11-2015

Using Partial Confinement Systems for Beef Cattle Production

Karla Jenkins

Follow this and additional works at: http://digitalcommons.unl.edu/rangebeefcowsymp

http://digitalcommons.unl.edu/rangebeefcowsymp/332

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Range Beef Cow Symposium by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Using Partial Confinement Systems for Beef Cattle Production

Karla H. Jenkins
Cow/Calf, Range Management Specialist

Why would we ever consider confining production cows?

Availability of Grass Reduced

- Chronic Drought Conditions
- More crop production acres
- Urbanization
- Increased value of grass

Availability of Grass Reduced

- Increased Value of Grass
 - Rethinking the utilization of grass
 - High quality grass for gain
 - Residues for maintenance

Confinement Feeding Cows

Research vs. Production

- First two years research study was total confinement
- Studied all phases of the production cycle in confinement
- Last year and this year research is a systems approach
- Every producer has a unique system and therefore must determine what will work best for any given operation

2015 Range Beef Cow Symposium, Loveland, Colo.
Thinking Outside the Box

Thinking Outside the Box

Thinking Outside the Box

Thinking Outside the Box

Limit Feeding Confinement Cows

- Energy dense by products can be mixed with low quality crop residues
- Dry matter intake can be limited
- Cow condition can be maintained because nutrient needs are being met

Key Concepts for Limit Feeding Cows in Confinement
Knowing the Nutrient Content of Feedstuffs

<table>
<thead>
<tr>
<th>Ingredient¹</th>
<th>TDN (%DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn distillers grains (wet, dry, modified) and solubles</td>
<td>108</td>
</tr>
<tr>
<td>Sugar beet pulp</td>
<td>90</td>
</tr>
<tr>
<td>Soyhulls</td>
<td>70</td>
</tr>
<tr>
<td>Synergy</td>
<td>105</td>
</tr>
<tr>
<td>Corn gluten feed</td>
<td>100</td>
</tr>
<tr>
<td>Midds</td>
<td>75</td>
</tr>
<tr>
<td>Corn</td>
<td>83</td>
</tr>
<tr>
<td>Wheat straw/corn stalks</td>
<td>43</td>
</tr>
<tr>
<td>Meadow Hay</td>
<td>57</td>
</tr>
</tbody>
</table>

¹Feeding trials reported in NE Beef Report 1987, p.4; '88 p. 34; '93, p. 46; midds data from KSU Research Report

Understanding Nutrient Requirements

Accounting for the Dry Matter Intake of the Calf

<table>
<thead>
<tr>
<th>Diet (DM ratio)</th>
<th>Ingredients</th>
<th>Late Gestation Cow</th>
<th>Lactating Cow</th>
<th>Cow with 60 d old calf</th>
</tr>
</thead>
<tbody>
<tr>
<td>57:43</td>
<td>Distillers grains: straw</td>
<td>15.0</td>
<td>18.0</td>
<td>20.0</td>
</tr>
<tr>
<td>30:70</td>
<td>Distillers grains: straw</td>
<td>19.2</td>
<td>23.0</td>
<td>25.6</td>
</tr>
<tr>
<td>40:20:40</td>
<td>Distillers grains: straw: silage</td>
<td>15.4</td>
<td>18.5</td>
<td>20.6</td>
</tr>
<tr>
<td>20:35:45</td>
<td>Distillers grains: straw: beet pulp</td>
<td>14.6</td>
<td>17.5</td>
<td>19.4</td>
</tr>
</tbody>
</table>

Dry matter intake, lb
Limit Feeding Lactating Cows in Confinement

Year 1
- Lactation diet after 90 days (DM basis)
- 60% Wet Distillers
- 40% Straw/stalks
- Early weaned cows 15 lb DM
- Late weaned pairs 22 lb DM

Year 2
- Lactation diet after 90 days (DM basis)
- 40% Wet Distillers
- 20% Straw/stalks
- 40% Corn silage
- Early weaned cows 15.5 lb DM
- Late weaned pairs 24.9 lb DM

Daily DMI By Weaning Treatment

Performance of cows by location and weaning treatment. Yr 1 & 2

Performance calves by location and weaning treatment. Year 1 & 2
Energy Savings vs Management Tool

- Similar performance at equal intake suggests early weaning did not result in feed energy savings but may allow more flexible management options

<table>
<thead>
<tr>
<th>Impact of Early Weaning on Pregnancy Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>EW</td>
</tr>
<tr>
<td>% Pregnant</td>
</tr>
<tr>
<td>$P > 0.88$</td>
</tr>
</tbody>
</table>

Calf Health in Confinement

- Modified Sandhills Calving System
- Calves with 2 week age difference not allowed in the same pen
- No co-mingling of calf ages until after the youngest calves were over 4 weeks old

Calf Health Issues

- Minimal Health Issues prior to early weaning
- Shade is important for summer calves
- Exposure to temperature changes, newly arrived feeder calves, and decreased passive immunity caused respiratory challenge at both locations in different years

Considerations for Breeding in Confinement

- Cows may be close to handling facilities
 - Incorporating synchronization and AI
- Bulls need 15-18 lb TDN and another 2 ft. of bunk space

2015 Range Beef Cow Symposium, Loveland, Colo.
Our Experience
- Calves learned to eat with their mothers
- Learned what the feed truck was

Management Considerations
- Water
 - Calves learned to drink from trough within a few days of age.
 - No cases of calves dehydrating during summer.
- Bunk space
 - 2 ft/hd (adult cattle) & 1-1.5 ft/hd (calves).
- Pen space
 - 350 – 400 ft²/hd.

