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a b s t r a c t

The compound effects of changing habitats, ecosystem interactions, and fishing practices have implica-
tions for the management of Antarctic krill and conservation of its predators. For Antarctic pack-ice seals,
an important group of krill predators, we estimate the density and krill consumption in the West Antarctic
Peninsula (WAP)–Western Weddell Sea area, the main fishery region; and we consider long-term changes
in suitable pack-ice habitat, increased fishing pressure and potential krill declines based upon predictions
from declines in sea ice cover. More than 3 million crabeater seals consumed over 12 million tonnes of krill
each year. This was approximately 17% of the krill standing stock. The highest densities of pack ice seals
where found in the WAP, including in its small-scale fishery management areas, where apparently suitable
seal habitat has declined by 21–28% over a 30 year period, where krill density is likely to have declined,
and fishing has increased. The highest seal density was found in the Marguerite Bay area which is a source
of krill for the Antarctic Peninsula and elsewhere. Significant sea-ice loss since 1979 has already occurred,
leading to open water and possible expansion for the fishery in the future. These factors may combine to
potentially reduce food for pack ice seals. Therefore, high uncertainty in krill and seal stock trends and in
their environmental drivers call for a precautionary management of the krill fishery, in the absence of sur-
vey data to support management based on specific conservation objectives for pack-ice seals.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Antarctic krill (Euphausia superba) is most abundant in the Sco-
tia Sea, Antarctic Peninsula and Western Weddell Sea regions
where more than half of the world’s biomass is thought to be pres-
ent (Atkinson et al., 2009). It is a keystone species that sustains
millions of predators, and a fishery that operates almost exclu-
sively in this area but is currently thought to under-exploit the po-
tential yield of the stock (Nicol et al., 2011). Increasing habitat
deterioration, ecosystem fluctuation and new fishing practices
combine to create a high level of uncertainty that needs to be
incorporated within fisheries management. In this region, a spe-
cific management objective is to prevent irreversible declines in
krill-dependent predators and this includes the crabeater seals
(Lobodon carcinophaga).

In the Scotia Sea–Weddell Sea region, pack-ice seals and
specifically crabeater seals have been identified as the major krill
consumers (CCAMLR, 2008); over 90% of crabeater seals’ diet is
estimated to be krill. Krill is also important for leopard seals
(Hydrurga leptonyx), but may be less important for Weddell
(Leptonychotes weddelli) and Ross seals (Ommatophoca rossii) (Laws,
1984; Øristland, 1977; Siniff and Stone, 1985). In recent decades,
rapid environmental change (Meredith and King, 2005; Parkinson,
2004; Stammerjohn et al., 2008;Whitehouse et al., 2008) is having
a significant effect on some populations of different krill predators
(Ducklow et al., 2007; Forcada et al., 2006, 2008; Fraser and Hof-
mann, 2003; Trivelpece et al., 2011). For pack-ice seals, climate
change leads to sea ice loss, which reduces suitable breeding and
resting habitat. Sea ice also affords protection from predators (Siniff
et al., 2008; Costa et al., 2010), and its loss also increases the dis-
tance to areas that concentrate prey (Burns et al., 2004; Southwell
et al., 2005). Sea ice loss has also been associated with declines in
krill biomass (Atkinson et al., 2004), particularly in the West
Antarctic Peninsula region, where predator responses to regional
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warming over recent decades suggest a less predictable krill supply
(Fraser and Hofmann, 2003; Trivelpece et al., 2011).

The loss of winter sea ice in the Antarctic Peninsula has also al-
lowed a temporal and geographical expansion of the krill fishery,
coupled with new markets and technologies (Kawaguchi et al.,
2009; Nicol et al., 2011). Consequently, total catches and catch
rates per vessel have increased significantly over the last decade
(CCAMLR, 2011; Nicol et al., 2011), especially in FAO management
Area 48.1 which includes parts of the Scotia Sea, the Western Wed-
dell Sea (WWS), and the WAP (Fig. 1). Even though current fishing
is thought to be sustainable, because catches are extracted mainly
from coastal areas where predators have a limited capacity to shift
distribution in response to local depletion by a fishery (Trivelpece
et al., 2011), there are concerns about the effects of the fishery on
krill populations and krill predators (e.g. Schiermeier, 2010). While
a procedure for small-scale area management has been advocated
(Hewitt et al., 2004), it does not take into account uncertainty asso-
ciated with observed sea ice loss or a potentially declining krill bio-
mass and the consequences for predators.

In this paper we consider the consequences of climate change
and increased krill fishing for Antarctic pack-ice seals. We: (1) re-
port the density of pack-ice seals in the WAP–WWS area in relation
to the sea-ice environment, at a resolution compatible with the
krill fishery small scale management areas; (2) address the long-
term change, from 1979 to 2011, in suitable pack-ice seal habitat;
(3) relate estimated krill consumption of pack-ice seals to available
biomass, as estimated in a synoptic survey in 2000, and commer-
cial extraction in Area 48.1; and (4) address the regional sensitivity
of pack-ice seals to trends in the physical-biological environment
and the fishery operation.

2. Materials and methods

2.1. Study area and data collection

The study area lies between 90� and 30�W and 80� and 60�S
(Fig. 1). Particular sub-areas of interest were: the WAP and

WWS, separated at the northernmost tip of the Antarctic Peninsula
(approximately 63.5�S); the Marguerite Bay area (MBA), between
78� and 66�W and 70–66.5�S; and FAO Area 48.1, which includes
specific Small Scale Management Units (SSMUs; Hewitt et al.,
2004), where the krill fishery operates. Seal habitat was considered
to be the pack-ice, limited by the ice-edge and areas covered by
fast-ice, shelf-ice, continental-ice or ice-free land. The ice edge
was defined using the bootstrap algorithm for sea ice concentra-
tions from Nimbus-7 SMMR and DMSP SSM/I (Comiso, 1999), pro-
ducing a composite sea ice map for the survey period with 0.2� lat/
lon grid cell resolution.

