August 2007

The Impact of Weather Extremes on Agricultural Production Methods: Do Extreme Weather Events Increase Adoption of Conservation Tillage Practices?

Karina Schoengold
University of Nebraska, Lincoln, kschoengold2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/agecon_cornhusker

Part of the Agricultural and Resource Economics Commons

http://digitalcommons.unl.edu/agecon_cornhusker/332

This Article is brought to you for free and open access by the Agricultural Economics Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Cornhusker Economics by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
The Impact of Weather Extremes on Agricultural Production Methods: Do Extreme Weather Events Increase Adoption of Conservation Tillage Practices?

A better understanding of how farmers adjust their production practices to cope with extremely wet or dry conditions is essential for developing effective drought mitigation policies and reducing the impact of other natural disasters. Reducing the risk associated with drought and flood in the long-run may be more cost effective than smoothing short-term income losses through disaster relief money. Most existing assistance programs focus on diversifying and stabilizing income risks through crop insurance and direct payments, however there are fewer efforts designed to reduce the long-term agricultural risk. Climate change makes this particularly important, as expected impacts include more droughts and climate variability in the future.

A large amount of government spending in the United States is devoted to programs that help farmers manage risk. Programs such as Federal Crop Insurance subsidize farmers’ premiums for risk-reducing insurance policies, with the subsidy varying by type of policy and level of coverage. In addition to crop insurance programs, ad-hoc disaster payments are frequently used to reimburse farmers after natural disasters occur. Drought is the most cited reason for ad-hoc disaster payments, although floods are also a common cause (Garrett, et al. 2004). For example, federal legislative bill PL108-7 of 2003 provided $3.1 billion to crop and livestock producers in counties affected by drought during the 2001 and 2002 seasons, while PL 103-75 of 1993 provided $2.5 billion to Midwest producers impacted by flood (Chite, 2006). However, the adoption of risk-reducing agricultural practices is one method that farmers can use to protect themselves against such events.

The impact of recent drought and flood events on the adoption of risk-reducing production methods was estimated in a current research project. Previous studies found that drought significantly increases the adoption of
Looking at a snapshot in history. Although previous studies of adoption include long-term average climate information as explanatory variables, they have failed to identify the impact short-term climate events. We expect that farmers are more sensitive to recent weather extremes than to long-term climate trends.

Our study uses data from Kansas, Nebraska and South Dakota. The method used compares the adoption rates of conservation tillage in two counties to the relative level of drought or flood in the same two counties. So, if two counties are similar, but one has drought conditions and the other has normal conditions, we attribute differences in conservation tillage to the drought conditions. Our results show that farmers increase their adoption of no-till and other conservation tillage practices in both abnormally dry (i.e., drought) and abnormally wet (i.e., flood) conditions, and that abnormally wet conditions increase the adoption of no-till systems.

The adoption of three categories of tillage systems relative to conventional tillage: no-till, other conservation tillage and reduced till was estimated. One of the benefits of the study is that we use data on the same counties over time, instead of using data from a single year. This means that we are able to observe the trend in the amount of land under conservation tillage over time, instead of just looking at a snapshot in history.

References:

