2⁄ 𝜏̂𝑔−1(𝑧𝛼) )  (35) 

𝑇1𝑙𝑜𝑤 = (𝑎̂𝑏̂ − 𝑛−1 2⁄ 𝜏̂𝑔−1(𝑧1−𝛼), ∞ )  (36) 

where 𝑛 is the sample size, 𝜏̂ is the standard deviation,  

𝑔−1(𝑥) = 𝑛
1

2(𝑎𝛾)−1 [(1 + 3𝑎𝛾(𝑛−1 2⁄ 𝑥 − 𝑛−1𝑏𝛾))
1 3⁄

− 1] (37) 

and the z-score for the 100𝛼𝑡ℎ percentile value, 𝑧1−𝛼 or 𝑧𝛼, is used in place of 𝑥 in 

𝑔−1(𝑥). For the 𝑔−1(𝑥) formula, 𝑎 = 1/3, 𝑏 = 1/6, and 𝛾 is the measure of skewness. 

The original measure for 𝛾 used by Hall (1992) is 

𝛾 =
1

𝑛
∑

(𝑋𝑖−𝜃̂)
3

𝜏̂3
n
i=1      (38) 

𝜃 =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 ,  𝜏̂2 =

1

𝑛
∑ (𝑋𝑖 − 𝜃)

2𝑛
𝑖=1    (39, 40) 

where 𝜃 is the mean and 𝜏̂2 is the variance. Without bootstrapping, however, 𝑎̂𝑏̂ does not 

have a mean or variance. Therefore, the formulas for 𝛾, 𝜃, and 𝜏̂2 cannot be used. Instead, 

a measure of skewness for the product of two normally distributed variables, as shown in 

Oliveira, Oliveira, and Seijas-Macias (2016), will be used so that 𝛾 is defined by 

𝛾 =
6𝜇𝑎𝜇𝑏𝜎𝑎

2𝜎𝑏
2

(𝜇𝑏
2𝜎𝑎

2+(𝜇𝑎
2+𝜎𝑎

2)𝜎𝑏
2)

3 2⁄ .    (41) 

where 𝜇𝑎 and 𝜇𝑏 are the effects of a and b, respectively, and 𝜎𝑎
2 and 𝜎𝑏

2 are the standard 

errors of a and b. The standard error derived by Sobel (1982)  

𝜎𝑎̂𝑏̂ = √𝜎̂𝑎̂
2𝑏̂2 + 𝜎̂𝑏̂

2𝑎̂2
.    (42) 
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will be used in place of equation (4) used to calculate 𝜏̂2. The confidence intervals for the 

original sample will be transformed using (35) and (36).  

Bootstrap version of Hall’s transformation method (𝑇2). Although Hall’s 

transformation corrects for bias and skewness, the bootstrap version of Hall’s 

transformation improves coverage accuracy. Zhou and Gao (2000) demonstrate how the 

bootstrapped version for constructing one-sided confidence intervals have better coverage 

for small to moderate samples (e.g., n = 12  or n = 100). The transformation will be 

applied to the bootstrapped sample to form two one-sided confidence intervals defined as  

 𝑇2𝑢𝑝𝑝 = (−∞, 𝑎̂𝑏̂ − 𝑛−1 2⁄ 𝜏̂∗𝑔−1 (𝑎̂𝑏̂∗(1−𝛼)
) )  (43) 

𝑇2𝑙𝑜𝑤 = (𝑎̂𝑏̂ − 𝑛−1 2⁄ 𝜏̂∗𝑔−1 (𝑎̂𝑏̂∗(𝛼)
) , ∞ )   (44) 

where 𝑛 is the sample size, 𝜏̂∗ is the standard deviation of the bootstrapped sample,  

𝑔−1(𝑥) = 𝑛
1

2(𝑎𝛾∗)−1 [(1 + 3𝑎𝛾∗(𝑛−1 2⁄ 𝑥 − 𝑛−1𝑏𝛾∗))
1 3⁄

− 1] (45) 

and the 100𝛼𝑡ℎ percentile value of the bootstrapped distribution, 𝑎̂𝑏̂∗(1−𝛼)
 or 𝑎̂𝑏̂∗(𝛼)

, is 

used in place of 𝑥 in 𝑔−1(𝑥). For the 𝑔−1(𝑥) formula, 𝑎 = 1/3, 𝑏 = 1/6, and 𝛾∗ is the 

measure of skewness defined as 

𝛾∗ =
1

𝑛
∑

(𝑋𝑖−𝜃̂)
3

𝜏̂3
n
i=1      (46) 

𝜃 = 𝑎̂𝑏̂∗,  𝜏̂2 =
1

𝑛
∑ (𝑋𝑖 − 𝜃)

2𝑛
𝑖=1    (47, 48) 

where 𝜃 is the mean and 𝜏̂2 is the variance. 