Pack-ice seal line-transect data were collected in an aerial sur-
vey conducted as the UK contribution to the Antarctic Pack Ice
Seals (APIS) programme (Anonymous, 1995). The survey occurred
between 22 and 29 January 1999, using a De Havilland Canada
DHC-6 Series 300 Twin Otter aircraft operated by the British Ant-
arctic Survey. Transects were placed to effectively sample the
pack-ice habitat according to its configuration on the West and
East sides of the Antarctic Peninsula (Fig. 1), given the range limits
and operational capacity of the aircraft. Transects did not follow a
systematic design.

Observers at each side of the aircraft searched for seals hauled
out on ice, measuring perpendicular distances to the trackline from
the aircraft to sightings of seal aggregations while flying at con-
stant speed and altitude. A semi-automated system (Southwell
et al., 2002) logged the data to ensure maximum sighting effi-
ciency. In one transect, paired observers searched independently
on the same side of the aircraft to collect double observer data to
estimate detectability bias on the trackline. Effects of observer
(ob), group size (gs), and species (s) were collected to model heter-
ogeneity in detectability. Species had four categories: cs crabeater,
ws Weddell, ls leopard, and us unidentified seal; Ross seal sightings
were only confirmed on one occasion and thus were excluded from
the analysis. Visibility directly underneath the flying path was ob-
structed within the first 100 m to each side of the aircraft.

Year round seal activity data with daily resolution, partitioned
when possible as duration of haul-out (h), diving (d), and at the

Fig. 1. Study area with aerial survey effort (thick line) for pack ice seals between 22 and 29 January 1999 (thick solid lines). FAO Area 48.1, including numbered CCAMLR
SSMUs (solid line polygon), MBA (dotted line polygon), and sea ice environment. Sea ice concentration of 25% or above is in darker grey; ice concentrations below 15% are less
reliable. FAO Area 48.1 extends to 70�S including the Marguerite Bay area, but with a lower longitudinal extent than the dotted area delimitation.
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surface (o), were collected to model haul out probability to correct
on-ice abundance estimates, and activity budgets to model seal
bioenergetics. Satellite-linked dive recorders (SDRs) and satellite
relay data loggers (SRDLs) were attached to seals in different re-
search projects: SRDL data from 34 crabeater seals in the Margue-
rite Bay area in 2001 and 2002 (Burns et al., 2004; Costa et al.,
2010); SDR data from 24 crabeater seals from East Antarctica
(Southwell, 2005); and SDR data from 11 leopard seals in East Ant-
arctica (Southwell et al., 2008b; Rogers et al., 2005). SRDL data
from 9 Weddell seals were collected during research cruises of
the MBA (Costa et al., 2010) and central Southern Weddell Sea in
2007 (Nicholls et al., 2008).

2.2. Spatial density and abundance analysis

We estimated absolute seal density and abundance with the
count method for line transect data (Hedley and Buckland, 2004).
Transects were divided into approximately 5-km long segments
and in the ith segment, the number of seals of species s n̂s

i wasP
jn

s
ij

.
ðp̂s

ijĥ
s
ijÞ, where ns

ij is the number of hauled out seals in group
j of segment i; p̂s

ij is the probability of detecting hauled-out seals
within 900 m of the centre of the segment; and ĥs

ij is the haul-
out probability at a specific time and day of the year.

Perpendicular sighting distances (x) were truncated to the range
100–900 m, and p̂s

ij was estimated with the point independence
method (Laake and Borchers, 2004), where detection probability
for the observer team was p̂sðx; yÞ ¼ p̂sð0; yÞ ĝsðx; yÞ; y is a vector
of sighting covariates; p̂sð0; yÞ is the detection probability at track-
line assuming independent detection between observers; and
ĝsðx; yÞ is a multivariate detection function model (Marques and
Buckland, 2003) of combined x of the observer team, assuming
ĝsð0; yÞ ¼ 1. We estimated p̂sð0; yÞ with a logistic model with Ber-
noulli error using double observer mark-recapture data, and pool-
ing across species. The detection probability function shape ĝsðx; yÞ
assumed a multi-covariate half-normal model (Fig. 2; Supplemen-
tary material 1). We used package mrds of program R (2009), part
of program Distance (Thomas et al., 2010), to estimate p̂sðx; yÞ.

We estimated ĥs
ij using data for the survey period, pooling

across regions, years and studies because of small sample size.
When the tags transmitted, the time hauling out in each hour

was expressed as a proportion. The ĥs
i were then estimated with

Generalized Additive Models (GAMs) with binomial error structure
and logit-scale response (Southwell et al., 2008a,b) with haul out
proportions as response and day of the year and time of the day
as smoothed predictors. We used package mgcv of program R,
selecting thin plate regression splines with shrinkage as smoothers
(Wood, 2006). The degree of smoothing was selected by minimum
GCV/UBRE scores, controlling for over-fitting with a gamma multi-
plier of 1.4.

The n̂s
i were modelled with a generalized additive mixed model

(GAMM) and spatially-explicit explanatory variables (z): latitude
(lat) and longitude (lon) converted to west-east and south-north
distances in km, sea ice concentration (iceCon), distance to the
sea ice edge (iceDist), distance to the shelf break (from pack-ice
to closest 1000 m depth contour; shBreak), distance to nearest
coast (coast), ocean depth (depth) and slope index (slope). Bathy-
metric data were from GEBCO 1-minute dataset (IOC et al.,
2003). Two additional effects tested were species and the factor
E_W which assumed different effects for the East and West of the
Antarctic Peninsula.

The distribution of n̂s
i was highly skewed by a high proportion of

zeros and thus we considered a family of Tweedie distributions or a
negative binomial distribution as possible error structures. The
best distribution was selected through residual plot diagnostics
(Supplementary material 1). The general model structure was

Eðns
i Þ ¼ ðsi; liwÞ exp½Xibþ

X
fkðzi;kÞ þ Zib� þ �i ð1Þ

where si is segment sampling fraction, 1 or 2, depending on sides of
the aircraft observed; li is segment length; w is perpendicular dis-
tance right-truncation (900 m); b is a fixed effects vector; Xi is a
fixed effects model matrix; fk(zi,k) are one-dimensional smoothers
of k spatially referenced covariates; Z is a random effects model ma-
trix with b � N(0, wh); and residual error ei, with �i � Nð0;KÞ and
covariance matrix K. Autocorrelation in residuals was modelled
with autoregressive AR(q) and moving average MA(r) models (Pin-
heiro and Bates, 2000), as �t ¼

Pq
i¼1/i�t�i þ

Pr
j¼1.jat�j þ at . Seg-

ments per survey day were considered sequentially at integer
intervals, from i = 1 to t. In the ith segment, an AR(q) model as-
sumed that ns

i was linearly related to up to q previous segments,

Fig. 2. Fitted detection probability models ĝ � ðx; yÞ by observer and group size class (1, 2, 3, 4 and 5+), scaled to 1 at ĝ � ð0; yÞ. Dots show the observations, scaling down
detectability with lower group size (size-biased detection), and the solid line shows an averaged estimate across group size class by observer.

