Search for Neutral Minimal Supersymmetric Standard Model Higgs Bosons Decaying to Tau Pairs Produced in Association with b Quarks in pp Collisions at $\sqrt{s}=1.96$ TeV

V. M. Abazov
Joint Institute for Nuclear Research, Dubna, Russia

Kenneth A. Bloom
University of Nebraska - Lincoln, kbloom2@unl.edu

Daniel R. Claes
University of Nebraska - Lincoln, dclaes@unl.edu

Kayle DeVaughan
University of Nebraska-Lincoln

Aaron Dominguez
University of Nebraska-Lincoln, aarond@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the Physics Commons

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
V. M. Abazov, Kenneth A. Bloom, Daniel R. Claes, Kayle DeVaughan, Aaron Dominguez, Michael Eads, D. Johnston, Ioannis Katsanos, Sudhir Malik, and Gregory Snow
Search for Neutral Minimal Supersymmetric Standard Model Higgs Bosons Decaying to Tau Pairs Produced in Association with b Quarks in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

(D0 Collaboration)

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Universidade Federal do ABC, Santo André, Brazil
5 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6 Simon Fraser University, Vancouver, British Columbia, and York University, Toronto, Ontario, Canada
7 University of Science and Technology of China, Hefei, People’s Republic of China
8 Universidade de los Andes, Bogotá, Colombia
9 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
10 Czech Technical University in Prague, Prague, Czech Republic
11 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
12 Universidad San Francisco de Quito, Quito, Ecuador
13 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
14 LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
15 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
16 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
17 LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
18 CEA, Ifma, SPP, Saclay, France
19 IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
20 IPNL, Université Lyon I, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
21 IPP, Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
22 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
23 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
24 Institut für Physik, Universität Mainz, Mainz, Germany
25 Ludwig-Maximilians-Universität München, München, Germany
26 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
27 Panjab University, Chandigarh, India
28 Delhi University, Delhi, India
29 Tata Institute of Fundamental Research, Mumbai, India
30 University College Dublin, Dublin, Ireland
31 Korea Detector Laboratory, Korea University, Seoul, Korea
32 CINVESTAV, Mexico City, Mexico
33 Nikhef, Science Park, Amsterdam, the Netherlands
34 Radboud University Nijmegen, Nijmegen, the Netherlands and Nikhef, Science Park, Amsterdam, the Netherlands
35 Joint Institute for Nuclear Research, Dubna, Russia
36 Institute for Theoretical and Experimental Physics, Moscow, Russia
37 Moscow State University, Moscow, Russia
38 Institute for High Energy Physics, Protvino, Russia
39 Petersburg Nuclear Physics Institute, St. Petersburg, Russia
40 Institutio Catalana de Recerca i Estudis Avancats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
41 Stockholm University, Stockholm and Uppsala University, Uppsala, Sweden
42 Lancaster University, Lancaster LAI 4YB, United Kingdom
43 Imperial College London, London SW7 2AZ, United Kingdom
44 The University of Manchester, Manchester M13 9PL, United Kingdom
45 University of Arizona, Tucson, Arizona 85721, USA
46 University of California Riverside, Riverside, California 92521, USA
47 Florida State University, Tallahassee, Florida 32306, USA
48 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
49 University of Illinois at Chicago, Chicago, Illinois 60607, USA
50 Northern Illinois University, DeKalb, Illinois 60115, USA

PRL 107, 121801 (2011) PHYSICAL REVIEW LETTERS week ending 16 SEPTEMBER 2011
We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb$^{-1}$. This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high $\tan\beta$. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c^2. We interpret our result in the MSSM parameter space, excluding $\tan\beta$ values down to 25 for Higgs boson masses below 170 GeV/c^2.

DOI: 10.1103/PhysRevLett.107.121801

PACS numbers: 14.80.Da, 12.60.Fr, 12.60.Jv, 13.85.Rm

In contrast with the standard model (SM), where only one Higgs boson doublet breaks the $SU(2)$ symmetry, there are two Higgs boson doublets in the minimal supersymmetric standard model (MSSM) [1]. This leads to five physical Higgs bosons remaining after electroweak symmetry breaking: three neutrals: h, H, and A, collectively denoted as ϕ, and two charged, H^\pm. At the tree level, the mass spectrum of the Higgs bosons is determined by two parameters conventionally chosen to be $\tan\beta$, the ratio of the two Higgs doublet vacuum expectation values, and M_A, the mass of the pseudoscalar Higgs boson A. Although $\tan\beta$ is a free parameter in the MSSM, large values ($\tan\beta \approx 20$) are preferred. The top quark to bottom quark mass ratio suggests $\tan\beta \approx 35$ [2], and the observed density of dark matter also points towards high $\tan\beta$ values [3]. At high values of $\tan\beta$, two of the neutral Higgs bosons (A and h or H) are approximately degenerate in mass. They share similar couplings to quarks, enhanced by $\tan\beta$ compared to the SM couplings for down-type fermions, while the couplings to up-type fermions are suppressed. The enhancement of couplings to down-type fermions has several consequences. First, the main decay modes of this Higgs boson pair are $\phi \rightarrow b\bar{b}$ and $\phi \rightarrow \tau\tau$ with branching ratios $\mathcal{B}(\phi \rightarrow b\bar{b}) \approx 90\%$ and $\mathcal{B}(\phi \rightarrow \tau\tau) \approx 10\%$, respectively. Their production in association with b quarks is enhanced by approximately $\tan^2\beta$ compared to the SM, which could make this production rate measurable at a hadron collider.