Transformed bootstrap-t (𝑇3). The bootstrap-t method is based on the t statistic 

rather than the estimate of 𝑎̂𝑏̂. This resampling method, along with a transformed version 
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called the bootstrap-Q, were evaluated in MacKinnon et al. (2004). The bootstrap-t uses 

the t statistic to form confidence intervals using  

(𝛼̂𝛽̂ − 𝑇(1−𝜔)/2 ∗ 𝜎̂𝛼̂𝛽̂ , 𝛼̂𝛽̂ − 𝑇𝜔

2
 ∗ 𝜎̂𝛼̂𝛽̂)    (49) 

where T is calculated by “dividing the difference between the bootstrap estimate and the 

original sample estimate by the bootstrap sample’s standard error” (MacKinnon et al, 

2004). The bootstrap-Q transforms the bootstrap-t by taking into account the skewness (s) 

of each bootstrap distribution of T, where  

𝑄(𝑇) = 𝑇 +
𝑠𝑇2

3
+

𝑠2𝑇3

27
+

𝑠

6𝑁
     (50) 

And transforming the values back to T using  

𝑊(𝑄) =
3[{1+𝑠[𝑄−

𝑠

6𝑁
]}

1
3−1]

𝑠
    (51) 

However, the confidence intervals formed by the bootstrap-t method tended to be too 

wide, while the bootstrap-Q had higher power and confidence intervals that were not as 

wide, but still had less power than the bias-corrected bootstrap.  

 The proposed alternative is Efron and Tibshirani’s (1993) transformed bootstrap-t 

to fix the problem of a regular bootstrap-t interval from “performing erratically in small-

sample, nonparametric settings” (p. 162). The procedure involves three nested levels of 

bootstrap sampling. The confidence interval for the transformed parameter is 

𝜙 = .5log(
1+𝜃

1−𝜃
)    (52) 

followed by an inverse transformation of the endpoints with 

𝑒2𝜙−1

𝑒2𝜙+1
 .     (53) 
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While bootstrap-t procedures have confidence intervals that are often too wide (Efron & 

Tibshirani, 1993; MacKinnon, et al., 2004), the transformed percentile-t bootstrap forms 

much shorter intervals. In comparison with the bootstrap-Q, instead of taking skewness 

into account, this alternative transformation corrects for the endpoints. Additionally, the 

performance of the transformed percentile-t bootstrap is more stable with small sample 

sizes.  

 For the first-level bootstrap, 𝐵1 = 1000 bootstrap samples will be generated to 

estimate 𝑎̂𝑏̂. There will be 𝐵2 = 25 second-level bootstrap samples, as suggested by 

Efron and Tibshirani (1993), to estimate the standard error. The distribution of the 

bootstrap-t distribution will be estimated using 𝐵3 = 1000 new bootstrap samples. 

Finally, the endpoints of the interval will be mapped back to the original 𝑎̂𝑏̂ scale using 

(51).  

Box-Cox transformation (𝑇4). The Box-Cox transformation was a proposed 

modification by Box and Cox (1964) to Tukey’s (1957) family of power transformations. 

The Box-Cox transformation is a way to transform non-normal data into normal data, 

allowing assumptions for normal data to be used. Osborne (2010) also notes that the Box-

Cox transformation both normalizes skewed data and improves effect sizes. The method 

eliminates the need for the researcher to blindly test several different transformations for 

the best one by providing a family of transformations to work with.  

Applying the transformation involves first anchoring the minimum value of the 

distribution to 1. This is followed by calculating the value of 𝜆, the Box-Cox 

transformation coefficient, for which to raise the variables to determine optimal reduction 

of skewness. Osborne (2010) provides guidelines on how to calculate 𝜆 by hand. There 
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are statistical packages, however, that have Box-Cox implemented and iteratively 

estimate the best 𝜆 options. After 𝜆 is estimated, the following equations are used to 

transform the data 

𝑦𝑖
(𝜆)

= {
{(𝑦𝑖+𝜆2)𝜆1−1}

𝜆1
;   𝜆1 ≠ 0

log(𝑦𝑖 + 𝜆2);       𝜆1 = 0
    (54) 

where “𝜆1 is the transformation parameter and 𝜆2 is chosen such that 𝑦𝑖 is greater than 

−𝜆2. Although this transformation takes into account the discontinuity at 𝜆 = 0, it does 

not account for negative observations. Manly (1976) proposed the following alternative 

that will be used to transform the bootstrapped data 

𝑦𝑖
(𝜆)

= {
(exp(𝜆𝑦𝑖) − 1)/𝜆 ;   𝜆 ≠ 0
𝑦𝑖;                                 𝜆 = 0

.   (55) 

Since the transformed data is expected to be nearly symmetrical and normally distributed, 

there are two methods to test for calculating confidence intervals. 

 Box-Cox transformation—percentile method (T4p). One way to calculate the 

confidence interval for the transformed data is to assume the transformed data are 

normally distributed and use the percentile method. The confidence intervals will be 

calculated by obtaining values at the corresponding 100𝛼𝑡ℎ percentiles. Using 𝛼 =  .05, 

the confidence interval is 

𝑎̂𝑏̂𝑇4
∗(.025)

≤ 𝑎̂𝑏̂𝑇4 ≤ 𝑎̂𝑏̂𝑇4
∗(.975)

    (56) 

 where 𝑎̂𝑏̂𝑇4
∗(.025)

 and 𝑎̂𝑏̂𝑇4
∗(.975)

 are the 25th and 975th values on the bootstrapped 

transformed distribution. 