42 J. Forcada et al. / Biological Conservation 149 (2012) 40–50



and a MA(r) model assumed that the ns
i more than r segments apart

were uncorrelated.
We used covariate correlation plots and PCA (Supplementary

material 1) to examine spatial covariances, and explored GAMs
excluding combinations of highly correlated covariates for compet-
itive model structures. Covariates retained decreased the GCV
score and increased the amount of deviance explained by 1–2%
at least. Then, comparable GAMMs, selected with AIC, BIC and
autocorrelation plots, were fitted to predict Eðn̂s

i Þ, apportioning
unidentified seals by segment Eðn̂us

i Þ as Eðn̂s
i Þ
� ¼ Eðn̂s

i Þþ

Eðn̂us
i Þ

Eðn̂s
i
ÞP

k¼s
Eðn̂s

i
Þ

� �
.

Abundance was obtained integrating a density surface pre-
dicted with the best GAMM over the pack-ice habitat for areas of
interest: total pack-ice area (90–30�W and 60–80�S), WAP, WWS,
MBA, FAO 48.1, and CCAMLR-SSMUs (Fig. 1).

We estimated variability with a nonparametric bootstrap. At
each of 999 bootstraps, we combined: a sample with replacement
of the entire haul-out records of each seal to obtain ĥs

ij; a moving
blocks sample with replacement (Davison and Hinkley, 1997) of
segments with double observer data to estimate p̂ð0; yÞ; and a
moving blocks sample with replacement of all transects to esti-
mate p̂sðx; yÞ and derived parameters. Sampling blocks comprised
five contiguous segments, approximately 25 km of effort, thus pre-
serving the original autocorrelation within survey day. With each
bootstrap a new GAMM was fitted to predict abundance, and con-
fidence intervals were obtained with the percentile method.

2.3. Suitable seal habitat analysis

We used a presence-absence model corrected for detectability
bias as response variable and environmental predictors to investi-
gate suitable seal habitat. The Eðn̂s

i Þ were transformed into 1 and 0
for segments with and without seals. We used a GAM with a bino-
mial error structure allowing for extra-binomial variation, and lo-
git-scale response. Model selection followed the same procedure
as above. The GAM predicted suitable pack-ice seal habitat based
upon sea ice concentration and cover measured with the satellite
record (1979–2011), and the habitat selection model of observed
sea ice concentration and cover at the time of the survey as predic-
tors of seal habitat. We bootstrapped the data as above to estimate
variability. At each bootstrap replicate total suitable habitat was
predicted for the time series, and simple linear and non-linear
(GAM) regression models were fitted to investigate long term
trends.

2.4. Krill consumption by pack-ice seals

Krill consumption over a year was modelled with a bioenergetic
scheme for phocids (Worthy, 2001) modified as in Forcada et al.
(2009) for crabeater, Weddell and leopard seals (Supplementary
material 2). Daily ingested energy (Ie) depended on energy require-
ments (ej), and processing costs including digestive efficiency (de),
urinary loss (ue), and heat increment of feeding (hi). This was ex-
pressed as Ie ¼

P
jej½1� ð1� deÞð1� ueÞ � Ijhi��1, where energy

requirements for growth (eg), reproduction (er), resting at haul-
out (eh), diving (ed), and other activity (eo) depended on age, body
mass (bm) and sex. Ij was an indicator variable with value 1 if
requirement r did not account for hi, and 0 otherwise.

Growth energy eg depended on the expected increment of bm at
age, with age classes selected according to best available bm at age
data, which corresponded to ages 0–25, 0–18, and 0–12 for cra-
beater, Weddell and leopard seals respectively; the highest classes
aggregated ages from that value and above (Supplementary mate-
rial 2). The interannual bm increment was used to estimate annual

balance in total body gross energy (tbge; Reilly and Fedak, 1991),
assuming isometric growth for lipid, protein, and total body water
(tbw) increment.

An annual activity cycle for crabeater and Weddell seals with
daily resolution was obtained combining available SDR/SRDL data,
aggregating daily activity into times spent hauling out (h), diving
(d), and cruising (o). A multinomial logit model estimated the daily
proportion of time at each activity, with a factor with a level for
each activity grouping multinomial observations. We fitted a Pois-
son GAM with log-scale response (h, d or o), and as predictors the
activity factor and a smooth of day of the year by each factor level.
The GAM predicted daily h, d and o, which were scaled to sum to 1.
Variance was obtained by bootstrapping with replacement the en-
tire records of instrumented seals. For leopard seals, tracking data
were very limited and we combined published results in Kuhn
et al. (2006) with SDR data from Southwell et al. (2008b) to provide
an annually averaged estimate of h, the complement of which was
time spent diving and cruising combined.

The er in females included production of foetal tissue (pup at
birth and placenta), predicted pregnancy energy increment using
Brody’s (1945) model for mammals, 18.48 bm1.2, and lactation
costs. Costs of activity were selected as multipliers of basal meta-
bolic rate (bmr) from Kleiber’s equation (1961), derived from data
on Weddell seals (Castellini et al., 1992) (Supplementary material
2).

In what follows, scalars are in italics, in bold and lowercase are
column vectors, and in bold and uppercase are matrices. Super-
script T stands for transpose and products are scalar except for ma-
trix Hadamart product (�).