Experiments at the CERN e^+e^- Collider (LEP) excluded MSSM Higgs boson masses below 93 GeV/c^2 [4]. The CDF and D0 collaborations at the Tevatron extended the exclusion to higher masses for high $\tan\beta$ [5–9].
More recently, similar searches were performed at the LHC [10]. In this letter, we present a search for the process $p\bar{p} \rightarrow \phi b \rightarrow \tau\tau b$ where one τ lepton (denoted τ_μ) decays via $\tau \rightarrow \mu \nu_\mu \nu_\tau$ and the other (denoted τ_h) decays hadronically. This mode is complementary to the inclusive $\phi \rightarrow \tau\tau$ [5,7] and the $\phi b \rightarrow bbb$ [8] searches. This is because in the former, the presence of b quark(s) in the final state significantly decreases the Z boson background, while the latter has a larger branching ratio but suffers from a large multijet background and is more sensitive to the MSSM parameters. This result is built on, and supersedes, our previous result based on 2.7 fb$^{-1}$ of integrated luminosity [9]. In addition to the increase in luminosity, the sensitivity is improved by a refined treatment of systematic uncertainties, higher-performance signal to background discriminants and a higher trigger efficiency.

The data considered in this analysis were recorded by the D0 detector, described in [11], and correspond to an integrated luminosity of 7.3 fb$^{-1}$ [12]. Events were recorded using a mixture of single high-p_T muon, jet, tau, muon plus jet, and muon plus tau triggers. A data sample of $Z \rightarrow \tau_\mu \tau_h$ is employed to measure the efficiency of this inclusive trigger approach with respect to single muon triggers. This has been validated in $Z(\rightarrow \tau_\mu \tau_h) + \text{jets}$ events. The overall trigger efficiency ranges between 80% and 95%, depending on the kinematics and on the decay topology of the hadronically decaying τ. We rely on all components of the D0 detector: tracking, calorimetry, and the muon system. Muons are identified from track segments reconstructed in the muon system that are spatially matched to reconstructed tracks in the inner tracking system, and muon system scintillator hits must be in time with the beam crossing to veto cosmic muons. Hadronic τ decays are reconstructed from energy deposits in the calorimeter [13] using a jet cone algorithm with radius $= 0.3$ [14] and detector efficiency (both determined from the simulated events). The τ candidates are then split in three different categories which roughly correspond to one-prong τ decay with no $\pi^+\pi^-\pi^0$ (τ_h type 1), one-prong decay with $\pi^+\pi^-\pi^0$ (τ_h type 2), and multi-prong decay (τ_h type 3). The τ_h identification (NN_τ) to separate quark and gluon jets from genuine hadronic τ decays [13]. The NN_τ is based on shower shape variables, isolation variables, and correlation variables between the tracking and the calorimeter energy measurements. We require $NN_\tau > 0.9$ (0.95 for τ_h type 3) which has an efficiency around 65% while rejecting $= 99\%$ of jets. Jets are identified as clusters of energy in the calorimeter reconstructed with the midpoint cone algorithm [14] with radius $= 0.5$. Jet reconstruction and energy calibration are described in [15]. All jets are required to pass a set of quality criteria and to have at least two reconstructed tracks originating from the $p\bar{p}$ vertex matched within $\Delta R(\text{track, jet axis}) = \sqrt{\Delta \eta^2 + (\Delta \varphi)^2} < 0.5$ (where η is the pseudorapidity [16] and φ the azimuthal angle). A neural network b-tagging algorithm [17] (NN_ℓ), with lifetime-based information involving the track impact parameters and secondary vertices as inputs, is used to identify jets from b quarks. The missing transverse energy, E_T, is used to infer the presence of neutrinos, is reconstructed as the negative of the vector sum of the transverse energy of calorimeter cells with $|\eta| < 3.2$. It is corrected for the energy scales of all reconstructed objects.

