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ANALYTICAL APPROACHES

Inbreeding effective population size and parentage analysis
without parents

ROBIN S. WAPLES* and RYAN K. WAPLES†

*NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, WA 98112, USA, †Casa Azul, 10056

Dibble Ave N, Seattle, WA 98177, USA

Abstract

An important use of genetic parentage analysis is the ability to directly calculate the number of offspring produced by each

parent (ki) and hence effective population size, Ne. But what if parental genotypes are not available? In theory, given

enough markers, it should be possible to reconstruct parental genotypes based entirely on a sample of progeny, and if so

the vector of parental ki values. However, this would provide information only about parents that actually contributed off-

spring to the sample. How would ignoring the ‘null’ parents (those that produced no offspring) affect an estimate of Ne?

The surprising answer is that null parents have no effect at all. We show that: (i) The standard formula for inbreeding Ne

can be rewritten so that it is a function only of sample size and
P

k2
i

� �
; it is not necessary to know the total number of par-

ents (N). This same relationship does not hold for variance Ne. (ii) This novel formula provides an unbiased estimate of Ne

even if only a subset of progeny is available, provided the parental contributions are accurately determined, in which case

precision is also high compared to other single-sample estimators of Ne. (iii) It is not necessary to actually reconstruct paren-

tal genotypes; from a matrix of pairwise relationships (as can be estimated by some current software programs), it is possi-

ble to construct the vector of ki values and estimate Ne. The new method based on parentage analysis without parents

(PwoP) can potentially be useful as a single-sample estimator of contemporary Ne, provided that either (i) relationships can

be accurately determined, or (ii)
P

k2
i

� �
can be estimated directly.
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Introduction

In the last two decades, parentage analyses made possi-

ble by highly polymorphic molecular markers have pro-

duced many novel insights (reviewed by Jones et al.

2010). In a typical parentage analysis, multilocus geno-

types are scored in both progeny and potential parents,

and these data are used to ‘assign’ progeny to parents,

either through a probabilistic framework or by excluding

other potential parents as impossible, given the rules of

Mendelian inheritance. Parentage analysis can provide

diverse types of information, including the direct (demo-

graphic) calculation of effective population size (Ne),

which is one of the most important parameters in evolu-

tionary biology but also one of the most difficult to esti-

mate. For a monoecious population with random selfing,

inbreeding effective size is given by (Crow & Denniston

1988, Equation 1; Caballero 1994):

Ne ¼
�kN � 1

�k� 1þ Vk
�
�k

ðeqn 1Þ

where N is the number in the parental generation, and �k

and Vk are the mean and variance of the number of off-

spring contributed by each parent (ki). If genetic methods

can allow one to identify the number of offspring pro-

duced by each parent, the vector of ki values can be used

to calculate �k, Vk and Ne using eqn (1) (or slight variations

that apply to other mating systems).

Now consider a variation to this scenario in which the

parents cannot be sampled, but parents can be recon-

structed from genotypes of the progeny—that is, a par-

entage analysis without parents (PwoP). It does not

appear that a complete parentage analysis without par-

ents has been conducted to date, but under some condi-

tions, it is possible to reconstruct genotypes of some

missing parents (e.g., Emery et al. 2001; Wang 2004). With

enough highly variable markers, this can be quite feasi-

ble, provided that a sufficient number of known siblings

are available (Jones & Avise 1997; DeWoody et al. 2000)

or at least one of the parents can be genotyped (Myers &
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Zamudio 2004; Jones 2005; Tatarenkov et al. 2008; Eriks-

son et al. 2010). For the moment, assume that it is possi-

ble, from a sample of progeny alone, to reconstruct all

genotypes from contributing parents, and from this, the

vector of ki values for those parents. But there is an

important difference between this vector and the vector

of ki values in a standard parentage analysis: Because the

PwoP vector only provides information about parents

that actually produced progeny, it contains no elements

with ki = 0, which represent null parents (those that pro-

duced no progeny that survived to the stage at which

they were enumerated). In a typical population, the

parental generation might have included an unknown

(but potentially large) number of individuals that pro-

duced no surviving offspring. For example, in an ideal

population (in which Vk � �k ¼ 2), on average, about 13%

of parents will produce no offspring that survive to

maturity, and the proportion should be higher in most

natural populations (in which Vk typically will be larger

than �k). What effect do these missing parents have on cal-

culations of Ne based on PwoP? The surprising answer is

that they have no effect at all: it is not necessary to know

anything about null parents to compute Ne. We demonstrate

this with a simple analytical proof, which results in a

novel formula for inbreeding effective size that does not

depend on N. Further, we use analytical and numerical

methods to demonstrate the following:

1 Even an incomplete (but random) sample of progeny

provides an unbiased estimate of inbreeding Ne using

the novel formula;

2 The same insensitivity to null parents does not apply

to variance effective size, which reflects the number in

the progeny generation and hence varies with the

number of progeny sampled;

3 It is not necessary to actually reconstruct parental

genotypes to calculate Ne using PwoP; from a matrix of

pairwise relationships (as can be estimated by current

software programs), it is possible to construct the vec-

tor of ki values and estimate Ne;

4 Assuming sibling relationships can be accurately

determined, precision of the new method based on

parentage analysis without parents appears to com-

pare favourably with single-sample estimators of Ne

currently in use. However, accurately determining

relationship categories is a very challenging problem.