 Box-Cox transformation—z-score method (T4z). Another method to calculate 

confidence intervals is to assume the transformed data have been transformed into a 

standard normal distribution. The confidence intervals will be calculated using  
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𝐶𝐼: 𝑎̂𝑏̂𝑇4 ± 𝑧(1−𝛼 2⁄ ) ∗
𝑠𝑇4

√𝑛
    (57) 

where 𝑎̂𝑏̂𝑇4 is the Box-Cox transformed value of 𝑎̂𝑏̂, 𝑧(1−𝛼 2⁄ ) is the z critical value on a 

standard normal distribution with the specified 𝛼 Type I error rate, 𝑠𝑇4 is the sample 

standard deviation from the transformed bootstrap samples, and 𝑛 is the number of 

bootstrap replications.  

Research Questions 

1. Which bias-correction alternative(s) best improve(s) accuracy of the Type I error 

rate, ideally .05, compared to Efron & Tibshirani’s original bias-corrected 

bootstrap method? 

o For the alternative measures of bias, it is hypothesized that the medcouple 

will have the most accurate Type I error rates compared to the median, 

mean, and 𝑔1 because it is bounded between -1 and 1. The bounds for the 

medcouple will limit the value of the bias-correction, potentially keeping 

it smaller than 𝑔1, which is unbounded. For the transformations, it is 

hypothesized that all of the alternatives will have more accurate Type I 

error rates compared to the original bias-corrected bootstrap because each 

have been shown to produce narrower confidence intervals.  

2. How will sample size for each of the bias-correction alternatives affect Type I 

error rates compared to the original 𝑧0 bias-corrected bootstrap method?  

o It is hypothesized that for the alternative measures of bias, the mean and 

𝑔1 will be most affected by sample size, as their calculations involve 

sample size; there may be more variability in Type I error rates for these 

alternatives depending on sample size. Hall’s transformation, the bootstrap 
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version of Hall’s transformation, and the transformed bootstrap-t have all 

been shown to have more consistent coverage in small sample sizes. 

Therefore, it is hypothesized that these three alternatives will produce 

lower Type I error rates in smaller sample sizes compared to the Box-Cox 

transformation.  

3. Which combinations of sample size and effect size for each of the bias-correction 

alternatives will produce more accurate Type I error rates? 

o It is hypothesized that for the alternative measures of bias, 𝑔1 and the 

medcouple will produce more accurate Type I error rate than the mean and 

median in smaller sample sizes for the medium and large effect sizes. As 

observed in previous studies, the alternative measures of bias are 

hypothesized to produce more erratic measures of Type I error rate for a 

small effect size, such that there is a smaller Type I error rate with a small 

sample size which increases to become inflated at larger sample sizes. It is 

hypothesized that for the transformations, the alternatives will produce 

decreased Type I error rate for smaller sample sizes in medium and large 

effect sizes. It is also hypothesized that the alternatives will produce 

increased Type I error rates for smaller sample sizes for a small effect size.    

4. How will power be affected if the Type I error rate is found to remain constant at 

𝛼 =  .05 for each of the alternative measures of bias? 

o It is hypothesized that power will be negatively affected (power will 

decrease as compared to the percentile bootstrap and the joint significance 

test as baseline measures) for the alternative measures of bias compared to 
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the transformation alternatives because the transformation alternatives 

provide more control over the actual range of the confidence intervals.  

Methods 

The simulation consists of two parts: data generation and application of alternatives. 

Data Generation 

 To determine whether the proposed alternatives will maintain more accurate Type 

I error rates compared to the bias-corrected and accelerated bias-corrected bootstrap 

methods, a simulation will be performed using R (R Core Team, 2016). This study is an 

extension of Fritz et al. (2012), so the first four factors that were varied in the previous 

study will also be varied in this study to focus on the effects of the bias adjustments and 

alternatives.  

 The first factor that will be varied is the test of mediation; the original bias-

correction using 𝑧0 will be used to test for mediation in the data. The percentile bootstrap 

and joint significance test will also be used to replicate results of previous studies 

(MacKinnon et al., 2004) and used as control factors. Each of the eight alternative 

measures of bias will then be integrated and tested for significance, for a total of 11 

different tests of mediation.  

 The second and third factors to be varied are the path effect sizes of a and b. 

Using Cohen’s (1988) guidelines for small, medium, and large effect sizes, a and b will 

alternately be set to 0, 0.14, 0.39, or 0.59, forming 16 different effect size combinations. 

 The fourth varied factor will be sample size, selected to represent the range of 

commonly used sample sizes in the social sciences: 50, 100, 500, and 1000. Fritz et al. 

(2012) considered an additional sample size of 2500 but found that as sample sizes 
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approached 2500, Type I error rate returned to .05 for all tests including the bias-

corrected bootstrap using 𝑧0.  

The fifth factor that Fritz et al. (2012) examined will not be varied in this study 

due to the finding that the number of bootstrap samples does not affect Type I error rates. 

The number of bootstrap samples will be set at 1000. 

 The RNORM function in R will be used to generate 1000 values of X. Values for 

M and Y will be generated using the set values for a and b (as variations of the second 

and third factors) through regression equations 2 and 3. Residuals will also be generated 

using the RNORM function for M and Y. Each original sample will be generated 

according to the parameters set by each of the varied factors described above, and the 

confidence interval for that sample will be calculated. Additionally, the bias size for the 

proportion of observations below the true mediated effect will not be controlled for. 