Annual energy requirements by age of females and males were

eF ¼ ½ðehhT þ eddT þ eooT þ fer þ EgÞ � S�I ð2Þ

and

eM ¼ ½ðehhT þ eddT þ eooT þ EgÞ � S�I ð3Þ

where eh, ed, and eo are age class vectors of costs of hauling out, div-
ing and other activity; h, d, and o are vectors of daily predicted
activity budgets; f is a vector of fertility at age; er is a vector of daily
reproductive costs; Eg is a matrix of daily growth costs by age; S is a
matrix of daily survival rate by age; and I is column vector of ones
and size 365, representing each day of the year.

Ingested energy IeF in females (similarly for males, IeM) was
IeF ¼ eF ½1� ð1� deÞð1� ueÞ � hi��1, where ue was 0.08
(SD = 0.009) and hi was 0.16 (SE = 0.01) (Worthy, 2001), and krill
de was 0.84 (SE = 0.002) (Mårtensson et al., 1994). Per capita krill
consumption for females (kF) and males (kM) at age was
kF ¼ ieF

kd
ke. The proportion of krill in the diet (kd) was selected as

0.95 (SE = 0.048) for crabeater seals, 0.01 (SD = 0.001) for Weddell
seals, and 0.40 (SD = 0. 04) for leopard seals (Laws, 1984; Øristland,
1977; Siniff and Stone, 1985; BAS, unpublished). Mean krill energy
(ke) was 3.7 MJ kg�1 (SE = 0.36) (Clarke, 1980).

Annual estimated krill consumption ðckcÞwas ½srkF þ ð1� srÞkM�
ðn̂wÞ, where sr is the sex ratio, assumed to be 0.5; n̂ is the abun-
dance of seals; and w is the stable age structure vector scaled to
sum 1. We obtained w using survival and fecundity rates (Supple-
mentary material 2) transformed into fertilities for a post-breeding
census, in a matrix population model of equal dimensions as the
maximum age class for each species. With it we obtained the stable
age structure (w) as the right eigenvector (w1) associated to the
dominant eigenvalue (k1) (Caswell, 2001).

This Monte Carlo model produced krill consumption estimates
for pack-ice seals in different areas, assuming that seal and krill
stocks were geographically closed because there were no compre-
hensive data on seasonal movements of either group. In the MBA,
however, we allowed for inter and intra-annual variation (2001–
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2002) in krill density. All estimates were obtained by combining
the empirical results from the abundance and activity analyses
with estimates of other parameters using 100,000 simulations
(Supplementary material 2).

We generated log-normal krill density deviates by area accord-
ing to published density estimates for the MBA (Lawson et al.,
2008), and for the Scotia Sea and Antarctic Peninsula in 2000
(Fielding et al., 2011) at a spatial resolution of the coastal SSMUs
in FAO Area 48.1. Krill densities were used to address seal demands
with the uncertainty associated to these levels of resolution, and in
comparison with standing stock estimates and reported catches
(CCAMLR, 2011).

3. Results

3.1. Pack-ice seal survey

Total survey effort with optimum visibility was 2809 km of
which 903 were in the WAP and 1906 in the WWS. It was orga-
nized in 561 segments, 178 in the WAP and 383 in the WWS. This
corresponded to a prospected area of 24,658 km2, which was 2.1%
of the total area, of which 7484 km2 was in the WAP (4.4% of WAP)
and 17 174 km2 in the WWS (1.7% of WWS). Total seal group
sightings on effort were 2521, 1648 in WAP and 873 in WWS.
The majority of the sightings were identified as crabeater seals
(Table 1), with Ross seals only identified in one occasion.

3.1.1. Detection probability
Model selection of p̂ ðx; yÞ components is summarized in Sup-

plementary material 1. Species effects were discarded because
leopard seals were only detected on 13 occasions, and unidentified
seals were detected at distances of 200 m and beyond, precluding
accurate and monotonically decreasing models. The transect with a
double observer platform was 170.5 km long and produced 291
sightings, of which 213 were by the 1st observer, 224 by the 2nd
and 146 by both. Models of p̂ ð0; yÞ retained observer effects, and
the mean p̂1ð0Þ was estimated as 0.681 (95% CI: 0.583–0.779),
the mean p̂2ð0Þ as 0.866 (0.804–0.929), and a combined p̂ ð0Þ as
0.951 (0.941–0.956). The best model for ĝ ðx; yÞ included observer
and group size effects, accounting for size-biased detection in both
observers (Fig. 2). Observer 1 detected more groups than observer 2
(1323 vs. 1198), but observer 2 detected more groups of sizes 3 and
above. Mean �̂g ðx; yÞ was estimated as 0.400 (0.384–0.416). Com-
bining p̂ ð0Þ and ĝ ðx; yÞ, mean �̂p ðx; yÞwas 0.382 (0.354–0.420). Bias
corrected estimates of expected mean group size were obtained
with these models (Table 1); the sizes of detected crabeater seal
groups ranged from 1 to 17, of Weddell seals from 1 to 10, and
all leopard seals were detected as individuals. Regional differences
by species were non-significant.

Most of the survey was conducted between 11:00 and 17:00,
which corresponded to a mean haul-out probability ð�̂hÞ of 0.640

(0.409–0.872) for crabeater seals, 0.648 (0.572–0.725) for Weddell
seals, and 0.590 (0.567–0.612) for leopard seals.

3.1.2. Spatial models and pack-ice seal absolute density and
abundance

The wide latitudinal and narrow longitudinal configuration of
the Antarctic Peninsula caused strong correlations between lat
and lon, and between lat, lon and coast, depth and shBreak. The
PCA (Supplementary material 1) produced a first component with
location and topographic variables explaining 45% of the variance
among segments, and a second (22%) and a third (15%) compo-
nents with the highest correlations with sea ice variables. This sup-
ported a stratification of effort by sub-regions, with subsequent
models of seal density including E_W, shBreak, lat, lon and ice
variables.

GAMs with a Tweedie error distribution and c = 1.2 provided
the best fit, with most of the deviance explained by species and
E_W (Supplementary material 1; Fig. S1.5 and Table S1.5). The best
GAMs, with lowest GCV and AIC, included species, the interaction of
species and E_W and either shBreak, or lon and lat. Both options ex-
plained approximately 68% of the deviance and had comparable
AIC, but the non-uniform distribution of survey effort prevented
the effective use of lat-lon two-dimensional smooths for predic-
tion. Because lon had a highly variable smoother plot and effects
comparable to E_W we retained models with shBreak instead.