Confinement Feeding outside the Feedlot
- Limit feeding on pasture
 - Cattle will continue to consume forage if allowed
 - Pastures could continue to suffer overgrazing
 - Use winter feeding ground, crop ground, pivot corners

2015 Range Beef Cow Symposium, Loveland, Colo.
Supplement fed to cow-calf pairs on cornstalks\(^1\,^2\).

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dried distillers grains plus solubles</td>
<td>94.51</td>
</tr>
<tr>
<td>Limestone</td>
<td>3.56</td>
</tr>
<tr>
<td>Pelleting binder</td>
<td>1.88</td>
</tr>
<tr>
<td>Vitamin A,D,E</td>
<td>0.11</td>
</tr>
</tbody>
</table>

\(^1\) All values presented on a DM basis.
\(^2\) Fed at 3.2 lb per pair per day (DM).

Cow BW by location and wintering treatment, lb.

<table>
<thead>
<tr>
<th>Item</th>
<th>ARDC</th>
<th>PREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>1222</td>
<td>1217</td>
</tr>
<tr>
<td>DL</td>
<td>1257</td>
<td>1247</td>
</tr>
<tr>
<td>Ending</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>1125</td>
<td>1339</td>
</tr>
<tr>
<td>DL</td>
<td>1271</td>
<td>1307</td>
</tr>
</tbody>
</table>

ARDC

Initial
SEM = 80
P = 0.83

Ending
SEM = 64
P = 0.03

PREC

Initial
SEM = 137
P = 0.69

Ending
SEM = 146
P = 0.34

Calf BW by location and wintering treatment, lb.

<table>
<thead>
<tr>
<th>Item</th>
<th>ARDC</th>
<th>PREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>319</td>
<td>320</td>
</tr>
<tr>
<td>DL</td>
<td>306</td>
<td>312</td>
</tr>
<tr>
<td>Ending</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>558</td>
<td>672</td>
</tr>
<tr>
<td>DL</td>
<td>525</td>
<td>512</td>
</tr>
</tbody>
</table>

ARDC

Initial
SEM = 9
P = 0.00

Ending
SEM = 19
P = 0.02

PREC

Initial
SEM = 22
P = 0.27

Ending
SEM = 46
P = 0.57

Calf ADG, lb

ARDC

SEM = 0.09
P < 0.01

PREC

SEM = 0.18
P = 0.50

Cow Pregnancy Rate, %

ARDC CS | ARDC DL | PHREC CS | PHREC DL

90 | 100* | 93 | 100

Base Analysis Prices | $/ton
Grass 5/4 | 1.37
Cornstalks 5/4 | 0.94
Distillers 5/2 DM | 0.02
Hay 5/2 DM | 0.01
Stalk/Straw 5/2 DM | 0.01
Mineral 5/4 | 0.10
Salt 5/4 | 0.10

Base price of 114/220 at 40% DM + $5 for delivery.
Base price of 58/10 at 40% DM + $5 for delivery.
Base price of 58/10 at 40% DM + $5 for delivery.

2015 Range Beef Cow Symposium, Loveland, Colo.
Summary

- Energy density is the key to limit feeding
- Lactation increases energy needs considerably
- Consider early weaning options
- Confined calves must be able to reach water and feed
- Limit fed cows need ample bunk space and a consistent feeding routine

Summary Cont.

- Each producer needs to evaluate their resources and system options to see what might work best
- As prices change systems should be re-evaluated

Table

<table>
<thead>
<tr>
<th>Scenario</th>
<th>DSL Grass/Grain</th>
<th>DSL Stalks/Grain</th>
<th>Confinement/Grain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grazing Grass if</td>
<td>300.60</td>
<td>299.05</td>
<td>0.00</td>
</tr>
<tr>
<td>Grazing Stalks if</td>
<td>294.70</td>
<td>136.10</td>
<td>135.78</td>
</tr>
<tr>
<td>Hay Bales</td>
<td>154.00</td>
<td>77.32</td>
<td>0.00</td>
</tr>
<tr>
<td>Baled Stalks/Grain</td>
<td>0.00</td>
<td>27.80</td>
<td>175.00</td>
</tr>
<tr>
<td>DGS Bales</td>
<td>298.30</td>
<td>22.12</td>
<td>253.12</td>
</tr>
<tr>
<td>DGS if</td>
<td>410.10</td>
<td>215.20</td>
<td>282.08</td>
</tr>
<tr>
<td>Supplement if</td>
<td>106.00</td>
<td>16.00</td>
<td>310.00</td>
</tr>
<tr>
<td>Labor if</td>
<td>270.00</td>
<td>480.00</td>
<td>480.00</td>
</tr>
<tr>
<td>Cow cost</td>
<td>250.00</td>
<td>250.00</td>
<td>250.00</td>
</tr>
<tr>
<td>Total Cost per Cow</td>
<td>914.50</td>
<td>914.50</td>
<td>914.50</td>
</tr>
<tr>
<td>UCOP at 100% weaned/exposed</td>
<td>1.510</td>
<td>1.510</td>
<td>1.510</td>
</tr>
<tr>
<td>UCOP at 50% weaned/exposed</td>
<td>1.550</td>
<td>1.550</td>
<td>1.550</td>
</tr>
</tbody>
</table>

Contact Information

kjenkins2@unl.edu
(308) 632-1245
beef.unl.edu