Therefore, the actual size of bias for the simulated samples will be saved as an additional 

outcome variable. 

 The original sample will be bootstrapped 1000 times, each of the methods will be 

applied, and the confidence intervals will be calculated for each bootstrap sample. The 

process will be repeated 1000 times, generating 1000 replications.  

Outcome Variables 

 The rejection rate is the number of times zero is outside the confidence intervals. 

Rejection rate is coded as ‘0’ when zero is within the confidence interval and ‘1’ when 

zero is outside the confidence interval. The rejection rate is Type I error when the 

population effect 𝑎𝑏 = 0 and power when 𝑎𝑏 ≠ 0. Coverage is the number of times the 

true mediated effect falls within the confidence intervals. Coverage is coded as ‘0’ when 
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ab falls outside the confidence interval and ‘1’ when ab falls inside the confidence 

interval. Balance assesses how many times the true mediation effect falls to the left or the 

right of the confidence interval. Balance is coded as ‘-1’ if ab falls to the left, determined 

by the number of times the lower bound of the confidence interval is greater than the 

observed effect. Balance is coded as ‘1’ if ab falls to the right, when the upper bound of 

the confidence interval is less than the observed effect. Bias is the proportion of bootstrap 

replications of 𝑎̂𝑏̂ that are less than the original estimate of the mediated effect 𝑎̂𝑏̂. 

Data Analysis  

 The data will be analyzed using PROC GLIMMIX in the SAS® 9.4 software 

(SAS Institute, 2012). Generalized linear mixed models (GLMM) will be used to fit the 

data for Type I error rate and power due to the binomial nature of the outcome variables 

and the presence of both fixed and random effects. For Type I error and power, the 

effects of a and b will be tested separately. Since either a or b is required to equal zero for 

each condition, collapsing across one effect size will produce misleading marginal means 

(Fritz et al., 2012). Type I error rate and power for each of the alternatives will be 

compared to the control methods to determine significant differences and moderation 

effects. Type I error rate and power for type of test by sample size by effect size 

interactions will also be tested. Finally, the effect of bias and sample size on Type I error 

and power will be tested. Scheffé correction will be used as a Type I error correction due 

to the exploratory nature of the contrasts.  
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Results 

Type I Error 

Type I error was analyzed using a method × sample size × a GLMM. There was 

a significant three-way interaction, F(117, 156) = 3.92, p < .01. Similarly, when Type I 

error was analyzed using method × sample size × b, there was a significant three-way 

interaction, F(117, 156) = 4.70, p < .01. This suggests that there is a difference in 

interactions among methods. The main effect of method on Type I error rate, collapsed 

across sample size and effect size, is presented in Figure 3. The figure shows that the 

control methods (joint significance test, percentile bootstrap, and 𝑧0), as well as 𝑇4𝑝,  𝑧𝑚𝑐 ,

𝑧𝑚𝑒𝑎𝑛, and 𝑧𝑚𝑒𝑑𝑖 have Type I error rates far below the other methods. The main of 

effects of only the methods with Type I error rates closer to the targeted .05 are presented 

in Figure 4 for a closer visual representation on their overall pattern.  

 

Figure 3. Main effect of method on Type I error rate collapsed across sample size and 

effect size.  
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Figure 4. Main effect of method on Type I error rate collapsed across sample size and 

effect size using only the remaining methods.  

 

The goal of this study was to find alternative bias corrections to the bias-corrected 

bootstrap with better accuracy in Type I error. Therefore, using the descriptive statistics 

for Type I error rates (reported in Table 1), there were no further contrasts conducted on 

𝑇1𝑙𝑜𝑤, 𝑇1𝑢𝑝𝑝, 𝑇2𝑙𝑜𝑤, 𝑇2𝑢𝑝𝑝, 𝑇3, 𝑇4𝑧. These eliminated methods had a minimum Type I 

error rate above the targeted .05 rate, the smallest minimum was 0.436.  

Table A.1 reports the F values associated with the method × sample size × a 

three-way interaction effect sliced by method. Table A.2 reports the F values associated 

with the method × sample size × b three-way interaction effect sliced by method. The F 

values for the remaining alternative methods (𝑧𝑚𝑒𝑎𝑛, 𝑧𝑚𝑒𝑑𝑖, 𝑧𝑔1, 𝑧𝑚𝑐 , 𝑎𝑛𝑑 𝑇4𝑝) were all 

statistically significant, suggesting that within each method, the effect of sample size is 

dependent on the effect size of a or b, respectively.  
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Table 1 