The GAMMs included species, species:E_W and shBreak and addi-
tional effects were selected among uncorrelated variables. The best
GAMM had a smooth of shBreak, a linear interaction of iceDist and
E_W, and an autoregressive residual structure of order 1. This mod-
el had an adjusted R2 of 0.498 (Tables S1.6 and S1.7, Supplemen-
tary material 1), and predicted density surfaces covering the
study area for crabeater, Weddell and leopard seals (Fig. 3).

Absolute density and abundance estimates (Table 2) were much
higher in the WAP than in the WWS for all species. Density was
over nine times higher for crabeater seals, and approximately four
times higher for the other species. Crabeater seals were highly
abundant throughout the entire survey habitat and the highest
density was found in the MBA. The abundance of leopard seals
was very small throughout the entire area.

3.2. Projected suitable habitat for pack-ice seals

The best GAM included species and E_W as categorical variables
and smooths of shBreak and iceCon as predictors. Based on this
model, there were no appreciable trends in suitable seal habitat
in the WWS. In contrast, there was significant directional loss in
areas of the WAP (Fig. 4, Table 4) and especially in the MBA. There
were also declines in FAO Area 48.1 for crabeater and Weddell
seals, and in SSMUs 2, 5 and 6 for crabeater and leopard seals
and in SSMU 8 for leopard seals. The pattern of suitable habitat loss
was highly consistent with a decline in sea ice cover at the WAP,
which was of 47% (SD = 9) from 1979 to 2011, with an annual de-
cline 1.4% (SD = 0.3). For the MBA, the long-term loss of sea ice cov-
er was 66% (SD = 12) and an annual decline of 2% (SD = 0.4%). All
SSMUs which showed long term declines were in the WAP.

3.3. Seal energetics and krill consumption

The maximum diving activity was during the winter months,
when seals accumulate fat reserves after the moult and before
the new pupping season. The maximum haul-out probabilities
were between late spring and summer, during breeding and the
subsequent moult. Daily activity probabilities for crabeater and
Weddell seals over a year long period are shown in Fig. S2.2a
and b of Supplementary material 2.

Table 1
Numbers of seal groups sighted, by species and region with estimated bias-corrected
mean group size Eðcgss Þ, and 95% bootstrap confidence intervals in parentheses.

West Antarctic
Peninsula

Western
Weddell Sea

All regions

Crabeater seal 1 338 612 1 950
1.71 (1.55–1.89) 1.52 (1.33–1.75) 1.65 (1.51–1.79)

Weddell seal 166 134 300
1.36 (1.10–1.69) 1.21 (1.06–1.39) 1.29 (1.13–1.48)

Leopard seal 5 8 13
1 1 1

Unidentified seal 136 122 258
1.21 (1.10–1.37) 1.12 (1.06–1.19) 1.17 (1.10–1.26)
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Limited data for leopard seals only allowed for minimum esti-
mates of survival which were 0.51 (SD = 0.08), 0.74 (0.14), and
0.84 (0.10) for pups, juveniles and adults respectively. In compar-
ison, mean adult survival for crabeater seals was 0.93 (0.05) and
0.90 (0.04) for Weddell seals. Estimates of life history rates at
age for each species are shown in Fig. S2.3a–c, Supplementary
material 2.

The best model options and parameter estimates for body
mass at age by sex are in Fig. S2.3a–c, Supplementary material 2.
The estimated population mean bm, weighted by population struc-
ture, was: 175.2 (3.2) and 170.8 (5.6) kg for female and male cra-
beater seals; 231.7 (10.5) and 223.6 (8.8) kg for Weddell seals;
and 300.8 (14.3) and 251.1 (11.3) kg for leopard seals. Note that

mean values for adult individuals are higher than these averages
for all species.

Daily mean energy and krill requirements were 34.2 (2.5) and
30.1 (2.4) MJ day�1, and 12 (1.8) and 10.5 (1.6) kg of krill for female
and male crabeater seals respectively; 39.3 (2.6) and 33.1
(2.3) MJ day�1, and 0.145 (0.025) and 0.122 (0.021) kg of krill for
female and male Weddell seals; and 43.2 (3.4) and 35.8
(2.9) MJ day�1, and 6.4 (1.1) and 5.3 (0.9) kg of krill for female
and male leopard seals; daily krill demands are corrected by the
proportion of krill in the diet and weighted by age structure. Mean
parameter values by sex and age for each species are shown in
Fig. S2.3a–c, Supplementary material 2. The estimated total tons
of krill consumed by area are in Table 3.

Fig. 3. Predicted spatial density surfaces for crabeater (CBE), Weddell (WED) and leopard (LPD) seals using the best GAMM. Densities are in seals per km2. Prediction is
limited to the satellite sea ice habitat as defined by the bootstrap algorithm and within the limits of study area.

Table 2
Density and abundance for crabeater, Weddell and leopard seals in the study areas. Density for seals/km2 of pack-ice area is shown in the top line of each cell and absolute
abundance underneath, with CV and 95% bootstrap confidence intervals in parentheses. The size in km2 of the polygons (excluding land) defining specific study areas is provided
under the area name, and estimates correspond to the pack-ice area within the polygons. Areas without pack-ice habitat and survey effort at the time of the survey are marked
with symbol ‘–’.

Region Crabeater seal Weddell seal Leopard seal

All 2.563 (0.101; 2.132–3.120) 0.311 (0.193; 0.206–0.447) 0.011 (0.366; 0.005–0.022)
3,042,581 (0.101; 2,530,617–3,703,918) 369,174 (0.193; 244,961–530,818) 13,408 (0.366; 5646–25,162)

WAP 10.984 (0.156; 7.967–14.706) 0.897 (0.364; 0.387–1.650) 0.031 (0.408; 0.011–0.063)
1,858,201 (0.156; 1,347,730–2,487,783) 151,702 (0.364; 65,515–279,028) 5279 (0.408; 1781–10,556)

WWS 1.163 (0.133; 0.914–1.510) 0.214 (0.196; 0.142–0.303) 0.008 (0.555; 0.001–0.019)
1,184,380 (0.133; 930,009–1,537,062) 217,472 (0.196; 144,832–309,279) 8130 (0.555; 1376–19,033)