Effective population size and null parents

Assume a population has N potential parents, and one

wants to calculate effective population size using eqn (1).

Further, assume that we have sampled the entire popula-

tion of offspring and that the two parents of each

offspring can be identified. It is then straightforward to

construct the vector of ki values that describes the number

of offspring produced by each parent. Parametric formu-

las for mean and variance of k can be expressed as follows:

�k ¼
P

ki

N

Vk ¼
P

k2
i

� �
N

�
P

ki

N

� �2

Because we are interested in effective size of a particu-

lar population in a particular generation, we follow Crow

& Denniston (1988) and treat the ki as fixed, so in comput-

ing the population variance, the N ⁄ (N)1) sample-size

correction is not used. Substituting the above into eqn (1)

leads to

Ne ¼

P
ki

N
N � 1

P
ki

N
� 1þ

P
k2

i

� �
N

�
P

ki

N

� �2

:

P
ki

N

which, after simplifying, yields

Ne ¼
P

ki � 1P
k2

i

� �
P

ki
� 1

ðeqn 2aÞ

As each diploid progeny has two parents,
P

ki = 2S,

where S is the number of progeny, and eqn (2a) can also

be written as

Ne ¼
2S� 1P

k2
i

� �
2S

� 1

ðeqn 2bÞ

The surprising consequence of eqn (2) is that inbreed-

ing Ne does not depend on parental population size

(N)—only on the two summation terms
P

ki and
P

k2
i

� �
.

Further, as
P

ki is determined by the sample size, the

new formula shows that inbreeding Ne depends on a sin-

gle unknown term (
P

k2
i

� �
). Because this term is not

affected by any ki = 0, it follows that parents that contrib-

ute no offspring have no effect on inbreeding Ne. This

means that Ne can be computed directly from the prog-

eny generation based only on information about parents

that actually leave offspring, without knowing what

parental N was. The independence of inbreeding Ne with

N is a curious result, given that whether one includes null

parents or not affects N, �k and Vk. However, these param-

eters change in a correlated way such that the overall

effect creates no change in Ne. To illustrate, consider a

diploid population with N = 10 adults, for which the vec-

tor of ki values is [5, 1, 2, 4, 2, 0, 2, 1, 0, 3]. For these data,
�k = 2.0, Vk = 2.40 and Ne = 8.64 from eqn (1). Note that

two of the parents produced no offspring. If we ignore
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those null parents, then N = 8, �k = 2.5, Vk = 1.75–all

different compared to the scenario that considered all 10

potential parents. However, the resulting Ne for the sce-

nario that ignores null parents is 8.64—identical to the

value based on all the parents.

It is easy to show that this same approach does not

work (at least in a general way) with variance Ne. The

analogue to eqn (1) for variance Ne in a monoecious pop-

ulation is (Crow & Denniston 1988, Equation 19)

Ne ¼
4N0 � �k

2 1þ Vk
�
�k

h i ðeqn 3Þ

where N¢ is the number of progeny rather than the num-

ber of parents (N). If we note that N0 ¼ N�k=2, this reduces

to a form that is expressed in terms of the number of

parents:

Ne ¼
�kð2N � 1Þ

2 1þ Vk
�
�k

h i ðeqn 4Þ

Substituting the formulas for �k and Vk above does not

lead to an expression that is independent of N, as occurs

with inbreeding Ne. Because variance Ne reflects the

number in the progeny generation (Crow 1954; cf eqn 3),

it is proportional to �k and hence depends on the sample

size of progeny. For this reason, calculations of variance

Ne based on parent-offspring data are generally meaning-

ful only if the mean and variance of k are scaled to what

they would be expected to be in a population of constant

size (Crow & Morton 1955). The effects on PwoP analyses

can be seen by considering the hypothetical example

described earlier. Using data for all 10 parents, Ne calcu-

lated from eqn (4) is the same as it is for inbreeding Ne

(8.64), as should always be the case for random mating

populations of constant size. However, when the two

null parents are excluded, variance Ne rises to 11.03,

reflecting the higher �k for the eight parents that actually

produced offspring. In contrast, the formula for inbreed-

ing Ne (eqn 1) has an extra �k term in denominator that

automatically adjusts for the effects of changes in popula-

tion size. As a consequence, calculation of inbreeding Ne

from large samples of progeny does not require one to

first rescale �k and Vk (Waples 2002), and N̂e based on

PwoP is not affected by changes in �k when null parents

are ignored. In the remainder of this study, the term Ne is

used to refer to inbreeding effective size.