Descriptive statistics for Type I error for each of the methods 

Method M SD Min Max 

Joint significance test 0.0380 0.0218 0.001 0.072 

Percentile 0.0399 0.0228 0.000 0.072 

𝑧0 (bias-corrected) 0.0539 0.0288 0.004 0.106 

𝑧𝑚𝑒𝑎𝑛 0.0537 0.0289 0.005 0.106 

𝑧𝑚𝑒𝑑𝑖 0.0399 0.0228 0.000 0.072 

𝑧𝑔1 0.2639 0.1626 0.051 0.522 

𝑧𝑚𝑐 0.0531 0.0281 0.005 0.103 

𝑇1𝑙𝑜𝑤 0.4744 0.0161 0.436 0.500 

𝑇1𝑢𝑝𝑝 0.4765 0.0149 0.455 0.508 

𝑇2𝑙𝑜𝑤 0.4975 0.0120 0.474 0.521 

𝑇2𝑢𝑝𝑝 0.4986 0.0130 0.477 0.524 

𝑇3 0.9269 0.0398 0.801 0.962 

𝑇4𝑝 0.0399 0.0228 0.000 0.072 

𝑇4𝑧 0.9186 0.0530 0.801 0.967 

 

 Figure 5 displays the main effect of sample size collapsed across all methods and 

sample sizes. Although there is a decreasing trend in Type I error as sample size 

increases, there were no statistically significant differences in Type I error rate among 

sample sizes. Figure 6 displays the main effect of effect size collapsed across all methods 
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and sample size. Similarly, there were no statistically significant differences in Type I 

error rate among effect sizes.  

 

Figure 5. Main effect of sample size collapsed across method and effect size. 

 

Figure 6. Main effect of effect size collapsed across method and sample size. 
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For Figures 7.1 thru 9.2, two-way interaction plots for method × a, spliced by 

sample size, were created to illustrate the general patterns of the remaining alternatives. 

Only conditions where 𝑏 = 0 were presented in these figures. Similar patterns were 

observed when examining two-way interaction plots for method × b when 𝑎 = 0.  

Figure 7.1 shows each of the remaining alternative measures of bias methods 

compared to the joint significance test, Figure 8.1 compares the methods to the percentile 

bootstrap, and Figure 9.1 compares the methods to the original bias-corrected bootstrap. 

In each of these three figures, visual inspection revealed that 𝑧𝑔1 has Type I error rates 

higher than the other alternatives, with the exception at 0.39 and 0.59 effect size at a 

sample size of 1000. Figures 7.2, 8.2, and 9.2 display results without 𝑧𝑔1 for a closer 

visual on the lower Type I error rates.  

Visual inspection of Figure 9.2 in conjunction with examining descriptive 

statistics showed that 𝑧𝑚𝑒𝑑 and 𝑇4𝑝 consistently had lower Type I error rates compared to 

the other methods, particularly with medium and large effect sizes with 50 and 100 

sample sizes. Contrasts for the median correction and the 𝑇4𝑝 correction compared to the 

bias-corrected bootstrap were tested to determine whether the median had significantly 

lower Type I error rates. The differences between the median correction and the original 

bias-corrected bootstrap at all sample sizes were not significant. The differences between 

𝑧𝑚𝑒𝑑𝑖 and 𝑇4𝑝 compared to 𝑧0 at all levels of a were also not significant. Additionally, 

Type I error rates for 𝑧𝑚𝑒𝑑𝑖 and 𝑇4𝑝 were the same as the percentile bootstrap rates. 
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Figure 7.1. Alternative measures versus joint significance test (JointSig). Comparison of 

alternative measures to the joint significance test for effect size of a and the Type I error 

rate, spliced by sample size. 

 

 

Figure 7.2. Alternative measures versus joint significance test (without 𝑧𝑔1) for effect 

size of a and the Type I error rate, spliced by sample size. 
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Figure 8.1. Alternative measures versus percentile bootstrap. Comparison of alternative 

measures to the percentile bootstrap for effect size of a and the Type I error rate, spliced 

by sample size. 

 

 
 

Figure 8.2. Alternative measures versus percentile bootstrap (without 𝑧𝑔1) for effect size 

of a and the Type I error rate, spliced by sample size. 
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Figure 9.1. Alternative measures versus bias-corrected bootstrap. Comparison of 

alternative measures to the bias-corrected bootstrap (𝑧0) for effect size of a and the Type I 

error rate, spliced by sample size. 

 

 

Figure 9.2. Alternative measures versus bias-corrected bootstrap (without 𝑧𝑔1) for effect 

size of a and the Type I error rate, spliced by sample size. 
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Power 

 Power was analyzed using a method × sample size × a GLMM using only the 

methods considered in the Type I error rate section. There were two significant 

interactions: method × sample size, F(21, 168) = 22.35, p < .01, and method × a, F(14, 

168) = 6.75, p < .01. When power was analyzed using method × sample size × b, again 

keeping only eight methods as predictors, the model did not converge. Instead, the three-

way interaction was taken out as a predictor. Thus, three main effects were tested 

(method, sample size, and b) and three interactions were tested (method × sample size, 

method × b, and sample size × b). There were two significant interactions: method × 

sample size, F(21, 210) = 30.32, p < .01, and method × b, F(14, 210) = 20.93, p < .01. 

 Power for the remaining methods × a interactions are displayed in Figure 10. 

Each column is a different effect size b and each row is a different sample size. There is 

an increasing trend in power by sample size; as the sample size increases, power also 

tends to increase. There is also an increasing trend in power by b; as b increases, power 

also tends to increases.  