MBA 13.837 (0.228; 8.428–20.258) 1.130 (0.411; 0.442–2.251) 0.039 (0.441; 0.013–0.082)
249694 373,132 (0.228; 227,262–54,627) 30,462 (0.411; 11,915–60,702) 1060 (0.441; 348–2209)

FAO 48.1 5.329 (0.186; 3.641–7.452) 0.514 (0.304; 0.277–0.891) 0.018 (0.342; 0.008–0.033)
623974 317,976 (0.186; 217,263–444,622) 30,657 (0.304; 16,498–53,176) 1089 (0.342; 478–1980)

SSMU1 1.416 (0.129; 1.077–1.819) 0.230 (0.191; 0.153–0.325) 0.009 (0.485; 0.002–0.018)
422076 14,429 (0.129; 10,973–18,521) 2344 (0.191; 1554–3315) 87 (0.485; 23–185)

SSMU2 14.391 (0.282; 7.353–22.409) 1.175 (0.450; 0.404–2.470) 0.041 (0.474; 0.012–0.088)
35060 39,123 (0.282; 19,991–60,918) 3194 (0.450; 1099–6714) 111 (0.474; 33–239)

SSMU3 – – –
15068

SSMU4 – – –
15584

SSMU5 1.130 (0.174; 0.802–1.593) 0.208 (0.227; 0.132–0.304) 0.008 (0.560; 0.001–0.018)
21017 1490 (0.174; 1057–2101) 274 (0.227; 174–400) 10 (0.560; 2–24)

SSMU6 14.287 (0.310; 6.512–22.650) 1.166 (0.471; 0.376–2.477) 0.041 (0.493; 0.011–0.090)
27447 29,017 (0.310; 13,225–46,001) 2369 (0.471; 764–5031) 82 (0.493; 22–182)

SSMU7 – – –
35322

SSMU8 1.211 (0.205; 0.857–1.812) 1.166 (0.273; 0.376–2.477) 0.008 (0.592; 0.002–0.020)
58704 52,265 (0.205; 36,986–78,198) 9267 (0.273; 5697–15,024) 346 (0.592; 67–848)
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3.4. Krill consumption by seals in relation with availability, fishing and
suitable habitat

The highest krill consumption by seals in FAO area 48.1 corre-
sponded to the MBA. Further north in the SSMUs, krill consump-
tion was low compared with the krill available, and was
insignificant for Weddell and leopard seals. The fishery impact
was smaller than the impact of crabeater seals. In all the coastal
SSMUs of the WAP however the sea-ice environment and suitable
seal habitat declined significantly over time for at least one species,
while krill catches increased since 2000. Regional results are sum-
marised in Table 4.

The MBA had the highest density of seals and also the highest
percentage of available krill consumed (Table 5), but there was
no krill fishing reported; the average krill demand was high for
crabeater seals and insignificant for the other species. Inter and

intra-annual krill biomass variation was very high, and if the den-
sity of seals were constant over an annual period, the krill biomass
available in the winter of 2001 would not have sustained the ob-
served crabeater seal population (Table 5).

4. Discussion

We present the first line transect-based density estimates for
pack-ice seals in the WAP and WWS that account for detectability
and availability bias and uncertainty in spatial prediction. Similar
estimates for East Antarctica (Southern Indian Ocean; Southwell
et al., 2008a,b) and the Amundsen-Ross Sea area (South Pacific;
Bengtson et al., 2011) indicate densities for crabeater seals compa-
rable to those of the WWS. At the WAP, crabeater seal density was
much higher than elsewhere, and Weddell seal density was higher

Fig. 4. Predicted loss of suitable sea ice habitat for pack-ice seals during the satellite record (1979–2011) assuming habitat preferences observed in 1999. Non-linear trends
are the fit of a Gaussian GAM model with year as response. The slopes indicate significant linear declines according to a linear robust regression model with year as response.
Percentages with standard deviations indicate the size of a significant annual decline. Trends are shown only for study areas with a significant directional trend in the sea ice
environment. Results for SSMUs are in Table 4.
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than in the Amundsen-Ross Sea. Leopard seal density in the WAP
was comparable to densities elsewhere, but at the WWS was much
lower, which could reflect either the species’ rarity or the low num-
ber of observations produced, as occurred in surveys of East Antarc-

tica (Southwell et al., 2008b). Finally, our survey failed to produce
estimates for Ross seals, and this could be explained by the dates
of the survey, when haul-out probabilities were small (Southwell
et al., 2008c) and most seals could be absent from the survey area.

Table 3
Estimated tons of krill consumed by pack ice seals in the WAP, WWS, and total study area. Values correspond to estimated medians and confidence limits correspond to 0.025%
and 0.975% percentiles.

West Antarctic Peninsula Western Weddell Sea All regions

Crabeater seal 7,477,794 (4,889–11,482,293) 4,782,779 (3,226,201–7,119,412) 12,262,550 (8,118,436–18,606,344)
Weddell seal 6901 (3295–14,432) 10,339 (6540–16,386) 17,261 (9892–30,725)
Leopard seal 10,348 (4593–23,437) 15,071 (5287–42,942) 25,429 (9879–66,250)
All seals 7,495,686 (4,900,083–11,516,539) 4,809,011 (3,243,056–7,166,338) 12,306,618 (8,141,831–18,682,074)

Table 4
Estimated krill biomass; consumption, % consumed of available krill, and annual suitable habitat loss for pack-ice seals; and commercial catch in 2000, 2010 and long term mean
(with CV), and % of estimated krill caught. Areas are FAO Area 48.1 and CCAMLR-SSMUs (1–8). Krill consumption assumes seal density as in 1999 and krill biomass is derived from
the CCAMLR survey in 2000 (Fielding et al. 2011). Ocean area size in km2 for each area is under the area name, with % long term decline in ice cover if significant. In parentheses,
95% confidence limits or SD, as indicated. NS is non-significant.