Reconstructing parental contributions (ki)

Reconstructing parental genotypes from a sample of

progeny is a very challenging exercise that, at present, is

only feasible under special circumstances. Fortunately,

doing this is not a specific requirement of estimating

effective size using PwoP; all that is required is to be able

to construct the vector of parental contributions (the ki

values), and this can be accomplished (or at least

attempted) using information provided by sibship recon-

struction programmes that are currently available (Jones

et al. 2010). Figure 1 illustrates how information on pair-

wise relationships (full-sib, half-sib, unrelated) can be

used to infer parental contributions. In this example, each

progeny in a sample of S = 25 individuals is represented

by a letter (A–Y). Isolated letters (C, D, F …) represent

individuals that are not related to any other sampled

progeny; each of these progeny must therefore have two

unique parents, each with ki = 1. Solid rectangles connect

full siblings (e.g., H + M), and dotted ovals connect pairs

of half-sibs (e.g., V + W; E + J). A pair of full siblings

implies two parents each with ki = 2, whereas a pair of

half-siblings implies one parent with ki = 2 and two par-

ents with ki = 1. More complicated, interconnected pat-

terns of relationship are of course possible, but each can

be decomposed into subsets that allow one to infer the

vector of parental contributions. The only ambiguous sit-

uation of which we are aware involves a trio of individu-

als that are reciprocal half-siblings (e.g., offspring S, T, Y

in Fig. 1). This pattern can result from either of two mat-

ing patterns: (i) one parent is responsible for all three off-

spring, and three parents contribute one offspring each

(ki = 3, 1, 1, 1) or (ii) three parents are each responsible

for two of the three offspring (ki = 2, 2, 2). However, the

latter scenario requires at least one individual to repro-

duce as both male and female so is only possible for her-

maphrodites. Furthermore, both of these scenarios lead

to Rki = 6 and Rk2
i = 12, so the ambiguity has no effect on

A B C D E

F G H I J

K L M N O

P Q R S T

U V W X Y

Fig. 1 Sibling relationships in a hypothetical sample of S = 25

progeny, each denoted by a letter. Unconnected letters (C, D, F

…) represent unrelated individuals; solid rectangle includes two

full siblings (H + M); dotted curves include pairs (V + W) or

trios (S + T + Y) of half-siblings that all share exactly one parent.

From these relationships, a vector of ki values can be deduced.

Each unrelated individual has two parents with ki = 1; a pair of

full sibs implies two parents, each with ki = 2; a pair of half-sibs

implies one parent with ki = 2 and two with ki = 1; and an inter-

locking pair of half-sib pairs (e.g., A + B + G) implies 2 parents

with ki = 2 and two with ki = 1. A trio of half-sibs sharing one

parent can be produced in two different ways, both of which

result in R(ki) = 6 and
P

k2
i

� �
= 12 (see text). In total, 40 different

parents are required to produce the depicted relationships (one

with ki = 3, eight with ki = 2, and 31 with ki = 1, which yields

R(ki) = 2S = 50,
P

k2
i

� �
= 72, and NeI = 111 (from eqn 2)).

Molecular Ecology Resources (2011) 11 (Suppl. 1), 162–171

� 2011 Blackwell Publishing Ltd

164 R . S . W A P L E S A N D R . K . W A P L E S



Ne calculated using PwoP (eqn 2). In total, 40 different

parents are required to produce the relationships

depicted in Fig. 1 (1 parent with ki = 3, 8 with ki = 2, and

31 with ki = 1). These parental contributions produce

R(ki) = 2S = 50,
P

k2
i

� �
= 72, and Ne = 111 (from eqn 2).

We have developed a program (coded in PYTHON 2.6.4,

and available from the authors on request) that con-

structs the vector of ki values and calculates Ne using

eqn (2), based on an input file that specifies the related-

ness category for each pair of progeny in the sample. The

program creates a parental generation with 2S parents as

empty groups. Target progeny are considered one at a

time, and after evaluation, each is assigned to two dis-

tinct parents. Parents are excluded as possibilities if (i)

their group contains non-siblings or (ii) another parental

group would match more siblings. A half-sibling pair

occurs together in only one parental group, while full sib-

lings share both parental assignments. After all progeny

are considered, the vector of ki values is computed as the

vector of parental group sizes.