Contrasts were analyzed for the following methods compared to the control 

conditions: 𝑧𝑚𝑒𝑎𝑛, 𝑧𝑚𝑒𝑑𝑖, 𝑧𝑚𝑐, 𝑎𝑛𝑑 𝑇4𝑝. There were no significant differences in power 

between the four conditions compared to the control conditions.  
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Figure 10. Power for the bias-corrected bootstrap by method for sample size of 50 for 

each small, medium, and large effect size of a, spliced by small, medium, and large effect 

size of b.  
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Coverage 

 The coverage for the alternative methods are reported in Table A.4. There is a 

wide range of coverage between all of the methods. The percentile bootstrap, 𝑧𝑚𝑒𝑑𝑖, and 

𝑇4𝑝 all had the highest coverage rate of 95.14%. 𝑧0, 𝑧𝑚𝑐, and 𝑧𝑚𝑒𝑎𝑛 had the next highest 

coverage rates, with a range from 94.25% to 94.32%. 𝑇3 had the lowest coverage of 

6.08% followed by 𝑇4𝑧 with 6.20%.  

Balance 

 The percentage of times the confidence interval failed to the left or the right—

balance—is reported in Table A.5. With the exception of 𝑇1𝑢𝑝𝑝, 𝑇2𝑢𝑝𝑝, and 𝑇3, the left 

failure percentage was higher than the right failure percentage.  

Bias 

 The results for the effect of bias (M = 0.03, SD  = 0.10, Minimum  = -0.59, 

Maximum = 0.63) on Type I error, using only the eight remaining alternatives was not 

found to be significant. There was also no significant effect of bias on power.   

 

Discussion 

  The results of this study were similar to findings by MacKinnon et al. (2004), 

Cheung (2007), and Fritz et al. (2012) that the bias-corrected bootstrap tests of mediation 

have elevated Type I error rates in conditions where the sample size is less than 500 with 

medium or large effect sizes of a. The results are discussed in order of the original 

research questions.  
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1. Which alternative measure(s) of bias best improve(s) accuracy of the Type I error 

rate, ideally .05, compared to the original bias-corrected bootstrap method? 

For the alternative measures of bias, it was hypothesized that the medcouple would 

have the most accurate Type I error rates compared to the median, mean, and 𝑔1 because 

it is bounded between -1 and 1. The medcouple, however did not have the most accurate 

Type I error rate. Instead, the medcouple shared similar patterns in Type I error rate 

elevation compared to the original bias-corrected bootstrap and the mean measure. These 

similar patterns may have been observed because of the similar method 𝑧0, the mean, and 

the medcouple were implemented. The 𝑧0 used the proportion under the mediated effect, 

while the mean and medcouple were variations of the mediated effect. Thus, the 

difference in bias-correction was not enough to decrease Type I error rate.     

For the transformations, it was hypothesized that all of the alternatives will have more 

accurate Type I error rates compared to the original bias-corrected bootstrap because each 

have been shown to produce narrower confidence intervals. This was not the case with 

the study results; the transformations produced even higher levels of Type I error rate. In 

the case of transformed bootstrap-t (T3), the confidence intervals became too narrow, 

rendering it the method with the greatest Type I error.  

2. How will sample size for each of the alternative measures of bias affect Type I 

error rates compared to the original bias-corrected bootstrap method?  

It was hypothesized that for the alternative measures of bias, the mean and 𝑔1 would 

be most affected by sample size, as their calculations involve sample size. Similar results 

to Fritz et al. (2012) for the control conditions, 𝑧𝑚𝑒𝑎𝑛, 𝑧𝑚𝑒𝑑𝑖, 𝑧𝑚𝑐 , 𝑎𝑛𝑑 𝑇4𝑝 were found in 

that Type I error rates were elevated for a medium or large effect size of a for n = 50, 
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100, 500, and 1000. The transformation alternatives were not further examined due to 

their inflated Type I error rates.  

3. For which combinations of sample size and effect size can each of the alternative 

measures of bias correct for Type I error rate? 

No alternative was found to significantly decrease Type I error rate in comparison to 

the original bias-corrected bootstrap.  

4. How will power be affected if the Type I error rate is found to remain constant at 

𝛼 =  .05 for each of the alternative measures of bias? 

Power is closely tied to Type I error rate, sample size, and effect size. Results similar 

to findings by Fritz et al. (2012) were observed for the control conditions, 𝑧𝑚𝑒𝑎𝑛, 𝑧𝑚𝑒𝑑𝑖,

𝑧𝑚𝑐, 𝑎𝑛𝑑 𝑇4𝑝. Serlin (2000) suggests a range of .04 - .06 Type I error rate for a method to 

be considered robust. The transformation methods had Type I error rates that were well 

outside of the suggested range. Although the remaining methods fell within the range for 

robustness, differences in power were not further explore due to the goal of this study to 

find alternatives for decreasing Type I error.  