The leading order (LO) event generator PYTHIA [18] is used to generate ϕb production in the 5-flavor scheme, $gb \rightarrow \phi b$. To correct the cross section and the event kinematics to next-to-leading order (NLO), we use MCFM [19] to compute correction weights as a function of the leading b quark p_T and η in the range $p_T > 12$ GeV/c and $|\eta| < 5$. The dominant backgrounds to this search are the production of $Z +$ jets, $t\bar{t}$ and multijets (MJ), the latter being estimated from data. We also consider $W +$ jets and diboson (WW, WZ and ZZ) production. Diboson events are simulated with PYTHIA while $Z +$ jets, $W +$ jets, and $t\bar{t}$ samples are generated using ALPGEN [20] with PYTHIA for showering and hadronization. TAUOLA [21] is used for the decay of τ leptons; b hadron decays are modeled with EVTGEN [22]. The generated samples are processed through a detailed simulation of the D0 detector based on GEANT [23]. The output is then combined with data events recorded during random beam crossings to model the effects of detector noise and pile up energy from multiple interactions and different beam crossings. Finally, the same reconstruction algorithms as for data are used on the simulated events. Corrections to the simulation are derived from data control samples and applied to object identification efficiencies, energy scales and resolutions, trigger efficiencies, and the longitudinal $p\bar{p}$ vertex distribution. Signal, $t\bar{t}$, and diboson yields are determined from the product of the acceptance and detector efficiency (both determined from the simulation) multiplied by theoretical cross section times luminosity. For the dominant $Z \rightarrow \tau\tau$ background, the simulation is corrected by comparing a large sample of $Z(\rightarrow \mu\mu) + \text{jets}$ events in data and in the simulation. This correction, measured in each jet multiplicity bin as a function of the ϕ^* event variable [24], leading-jet η, and leading b-tagged jet NN_ℓ, affects both the normalization and the kinematic distributions. For the $W +$ jets background, the muon predominantly arises from the W boson decay while the hadronic τ candidate is faked by a jet. While this background is estimated from the simulation, it is normalised to data using a $W(\rightarrow \mu\nu) +$ jets control sample. We define a background-dominated sample, named Pretag in the following, to ensure our background modeling is correct. We select events with one reconstructed $p\bar{p}$ vertex with at least 3 tracks, exactly one isolated muon (μ), exactly one reconstructed hadronic tau (τ_h), and at least one jet. The muon is required to have a transverse momentum $p_T > 15$ GeV/c, $|\eta| < 1.6$, and to be isolated in the calorimeter and in the central tracking system,
The MJ background is estimated from control data samples. We define two MJ-enriched control samples with identical requirements as in the pretag and b-tagged signal samples, but reversing the muon isolation criteria. In a dedicated MJ sample obtained by requiring \(\mu \) and \(\tau_h \) to have the same electric charge (SS), we measure the ratio of the probability for a MJ-event muon to appear isolated to the probability for a MJ-event muon to be nonisolated:

\[
R_{\text{iso/iso}}^\text{SS} = \frac{P(\mu_{\text{iso}}|\text{MJ})}{P(\mu_{\text{noniso}}|\text{MJ})}.
\]

The dependence on \(\eta^\mu, p_T^\mu \), and leading-jet \(p_T^j \) of \(R_{\text{iso/iso}} \) is taken into account. This \(R_{\text{iso/iso}} \) is then applied to events in the non-isolated-muon sample to predict the MJ background in the signal samples. An alternate method is used to estimate the systematic uncertainty. For MJ events, we expect the correlation between the charge of \(\mu \) and \(\tau_h \) to be small. Therefore, we use a data sample that has the same selection as the b-tagged sample except that \(\mu \) and \(\tau_h \) are SS. We subtract from this MJ-dominated SS sample the residual contribution from other SM backgrounds. The number of MJ events in the OS signal sample is obtained by multiplying the SS sample yield by the OS:SS ratio, \(1.07 \pm 0.01 \), determined in the non-isolated-muon sample. The difference in normalization between the two methods is taken as a systematic uncertainty on the MJ contribution. This systematic uncertainty also covers for potential differences between the b-tagged jets spectra in the signal and control samples.