Precision and bias

The analyses aforementioned are based on an optimal

scenario: all progeny have been sampled, and all pair-

wise relationships among the progeny have been ascer-

tained without error. Under these circumstances, a

unique solution can be found for the terms R(ki) andP
k2

i

� �
, which allows one to calculate Ne using eqn (2). In

most practical applications involving parentage analysis,

effective size can only be estimated, in which case it is

important to consider two major sources of uncertainty

associated with PwoP:

1 Uncertainty associated with sampling only a fraction

of the total number of progeny produced;

2 Uncertainty associated with imperfectly resolving the

relationship categories.

Sampling error

To focus on the first issue (random errors associated with

sampling progeny), we assume that relationship catego-

ries are identified correctly and that an unknown number

of progeny are produced, but we have only sampled S of

them. The true effective size would be revealed if we

could sample all progeny. An important question thus

becomes, ‘‘What is the relationship between an estimate

of Ne and true Ne, when the estimate is computed from a

sample of progeny using PwoP?’’ Intuitively, two a priori

considerations suggest that such an estimate might be

subject to bias: (i) the analysis leading to eqn (2) used

the parametric formula for variance rather than the

finite-sample formula and (ii) the vector of ki values gen-

erated by PwoP based on only a sample of progeny will

not only fail to include null parents, but it will also fail to

include any parents that actually did produce offspring

but whose offspring (by chance) did not appear in the

sample.

To empirically evaluate these factors, we used a

Wright–Fisher model (discrete generations, constant N,

random mating but no selfing, each parent with an equal

opportunity to produce offspring) to simulate production

of S progeny whose parents were randomly chosen from

N potential parents. As no selfing was allowed, we used

a slight modification to eqn (1) that is appropriate for

species that have separate sexes or are monoecious but

avoid selfing:

Ne ¼
�kN � 2

�k� 1þ Vk
�
�k

ðeqn 5Þ

(Crow & Denniston 1988, Equation 2). Making the substi-

tutions above for �k and Vk leads to (inbreeding Ne, with-

out selfing)

Ne ¼
2S� 2P

k2
i

� �
2S � 1

ðeqn 6Þ

Results of these simulations (Table 1), which can be

considered ‘optimal PwoP’ because they assume the vec-

tor of ki values can be assembled without error, provide

important information about both bias and precision.

First, analysing only a sample of progeny has virtually no

systematic effect on N̂e computed by PwoP: harmonic

mean N̂e was very close to the nominal N regardless of

the number of progeny sampled. We also verified

through simulations that essentially unbiased estimates

are also obtained from PwoP using eqn (6), when sexes

are separate and sex ratio is skewed (data not shown, but

see Fig. 4). Second, unless N is large and S is small, PwoP

estimates have relatively small coefficients of variation

(CV). For example, a CV £ 0.35 can be achieved for

N = 50–100 with S ‡ 25 and for N = 500–1000 with

S ‡ 100, and much smaller CVs are possible with larger

samples. However, if N is large and S is small, N̂e from

PwoP will have very wide confidence intervals (note very

large CVs for S = 25, N = 500 and S = 25–50, N = 1000;

Table 1). In these scenarios, the distribution of N̂e is

highly skewed toward large values. This occurs because,

as fewer and fewer siblings are identified, most of the ki

values are 1. As a result,
P

k2
i

� �
approaches

P
(ki), and

the denominator of eqn (2) approaches zero, leading to a

large N̂e. In the limit, if all progeny are unrelated, this

implies that each parent produces exactly one offspring,

and N̂e using eqns (2) or (6) becomes infinitely large. This

makes biological sense, as finding no related individuals

is the expected result when sampling progeny from an
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infinite number of parents. In the simulations, these infi-

nite N̂e values were recorded as 106 to simplify calcula-

tions of CV(N̂e). Therefore, the exact CV values for these

scenarios should be interpreted with caution; the salient

point is that, if S is too small compared to Ne, the distri-

bution of N̂e can be highly skewed toward large (and

potentially infinite) values. A similar result is found for

other estimators of contemporary Ne (discussed by Wa-

ples & Do 2010).

It is useful to consider the probability of obtaining an

estimate of N̂e = ¥ based on PwoP. If N̂e = ¥, the S prog-

eny must have 2S unique parents. If we assume a

Wright–Fisher model with random selfing, this outcome

requires that 2S random draws, with replacement, have

been made from N potential parents without having any

parent drawn more than once. The probability of this

occurring is N ⁄ N · (N)1) ⁄ N · (N)2) ⁄ N … · (N)2S + 1) ⁄
N, which can be written as

Prob(no sibs) ¼ N!

ðN � 2SÞ!N2S
ðeqn 7Þ

If the population is randomly mating but not ideal

(i.e., some individuals have a higher probability of being

a parent than others), eqn (7) should still be valid if Ne is

substituted for N.