An interesting finding was that the Box Cox transformation with the percentile 

bootstrap method (𝑇4𝑝) produced identical Type I error rates and power when compared 

to the percentile bootstrap method. The actual confidence intervals, however, differed 

slightly. This suggests that though the data were transformed to correct for skewness, 

perhaps the problem surrounding the issue of the elevated Type I error rates lies beyond 

merely finding a better measure of bias.   
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Empirical Example 

 To illustrate the similarities, differences, and patterns found in the alternative 

measures of bias, the alternatives examined in this study will be applied to data from the 

Athletes Training and Learning to Avoid Steroids (ATLAS) program (Goldberg et al., 

1996). The ATLAS program presents two healthy alternatives to high school football 

players: healthy nutrition behaviors and appropriate strength training, as alternatives to 

anabolic steroid use. Data were collected from players on different measures including 

intentions to use anabolic steroids, nutrition behaviors, and strength training self-efficacy 

at three time points (start of the football season, end of football season, and one year 

follow-up). MacKinnon et al. (2001) examined possible mediators from the ATLAS 

program, of which, the relation between participation in the ATLAS program (X) and a 

student’s intentions to use anabolic steroids measured 9 months after finishing the 

ATLAS program (Y) is mediated by a student’s perceived susceptibility to the adverse 

effects of steroid use immediately after completing the ATLAS program (M).  

 After deleting cases with missing data, a complete sample of 731 students were 

used for this analysis. Cases with missing data were deleted because of the nature of 

bootstrapping. Since the same case could potentially be selected more than once, there is 

the possibility of having an entire bootstrap sample of missing data. Table 2 contains the 

confidence intervals formed by each method. The estimated value 𝑎̂ = 0.5949, 𝑏̂ =

 −0.0961, 𝑎̂𝑏̂ =  −0.0572. As expected, the percentile and the median produce identical 

confidence intervals. The original bias-corrected bootstrap, mean, and medcouple 

produced similar results. Additionally, the Box-Cox percentile produced confidence 

intervals similar to the percentile but not identical.  
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Table 2 

Confidence intervals for the ATLAS data for each method 

Method Lower CI Upper CI 

Percentile -0.1044 -0.0239 

𝑧0 (bias-corrected) -0.1085 -0.0250 

𝑧𝑚𝑒𝑎𝑛 -0.1086 -0.0251 

𝑧𝑚𝑒𝑑𝑖 -0.1044 -0.0239 

𝑧𝑔1 -0.1290 -0.0373 

𝑧𝑚𝑐 -0.1069 -0.0244 

𝑇1𝑙𝑜𝑤 -0.0579 ∞ 

𝑇1𝑢𝑝𝑝 −∞ -0.0564 

𝑇2𝑙𝑜𝑤 -0.0572 ∞ 

𝑇2𝑢𝑝𝑝 −∞ -0.0572 

𝑇3 -0.0590 -0.0556 

𝑇4𝑝 -0.0942 -0.0233 

𝑇4𝑧 -0.0552 -0.0529 
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Conclusion 

The purpose of this study was to consider alternative bias-corrections in the bias-

corrected bootstrap to reduce Type I error rates in the elevated conditions without 

reducing power. None of the tested alternative measures of bias, however, could produce 

more accurate Type I error rates in the elevated conditions. 

Limitations 

One limitation of this study was not controlling for the bias size of bootstrapped 

observations falling under the true mediated effect. The bias size was free to vary and the 

descriptive statistics were reported for the outcome variable. There were no guidelines for 

interpreting the size of bias. Negative versus positive bias effects were also unexamined.  

A second limitation is concerning the transformed bootstrap-t (T3). The second 

and third nested bootstrap level sizes were based off the recommendation of Efron and 

Tibshirani (1993). The recommendations, however, were not specific to mediation 

analysis and therefore did not pertain directly to the distribution of a product. Without 

further study into the effect of the nested bootstrap level sizes, it can only be speculated 

that the chosen level sizes contributed to the extreme narrowness of the newly formed 

confidence intervals.  

A third limitation is that alternative methods for implementing the bias-correction 

were not examined or applied. The alternative measures of bias for this study were 

implemented in ways similar to the original BC bootstrap where the proportion of 

observations below a specified value were used to calculate a corresponding z-score. 

Perhaps a different method of implementing a bias-correction altogether can be tested in 

future studies to account for size and direction of skew of the distribution.  
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A fourth limitation is that the methods in this study consisted only of measures of 

skew and transformations. Additionally, these measures of skew and transformations 

were not originally developed to be used in a statistical mediation analysis context. The 

initial intent of many of these methods was to correct for skewed distributions of single 

variables, whereas the major focus of this study was on correcting for the skewed 

distribution for the product between two variables. One alternate approach would be to 

focus on how M being both a dependent and causal variable affects Type I error and 

power.  

Future Directions 

This study could only cover a handful of alternatives to reducing Type I error rate, 

yet there are more ways of approaching this issue to consider. Drawing from the 

limitations, the following future directions are delineated. A closer study of bias size and 

effect on Type I error can be conducted. Although descriptive statistics were run for the 

measure of bias in each of the bootstrap samples, work can be dedicated towards defining 

the bounds between bias sizes and what constitutes a negligible, small, medium, or large 

bias size before examining the effect of bias size on Type I error rate, power, and effect 

size.  

Another possible direction for this study is to consider different approaches in 

alternative measures of bias. One such method is the iterated prepivoted bootstrap that 

combines the two different methods tested in this study. The first prepivot removes 

estimated bias, and with each prepivoted iteration, higher order corrections are 

automatically made, leading to smaller coverage error (Beran, 1987). Future studies can 

be conducted to test the effects of combing a bias-correction alternative with 
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transforming data to be normally distributed. The bias-correction alternatives are not 

limited to different measures of 𝑧0, nor are they limited to transformations. A more 

comprehensive study on different correction methods can inform future studies testing 

different alternatives.  