Krill biomass Krill consumption (�1000 tonnes) and suitable habitat loss Krill fishery (�1000 tonnes; % of stock)

(�1000 Tonnes) Crabeater seal Weddell seal Leopard seal All species 2000 2010 Mean

FAO 48.1 36,698 (26,592–50,985) 1274 (797, 2043) 1.4 (0.8, 2.7) 2.2 (1.1, 4.4) 1277 (799,2048) 72 153 50 (CV = 0.68)
624228 3.4 (2.0, 6.2)% <0.01% <0.01% 3.4 (2.0, 6.2)% 0.20 (0.14, 0.28) 0.42 (0.30, 0.59) 0.14 (0.10,0.19)
�23 (14)% �0.7 (SD = 0.4)% �0.7 (SD = 0.4)% NA

All SSMUs 36,076 (25,971–50,343) 540 (312, 944) 0.8 (0.4,1.6) 1.2 (0.4, 3.3) 542 (313, 948) 72 153 50 (CV = 0.68)
592288 1.5 (0.8, 2.9)% <0.01% <0.01% 1.5 (0.8, 2.9)% 0.20 (0.14, 0.28) 0.42 (0.30, 0.59) 0.14 (0.10,0.19)

NS NS NS

SSMU1 7032 (3821–12,918) 58 (39, 86) 0.1 (0.07, 0.18) 0.16 (0.07, 0.42) 59 (40,87) 1.3 0.07 3.2 (CV = 1.53)
377054 0.8 (0.4, 1.7)% <0.01% <0.01% 0.8 (0.4, 1.7)% 0.02 (0.01, 0.04) <0.01 0.05 (0.02, 0.08)

NS NS NS

SSMU2 5046 (3681–6912) 153 (83, 286) 0.1 (0.06, 0.34) 0.21 (0.09, 0.53) 154 (83, 287) 0.1 6.0 0.7 (CV = 2.10)
37627 3.0 (1.5, 6.1)% <0.01% <0.01% 3.0 (1.5, 6.1)% <0.01 0.08 (0.05, 0.16) 0.01 (0.01, 0.02)
�28 (8)% �0.8 (SD = 0.3)% NS �0.8 (SD = 0.3)%

SSMU3 2116 (1544–2898) – – – – 31 17 19 (CV = 0.81)
15778 – – – 1.46 (1.06, 2) 0.25 (0.13, 0.45) 0.90 (0.66, 1.24)

NS NS NS

SSMU4 2197 (1603–3010) – – – – 20 4.8 8.5 (CV = 0.96)
16384 – – – 0.91 (0.66, 1.25) 0.07 (0.04, 0.12) 0.39 (0.28, 0.53)

NS NS NS

SSMU5 2984 (2177–4088) 6.0 (3.8, 9.4) 0.01 (0.008,0.02) 0.02 (0.1, 0.05) 6.0 (3.8, 9.5) 6.1 86 3.9 (CV = 4.00)
22255 0.2 (0.1, 0.3)% <0.01% <0.01% 0.2 (0.1,0.3)% 0.21 (0.15, 0.28) 1.22 (0.66, 2.24) 0.13 (0.10,0.18)
�26 (11)% �0.8 (SD = 0.3)% NS �0.8 (SD = 0.3)%

SSMU6 3847 (2805–5268) 113 (58, 221) 0.1 (0.04,0.26) 0.16 (0.06, 0.41) 113 (58, 221) 2.9 38 3 (CV = 2.80)
28677 2.9 (1.4, 6.2)% <0.01% <0.01% 2.9 (1.4, 6.2)% 0.08 (0.06, 0.10) 0.54 (0.29, 0.99) 0.08 (0.06, 0.11)
�21 (13)% �0.7 (SD = 0.4)% NS �1.7 (SD = 0.9)%

SSMU7 4877 (3558–6681) – – – – 11 1.8 12 (CV = 1.11)
36369 – – – 0.22 (0.16, 0.30) 0.03 (0.01, 0.05) 0.24 (0.17,0.33)

NS NS NS

SSMU8 7797 (5688–10,681) 209 (127, 344) 0.4 (0.2,0.8) 0.6 (0.2, 1.9) 210 (127, 346) – – 0.1 (CV = 5.43)
58145 2.7 (1.5, 4.8)% <0.01 <0.01 2.7 (1.5, 4.8)% <0.01

NS NS �2.2 (SD = 0.7)%

Table 5
Estimated krill biomass and consumption by seals (�1000 tonnes) with percentage consumed by pack-ice seals in the MBA in autumn and winter of 2001 and 2002. Krill
consumption assumes the same density of seals as observed in the 1999 survey. Available krill in tons is from density estimates on the shelf area. Confidence limits correspond to
0.025% and 0.975% percentiles.

Autumn 2001 Winter 2001 Autumn 2002 Winter 2002 Average

Krill biomass (�1000 tonnes) 9722 (3478–28,366) 168 (66–468) 4852 (2525–9651) 7459 (2304–26,150) 6011 (3268–12,341)
Consumption
Crabeater 1483 (871–2532) 15 (5–48)% 879 (280–2586)% 30 (13–71)% 20 (5–72)% 25 (10–56)%
Weddell 1.36 (0.60–3.08) <0.1% 0.8 (0.2–2.8)% <0.1% <0.1% <0.1%
Leopard 2.05 (0.86–4.90) <0.1% 1.2 (0.3–4.4)% <0.1% <0.1% <0.1%
All seals 1487 (873–2539) 15 (5–48)% 881 (280–2592)% 31 (13–71)% 20 (5–72)% 25 (10–56)%
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Erickson and Hanson (1990) provided density estimates for the
Amundsen-Bellingshausen Seas and the WWS from the early
1970s to early 1980s that were 2.3 and 19 times higher than our
estimates for crabeater seals in overlapping areas, and similarly
higher for Weddell and leopards seals. They also reported a lower
density for Ross seals than for leopard seals, but much higher than
in our survey. Due to fundamental methodological differences be-
tween their estimates and ours, population trends in the region
should be considered with caution. To date, only a long term study
at Anvers Island indicates a verifiable decline for a single Weddell
seal colony (Siniff et al., 2008), and there is a need to investigate
population trends for all species at a wider scale to understand
change.