Table 2 shows results of applying eqn 7 to various

combinations of S and Ne. It is apparent that in many cir-

cumstances, only modest sample sizes are required before

the probability of an infinite estimate becomes very low.

For example, with true Ne = 100, an infinite N̂e is very

unlikely if 15 or more progeny have been sampled, and

with Ne = 200, an infinite N̂e is even more unlikely if

at least 25 progeny have been sampled. However, with

Ne = 1000, finding no relatives will be quite common in

samples of 25 progeny or less, and the probability of an

infinite N̂e does not drop below 1% until sample size is

almost 50 progeny. These results explain the high CV

values shown in Table 1 for some simulation scenarios.

With only 25 progeny sampled, we expect the fraction of

N̂e = ¥ estimates to be 8% for Ne = 500 and 29% for Ne =

1000. The high CV for S = 50, Ne = 1000 was also influ-

enced by�0.6% infinite estimates (recorded as 106).

It is also easy to calculate the upper bound for finite

N̂e, which occur if exactly one related pair of progeny is

identified. With a single pair of half-sibs, the vector of ki

values includes 2S)2 parents with ki = 1 and one parent

with ki = 2. This leads to
P

(ki) = 2S and
P

k2
i

� �
= 2S + 2,

and eqn (2) becomes

Maximum finite N̂e ¼
2S� 1

2Sþ 2
2S � 1

¼ 2S2 � S ðeqn 8Þ

Table 2 shows results of applying eqn (8) to the combina-

tions of S and N values discussed earlier. One notewor-

thy result is that if sample size is very small (S = 5–15,

depending on true Ne), the maximum finite N̂e can be less

than the true Ne. In that case, N̂e is unreliable even

though the harmonic mean is essentially unbiased,

because the distribution has a mix of finite estimates less

than the true Ne balanced by a fraction of infinite esti-

mates. If true Ne is relatively large, then larger samples of

progeny are needed to produce a more balanced distribu-

tion of potential N̂e values. For example, for S = 25, the

largest possible finite estimate of Ne is 1225 (Table 2),

Table 1 Assessment of bias and precision in estimates of Ne

based on samples of progeny analysed with PwoP. This analysis

assumes sibship reconstruction can be done without error

(‘Optimal PwoP’). Values shown are the harmonic mean N̂e (and

coefficient of variation of N̂e) for 10000 simulated Wright–Fisher

populations, where parents of S progeny were randomly chosen

from N potential parents. No selfing was allowed, so N̂e was

calculated using eqn (6)

Sample

size (S)

Parental population (N)

50 100 500 1000

25 49.3 (0.21) 98.7 (0.35) 483.7 (550) 1026.2 (454)

50 49.4 (0.1) 100.0 (0.14) 494.4 (0.44) 1018.1 (84)

100 49.7 (0.05) 99.7 (0.07) 501.6 (0.17) 994.2 (0.26)

200 49.9 (0.02) 99.7 (0.03) 498.3 (0.08) 996.4 (0.11)

Table 2 Probability (from eqn 7) of finding no related

individuals (and hence an infinite estimate of Ne) in a random

sample of S progeny produced by Ne = N effective parents,

assuming random selfing. Last column shows the maximum

finite N̂e from eqn (8) for each sample size

N S

Probability

(no sibs)

Maximum

finite N̂e

50 5 0.382 45

50 10 0.012 190

50 15 <10)4 435

100 10 0.130 190

100 15 0.008 435

100 20 <10)3 780

200 10 0.374 190

200 15 0.101 435

200 20 0.015 780

200 25 0.001 1225

500 15 0.412 435

500 25 0.079 1225

500 30 0.025 1770

500 40 0.001 3160

500 50 <10)4 4950

1000 15 0.644 435

1000 25 0.288 1225

1000 40 0.039 3160

1000 50 0.006 4950

1000 60 <10)3 7140
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which is more than twice as large as 500 but only margin-

ally higher than 1000. If true Ne is 1000, therefore, sam-

pling only 25 individuals would make it impossible for

the distribution of N̂e to be clustered around the true

value.

Finally, we used simulated data to compare the distri-

bution of N̂e values from optimal PwoP with those

obtained using a single-sample method for estimating Ne

based on linkage disequilibrium (LD). To generate

genetic data for the LD method, we used EasyPop (Bal-

loux 2001) to simulate a Wright–Fisher model with equal

numbers of each sex. We generated ‘microsatellite’ data

for independent gene loci using a mutation rate of

5 · 10)4 and a K-allele model with a maximum of 10 alle-

lic states and initiated the simulation using the Maximal

diversity option. After running the simulation for enough

generations (‡25) to produce average heterozygosities in

the range (�0.8) typically found in many natural popula-

tions, we sampled genotypes from S progeny and used

these to estimate Ne using the program LDNE (Waples &

Do 2008). LDNE implements a bias correction (Waples

2006) to the standard Hill (1981) method; we report

results after excluding alleles with frequency <0.02 (as

suggested by Waples & Do 2010). PwoP estimates were

generated as in Table 1 using the same S and N values,

but using eqn (6) because the genetic data were gener-

ated with separate sexes. We considered two scenarios,

with true Ne = 100 or 1000. The sample size (S = 50) and

number of loci (20) used are comparable to those used in

many contemporary studies of effective size in natural

populations.