Based on these findings, more work needs to be done to find a better measure of 

bias for the bias-corrected bootstrap test of mediation. Alternatively, a completely 

different approach may be necessary to examine the anomalous findings of the bias-

corrected bootstrap test of mediation. Until a better method is found, however, in 

situations where the bias-corrected bootstrap is utilized for the increased power, 

researchers should also be wary of the increased Type I error rate and the potential 

implications this finding could have on their own study’s applications.  
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Appendix A. Tables of results 

Table A.1  

F-values for the method × sample size × a interaction sliced by method for remaining 

alternatives and comparison groups 

 

Method Num df Den df F Value 

Joint significance test 15 156 5.98** 

Percentile 15 156 5.09** 

𝑧0 15 156 4.71** 

𝑧𝑚𝑒𝑎𝑛 15 156 4.47** 

𝑧𝑚𝑒𝑑𝑖 15 156 5.09** 

𝑧𝑔1 15 156 29.10** 

𝑧𝑚𝑐 15 156 4.35** 

𝑇4𝑝 15 156 5.09** 

** p < .001.  
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Table A.2  

F-values for the method × sample size × b interaction sliced by method for the remaining 

alternatives and the comparison groups 

 

Method Num df Den df F Value 

Joint significance test 15 156 3.80** 

Percentile 15 156 4.08** 

𝑧0 15 156 3.49** 

𝑧𝑚𝑒𝑎𝑛 15 156 4.02** 

𝑧𝑚𝑒𝑑𝑖 15 156 4.08** 

𝑧𝑔1 15 156 31.45** 

𝑧𝑚𝑐 15 156 3.70** 

𝑇4𝑝 15 156 4.08** 

** p < .001.  
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Table A.3 

Descriptive statistics for power for each of the remaining methods 

Method M SD Min Max 

Joint significance test 0.7069 0.3590 0.025 1.000 

Percentile 0.7101 0.3552 0.025 1.000 

𝑧0 (bias-corrected) 0.7334 0.3352 0.055 1.000 

𝑧𝑚𝑒𝑎𝑛 0.7326 0.3352 0.056 1.000 

𝑧𝑚𝑒𝑑𝑖 0.7101 0.3552 0.025 1.000 

𝑧𝑔1 0.8241 0.2258 0.346 1.000 

𝑧𝑚𝑐 0.7311 0.3363 0.054 1.000 

𝑇1𝑙𝑜𝑤 0.9534 0.2109 0.706 1.000 

𝑇1𝑢𝑝𝑝 0.0389 0.1934 0.000 0.246 

𝑇2𝑙𝑜𝑤 0.9563 0.2045 0.725 1.000 

𝑇2𝑢𝑝𝑝 0.0423 0.2012 0.000 0.264 

𝑇3 0.9896 0.1017 0.914 1.000 

𝑇4𝑝 0.7101 0.3552 0.025 1.000 

𝑇4𝑧 0.9889 0.1047 0.910 1.000 

 

  



53 

 

Table A.4 

Coverage frequency for each of the methods 

Method Coverage Coverage 

percentage (%)  

No-coverage No-coverage 

percent (%) 

Percentile 60892 95.14 3108 4.86 

𝑧0 (bias-corrected) 60364 94.32 3636 5.68 

𝑧𝑚𝑒𝑎𝑛 60317 94.25 3683 5.75 

𝑧𝑚𝑒𝑑𝑖 60892 95.14 3108 4.86 

𝑧𝑔1 52033 81.30 11967 18.70 

𝑧𝑚𝑐 60347 94.29 3653 5.71 

𝑇1𝑙𝑜𝑤 34274 53.55 29726 46.45 

𝑇1𝑢𝑝𝑝 32623 50.97 31377 49.03 

𝑇2𝑙𝑜𝑤 33043 51.63 30957 48.37 

𝑇2𝑢𝑝𝑝 31214 48.77 32786 51.23 

𝑇3 3888 6.08 60112 93.93 

𝑇4𝑝 60892 95.14 3108 4.86 

𝑇4𝑧 3971 6.20 60029 93.80 
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Table A.5 

Balance percentage for each of the methods 

Method Left failure 

(%) 

No failure 

(%) 

Right failure 

(%) 

Percentile 2.09 96.30 1.61 

𝑧0 (bias-corrected) 2.67 95.51 1.83 

𝑧𝑚𝑒𝑎𝑛 2.64 95.53 1.83 

𝑧𝑚𝑒𝑑𝑖 2.09 96.30 1.61 

𝑧𝑔1 10.73 82.54 6.73 

𝑧𝑚𝑐 2.62 95.57 1.81 

𝑇1𝑙𝑜𝑤 46.45 53.55 —  

𝑇1𝑢𝑝𝑝 —  76.96 23.04 

𝑇2𝑙𝑜𝑤 48.37 51.63 —  

𝑇2𝑢𝑝𝑝 — 75.81 24.19 

𝑇3 45.69 6.66 47.65 

𝑇4𝑝 3.06 95.53 1.42 

𝑇4𝑧 48.60 6.96 44.44 
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