To further improve the signal to background discrimination, we use multivariate techniques. A first neural network \(D_{\text{MJ}} \) is used to separate MJ background from the signal. Two \(D_{\text{MJ}} \) discriminants are trained, one for \(\tau_h \) types 1 and 3, and another for \(\tau_h \) type 2. They are based on \(p_T^\mu \), \(p_T^j \), \(\Delta z(\mu, \tau_h) \), \(H_T = \sum_{\text{jets}} p_T^j \), \(M_T(\text{All} O) \) (where the sum is performed over all objects), \(M_{\text{hat}} \), and \(M_{\text{col}} \). The quantity \(M_{\text{hat}} \) is defined as

\[
M_{\text{hat}} = \sqrt{(E_{\mu\tau_h}^\mu - \tilde{p}_T^{\tau_h} + \tilde{E}_T)^2 - \tilde{p}_T^{\tau_h} + \tilde{E}_T^2},
\]

where \(E_{\mu\tau_h}^\mu \) is the energy of the \(\tau_h \mu \) system, and \(\tilde{p}_T^{\tau_h} \) is its momentum along the beam axis. It represents the minimal center-of-mass energy consistent with a di-tau resonance.
The quantity M_{col} is the $\mu \tau_b$ invariant mass assuming neutrinos are emitted along the τ decay axis [25]. To address the $t\bar{t}$ background, we train a neural network D_f to discriminate against signals built from samples simulated at three consecutive Higgs boson masses, in order to increase the signal statistics. It is constructed from the variables $|\Delta \phi(\mu, \tau_b)|$, $|\Delta \phi(\mu, \ell_T)|$, H_T, $H_T + p_T^b + p_T^\tau$, ℓ_T, $M_{\text{MT}}(\text{AllO})$, $M_T(\mu, \ell_T)$, M_{MT}, M_{col}, $\hat{A}_T = (p_T^\mu - p_T^\tau)/p_T^\tau$, and N_{jets}, the total number of jets in the event. Finally, for events satisfying $D_f > 0.1$, we form a likelihood discriminant D_f which uses as input M_{MT}, D_f, N_{jets}, M_{MT}, and M_{MT}.

Systematic uncertainties are divided in two categories: those affecting only the normalizations and those also affecting the shapes of D_f distributions. Those affecting the dominant $Z + \text{jets}$ background modeling are evaluated with $Z \rightarrow \mu \mu$ samples: $Z + \text{jets}$ (3.2%) and $Z + b$-tagged jets (5%) normalizations, inclusive trigger efficiency (3%) which also affects all other simulated processes, Z boson kinematics (1%) which is shape-dependent. For non-Z boson and non-MJ backgrounds, we consider the uncertainties affecting the normalization: luminosity (6.1%), muon reconstruction efficiency (2.9%), τ_b reconstruction efficiency [(4–10)%], single muon triggers efficiency (1.3%), $t\bar{t}$ and diboson cross sections (11% and 7%), and the uncertainties affecting the shape of D_f: jet energy calibration (~10%) and b-tagging (~4%). The τ_b energy scale, and jet identification efficiencies have a negligible effect. The MJ background systematic uncertainties range from 10% to 40%.

The predicted background, signal, and data distributions of M_{MT} and D_f discriminant are shown in Fig. 1. The D_f distributions are used as input to a significance calculation using the modified frequentist approach [26,27]. We do not observe any significant excess over the expected background. We first set model independent limits (assuming the Higgs boson width is negligible compared to the experimental resolution) at the 95% C.L. on the signal cross section times branching fraction as a function of the Higgs boson mass; these are shown in Fig. 2(a). These limits are then translated into the $\tan \beta$, M_A plane for two MSSM benchmark scenarios [28]: the m_h^{max} and no-mixing scenarios. The MSSM to SM signal ratio as well as the Higgs boson width are calculated with the FEYNHIGGS program [29]. In this interpretation, we further include systematic uncertainties on the signal production cross section (15%) [8]. We also take into account the Higgs boson width using the method described in [8]. Figs. 2(b) and 2(c) present the limits for the two scenarios with the higgsino mass parameter $\mu = +200 \text{ GeV}/c^2$. Numerical results and limits in other MSSM scenario are presented in [30]. We exclude a substantial region of the MSSM parameter space, especially at low M_A, and set the most stringent limit to date at a hadron collider, when using this final state.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

Deceased.

††With visitors from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.

§With visitors from Centro de Investigacion en Computacion-IPN, Mexico City, Mexico.

With visitors from ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico.

†With visitors from Augustana College, Sioux Falls, SD, USA.

†With visitors from The University of Liverpool, Liverpool, United Kingdom.

‡With visitors from SLAC, Menlo Park, CA, USA.

§With visitors from Centro de Investigacion en Computacion-IPN, Mexico City, Mexico.

††With visitors from Universitat Bern, Bern, Switzerland.

FIG. 2 (color online). (a) Model independent cross section times branching ratio limit as a function of m_h, (b) $\tan \beta$ vs M_A limit in the MSSM m_h^{max} scenario, and (c) in the MSSN no-mixing scenario.
The pseudorapidity \(\eta \) is defined relative to the center of the detector as \(\eta = -\ln[\tan(\theta/2)] \) where \(\theta \) is the polar angle with respect to the proton beam direction.