As shown in Fig. 2, the distribution of N̂e from PwoP

was much narrower than for the LD method. This was

especially true for Ne = 1000, in which case PwoP

reduced by a factor of nearly four the fraction of esti-

mates that were more than twice the true Ne (from nearly

40% for the LD method to just over 10% for PwoP;

Fig. 2A). Even with true Ne = 100, for which LD esti-

mates are relatively robust, the distribution of PwoP esti-

mates was less biased and substantially tighter

(harmonic mean N̂e = 99.7 (range 64–171) for PwoP com-

pared to 113.9 (63–376) for LD; Fig. 2B).

Errors in sibship reconstruction

Evaluations of precision and bias in the previous section

represent best-case (‘optimal’) scenarios for PwoP,

because they assumed that sibships were accurately

determined. Strictly speaking, this assumption is not

required for the aforementioned results to be accurate,

because the validity of eqn (2) depends only on the termP
k2

i

� �
and not the exact pattern of relationship or

the entire vector of ki values. It would be possible, for

example, for some errors to occur in sibship reconstruc-

tion that do not affect
P

k2
i

� �
and hence do not affect N̂e

from PwoP. Nevertheless, sibship reconstruction without

parental genotypes as a guide is such a challenging task

that uncertainty in this step will have a large influence on

practical utility of PwoP.

A rigorous evaluation of this topic should consider

two related issues: (i) limited power to resolve relation-

ship categories given finite samples of progeny and gene

loci and (ii) effects of genotypic errors. These two factors

interact to affect bias and precision of sibship reconstruc-

tions, and they also involve tradeoffs that differ qualita-

tively depending on the markers used. For example, each

microsatellite locus typically has many more alleles and

hence more power for sibship reconstruction or parent-

age analysis than does a single single-nucleotide poly-

morphism (SNP) marker, but microsatellites also

typically have higher genotyping error rates. Unless the

(a)

(b)

Fig. 2 Distribution of N̂e for simulated Wright–Fisher popula-

tions with true Ne = 1000 (a) or 100 (b) using two methods.

LDNE used L = 20 ‘microsat’ loci, and optimal PwoP assumed

the vector of ki values was created without error. Both used sam-

ples of S = 50 individuals. In (a), the last bin on the right

includes all estimates >2000.
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per-locus genotyping error rate is very low, as the num-

ber of loci increases the chances than any given individ-

ual will have at least one mis-scored genotype can

become quite high, which can bias results even as theo-

retical power increases (e.g., see Anderson & Garza

2006).

We will not attempt a comprehensive assessment of

this complex topic here. However, we want to provide

some indication of the performance of PwoP that can be

achieved with currently available software. Jones et al.

(2010) listed seven freely available programs that attempt

sibship reconstruction, but most of these consider only

full sibs or partial subsets of half-sibs. Only two of the

programs [COLONY (Jones & Wang 2010) and ML-RELATE

(Kalinowski et al. 2006)] attempt the generalized sibship

reconstruction envisioned by PwoP. Of these, COLONY in

theory should provide more robust results, as it jointly

considers the likelihood of larger patterns of relationship,

whereas ML-RELATE independently determines the rela-

tionship of each pair of progeny. However, COLONY is

computationally intensive and not easily adapted for

simulation studies, while ML-RELATE is simple and quick

and can read simulated genetic data in standard formats.

Accordingly, we conducted a few exploratory runs in

which ML-RELATE was challenged with simulated geno-

typic data (using EasyPop as described above), and the

resulting determinations of pairwise relationships were

used to calculate N̂e using PwoP. ML-RELATE uses maxi-

mum likelihood to independently find the most likely

relationship category for each progeny pair (parent-off-

spring, full sibling, half-sibling, unrelated). Because we

simulated discrete-generation data, our samples of prog-

eny had no parent-offspring dyads, so any parent-off-

spring determinations by ML-RELATE were scored

according to the next most likely relationship category

(which most frequently was half-sib).

Figure 3 shows results of analyses comparable to

those in Fig. 2B (20 ‘microsat’ loci, S = 50, Ne = 50, 100,

200). Under these conditions, precision using PwoP and

ML-RELATE was actually quite high, but substantial biases

were apparent. For example, with true Ne = 100, uncer-

tainty in sibship reconstruction led to a sharp downward

bias in ML-RELATE estimates (harmonic mean

N̂eðML�RÞ = 78.5; all estimates fell in the range 65–98). The

downward bias was more pronounced for true Ne = 200

(harmonic mean N̂eðML�RÞ = 101.8; range = 78–123), but

for Ne = 50, the bias was modest and positive (harmonic

mean N̂eðML�RÞ = 56.8; range = 48–70). These results sug-

gest an interaction between sample size and effective size

with respect to bias of N̂e using ML-RELATE.

A likely explanation for this downward bias is overes-

timation of the number of pairs of progeny that are

related, which would inflate the estimate of
P

k2
i

� �
and

lead to an underestimate of Ne. Note that this can occur

even if the probability of making a Type I error (wrongly

inferring too high a relationship category) is lower than

the probability of a Type II error (wrongly inferring too

low a relationship category)—as reported previously for

ML-RELATE (Kozfkay et al. 2008) and for another relation-

ship estimation program (Thomas & Hill 2002). Unless N

is very small, truly unrelated pairs will comprise most of

the progeny, so even a low Type I error rate can lead to

net estimates of more siblings than actually exist. We

believe that this factor was responsible for the downward

bias in N̂e for N = 100 and 200. Although sibships were

(a)

(b)

(c)

Fig. 3 Distribution of N̂e for PwoP estimates when true Ne was

50 (a), 100 (b) or 200 ideal individuals (c). Each panel compares

estimates based on (i) simulated demographic data under opti-

mal conditions (assuming perfect sibship reconstruction, as in

Fig. 2; black bars) and (ii) simulated genotypic data (using 20

‘microsat loci’, as in Fig. 2 for LDNE) analysed using the pro-

gram ML-RELATE (hatched bars).
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also generally overestimated for N = 50, another factor

appears to have been relatively more important in that

case: impossible combinations of relationships that can

occur as a result of relying on strictly pairwise analyses

(e.g., A and B are determined to be full sibs, as are A and

C, but B and C are not). The simulations with N = 50 had

a relatively high frequency of these impossible combina-

tions, which neither ML-RELATE nor our simple algorithm

were designed to try to resolve. In our simple algorithm,

these incompatibilities hinder the formation of large sib-

ling groups under a single parent; this reduces the frac-

tion of large ki values [and reduces
P

k2
i

� �
] and tends to

inflate the estimate of Ne.

To evaluate the effects of marker type, we repeated

the aforementioned analyses with true Ne = 100 and

either 100 or 200 diallelic (‘SNP’) loci instead of 20 ‘micro-

sat’ loci. One hundred SNP loci produced results compa-

rable to those for the ‘microsat’ data: precise but

downwardly biased estimates using ML-RELATE (har-

monic mean N̂e = 74.8; range 62–92). However, use of

200 SNPs led to precise estimates with relatively little

downward bias (harmonic mean N̂e = 93.4; range 78–

123) (Fig. 4A).

Simulation results presented so far have used ideal

Wright–Fisher populations with equal sex ratio. Equa-

tions 5 and 6 account for skewed sex ratio, as overall Vk

increases if the numbers of each sex are not equal, and

Fig. 4B shows that ‘optimal’ PwoP estimates accurately

reflect the lowered Ne from a 3:1 sex ratio (harmonic

mean N̂e = 75.7; range 40–150). Skewed sex ratio also did

not adversely affect estimates based on the program ML-

RELATE: harmonic mean N̂e was only slightly lower than

expected (68.9), and the range of estimates (53–82) was

actually tighter than under optimal PwoP (Fig. 4B).

Discussion

The new formulas (eqns 2 and 6) show that inbreeding

effective size can be expressed in terms of a single

unknown parameter (
P

k2
i

� �
), independent of the total

number of parents, N [of course, it is necessary to know

or be able to estimate N if one is interested in the Ne ⁄ N
ratio]. Except for the special case with �k = 2, this property

is not shared by variance effective size (which depends

on the number of progeny sampled), and this emphasizes

the point that inbreeding Ne is the more useful measure

of effective size for parentage analysis. The advantage of

the new formulation is that it allows unbiased calculation

of Ne in parentage analysis under a wide range of circum-

stances. Although the analyses considered here assumed

that no parents can be genotyped, the method can also be

applied when some but not all potential parents can be

identified and sampled—a situation that occurs quite

often in studies of natural populations (e.g., Emery et al.

2001; Araki et al. 2007).

Although we have not attempted a rigorous perfor-

mance evaluation of PwoP, results of the analysis of sim-

ulated data establish two major points:

1 PwoP can provide unbiased and precise estimates of

Ne from random samples of progeny, provided the

vector of ki values can be constructed accurately.

2 Accomplishing the latter will be challenging, and sub-

stantial biases can occur if systematic errors occur in

reconstructing sibling relationships.

Fortunately, to estimate Ne using PwoP it is not neces-

sary to reconstruct parental genotypes, which is exceed-

ingly challenging unless at least some parents can be

genotyped. The analyses described earlier depend only

on reconstruction of sibling relationships, which can be

estimated using currently available software. It should be

possible to improve considerably on the biases indicated

in Fig. 3 by adopting more sophisticated methods that

jointly consider relationships among groups of related

individuals. Performance with 200 ‘SNP’ loci was encour-

aging (Fig. 4A); however, results obtained by Santure

(a)

(b)

Fig. 4 (a) As in Figure 3, but using either 100 or 200 diallelic

‘single-nucleotide polymorphism’ loci for the ML-RELATE esti-

mates. True Ne was 100. (b) Distribution of N̂e for ‘optimal’

PwoP estimates when sex ratio was skewed (25 females + 75

males; true Ne = 75). ML-RELATE estimates used 20 ‘microsat’

loci. In both panels, sample size was S = 50.
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et al. (2010) and others caution that use of large numbers

of markers will not necessarily achieve the desired level

of precision or accuracy. Use of fractional or probabilistic

relationship assignments might also be an effective strat-

egy for reducing bias and increasing precision, as could

inclusion of other types of information, such as individ-

ual phenotypes (Walling et al. 2010).

Although the approach outlined here used sibship

reconstructions to infer the vector of ki values, that also is

not necessarily required, as the key parameter to estimate

is
P

k2
i

� �
and estimating the full vector of parental contri-

butions is only an intermediate step in the process. This

suggests that a more profitable approach might be to

develop a method to specifically estimate
P

k2
i

� �
, either

directly or jointly with estimating the sibling relation-

ships, as in full probability parentage analysis (Jones et al.

2010; Serbezov et al. 2010).

PwoP has some obvious parallels to Wang’s (2009) sib-

ship method for estimating Ne. Both use information from

sibship reconstructions to estimate effective size; the

difference is that Wang’s method uses the sibship results

to calculate the probability of different relationship cate-

gories under different hypotheses for Ne, while PwoP

uses the sibship results to calculate the parental contribu-

tions and hence Ne directly using a demographic formula.

Future research might also focus on comparison of the

performance of PwoP with other single-sample estima-

tors besides LDNE (Pudovkin et al. 1996; Nomura 2008;

Tallmon et al. 2008; Wang 2009) under a variety of realis-

tic conditions. As discussed by Waples & Do (2010), cal-

culating a combined estimate of effective size based on

results of multiple methods can substantially increase

precision (and potentially reduce bias), especially if the

methods provide independent information about effec-

tive size. For example, Waples (1991) reported that N̂e

from the temporal and LD method are essentially uncor-

related, but comparable evaluations have not been per-

formed for the different single-sample estimators.

Unlike some other genetic methods for estimating Ne,

PwoP does not depend on the assumption of selective

neutrality, as it relies on genetic data only to reconstruct

parental contributions, nor does it depend on assump-

tions about the mating system. Like other estimators of

contemporary Ne (and unlike estimators of long-term

Ne), PwoP does not require an estimate of mutation rate,

and mutation poses a problem only insofar as it might

affect sibship reconstruction. Whether immigration (or

other factors that might cause individuals from multiple

populations to appear in the sample) represents a prob-

lem depends on the objectives and the quantity one is try-

ing to estimate. Unlike some other estimators, PwoP does

not depend on theoretical expectations for genetic pro-

cesses in closed populations. If individuals from more

than one population appear in the sample, the immi-

grants presumably would be determined to be unrelated

to local individuals, which would tend to reduce
P

k2
i

� �
and increase N̂e. From one point of view, this would

accurately reflect the reality that the sample is produced

by more parents than occur in just the local population.

On the other hand, this could be misleading if the goal is

to estimate just the local Ne. In the latter case, it might be

possible to use genetic assignment methods to exclude

immigrants and focus only on locally produced progeny

(as suggested by Wang 2009).

Although we did not evaluate this directly, PwoP

presumably shares with most or all other estimators of

contemporary Ne a sensitivity to sampling from age-

structured populations. The standard formulas for effec-

tive size that PwoP is based on (eqns 1 and 5) assume

discrete generations. If the sample is from a single cohort

in an age-structured population, the estimate should be

directly interpretable in terms of Nb, the effective number

of breeders in one year or one breeding season. However,

if mixed-age samples are taken from iteroparous species

with overlapping generations, the resulting estimate can

be difficult to interpret in terms of effective size for a gen-

eration as a whole (Ne; see Waples & Yokota 2007). More

research is needed to better elucidate the relationship

between Nb and Ne in age-structured species.
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