Our analysis of suitable habitat indeed suggests long-term de-
clines in the WAP which could entail directional changes in distri-
bution and density of pack-ice seals. Such changes for instance
have been observed in emperor penguins (Trathan et al., 2011),
which are an ice obligate species. Our models made strong
assumptions about habitat preferences, and seal habitat projec-
tions closely tracked the evident decline of pack-ice at the WAP
(Parkinson, 2004; Stammerjohn et al., 2008; Costa et al., 2010;
Dinniman et al., 2011). However, it is not clear whether and how
the pack-ice habitat is critical to the seals in the absence of an
alternative substrate, and understanding the dependence of seals
on the pack-ice is important to evaluate how much ice loss is re-
quired before seal population declines are likely to occur.

Another important result is that the highest loss of apparently
suitable habitat would have occurred at the MBA where pack-ice
seals are expected to be abundant. The MBA is warming rapidly
(Meredith and King, 2005; Vaughan et al., 2003) and shows pro-
found biological changes resulting from sea ice loss (Clarke et al.,
2007; Ducklow et al., 2007). Changes include possible declines,
and increasing interannual variation in krill biomass (Atkinson
et al., 2004). A recent habitat analysis for crabeater seals (Fried-
lander et al., 2011) confirms that their distribution in the MBA is
not so much determined by proximity to krill but by sea-ice cover
and the preference for shallow coastal areas (Burns et al., 2004,
2008; Costa et al., 2010). In addition, our analysis indicates that
crabeater seals were more abundant where sea ice concentration
was high, and where the pack-ice was closer to the shelf break.
This suggests that sea-ice contraction could potentially modify
the density of seals and the krill and the access of seals to the krill,
but if it is the case, the mechanisms underlying these processes re-
main unclear.

Given its abundance, the crabeater seal is probably the major
krill consumer of the Antarctic Peninsula-Scotia Sea-Weddell Sea
region. Assuming 95% of krill in the diet, total consumption would
compare to approximately 20% of the standing stock estimate for
the Scotia Sea including the northwestern Antarctic Peninsula
(Fielding et al., 2011), roughly 17% of the krill stock in the extended
survey area. This places the crabeater seal as the top krill con-
sumer, even above whales (Reilly et al., 2004), Antarctic fur seals
(Boyd, 2002) and other predators (Hill et al., 2007). This also high-
lights the extreme dependence of crabeater seals on krill, if there
are no alternative food sources as it has been suggested (Ducklow
et al., 2007; Murphy et al. 2007), which could influence crabeater
seal density, as occurs in other predators (e.g. Trivelpece et al.,
2011), if krill biomass is declining. The availability of alternative
prey components thus needs further research.

4.1. Caveats and uncertainty

Although this analysis aimed at generating the highest level of
certainty in estimating population and krill consumption parame-
ters for pack-ice seals given the available data, there are a number
of important caveats. First, both the krill and seal population

assessments are now over 10 years old, and constitute only a snap-
shot in time for a region demographically open for krill and seals.
Second, despite the similarity of our estimates in mean daily krill
requirements with independent estimates (Naumov and Chekuno-
va, 1980; Laws 1984), our estimates were limited by incomplete
and nonconcurrent biometric, life history, diet composition and
other data, which had to be pooled across regions, studies and spe-
cies. This is problematic because food consumption estimates are
sensitive to population density (e.g. Boyd, 2002) and diet composi-
tion (e.g. Forcada et al., 2009), which may vary considerably over
space and time. Third, the spatial resolution of the consumption
estimates assumed a static stock of seals and krill. Crabeater seals
are mobile even if constrained to remain close to the pack-ice
(Burns et al., 2004, 2008; Costa et al., 2010), and they move across
small-scale areas in search for food, particularly given the dynam-
ics of sea ice and krill; krill is also highly dynamic in space and time
(Murphy et al., 2007; Lawson et al., 2008). Fourth, the limited spa-
tial resolution of the aerial survey across the fishery area, and the
habitat-based modelling to obtain the best possible seal density
estimates, affected extrapolation of density to SSMUs, especially
in those with little or no pack-ice. Despite the absence of sea-ice,
these areas still constitute an important source of krill advected
by the Antarctic Circumpolar Current that post-moulting seals
are likely exploit. In areas of more intensive fishing, such as in
SSMUs 5 and 6, it is thus not clear what fraction of the total avail-
able krill biomass is vulnerable to pack-ice seals. Finally, seals eat
much more krill than is taken by the fishery, and taken together
they represent approximately between 11% and 26% of the stand-
ing stock. Nevertheless, there is considerable uncertainty about
the biomass of krill in the area (Lawson et al., 2008; Nicol et al.,
2011) and at a much larger scale (Atkinson et al., 2009), which will
greatly influence estimates of krill consumption and fishing im-
pacts in relation to standing stock.

All these caveats indicate a very high level of uncertainty, which
should reflect in the level of precaution in the management of the
krill fishery in order to take the ecological needs of Antarctic pack-
ice seals into account.

4.2. Management implications

One of the CCAMLR management objectives for the Southern
Ocean krill fishery is the ‘‘maintenance of the ecological relation-
ships between harvested, dependent and related populations of
Antarctic marine resources and the restoration of depleted popula-
tions to predefined levels’’. CCAMLR considers the implementation
of its ecosystem approach to management through operational
conservation objectives of krill predators (Constable, 2011), which
require the assessment of the status of target species and their
dependent predators in order to design management strategies.
However, in spite of all our efforts, we still know very little about
krill-pack-ice seal-environment dynamics in relation to the fishery.

Antarctic pack-ice seals are numerically important in the West
Antarctic Peninsula, where a considerable part of the fishing oper-
ation takes place. Seal densities here are probably much higher
than elsewhere in the Southern Ocean, and the crabeater seal de-
mands for krill may comprise up to 15% or more of the standing
stock.

Pack-ice seals as a group and especially crabeater seals are
probably sensitive to the loss of sea ice (Siniff et al., 2008; Costa
et al., 2010) to some degree, and sea ice contraction is probably
reducing their habitat, resulting in a stress on some populations.
Currently, their apparent preferred habitat is contracting faster
where the krill biomass is likely to be in decline and fishing has in-
creased and is more intensive.

Increasing fishing in the region is thus likely to add stress to the
already stressed krill-seal dynamics. In particular, expanding the
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fishing operation to the MBA which is currently not fished for krill,
because is a potentially critical source of krill for the Antarctic Pen-
insula and the Scotia Sea, including SSMUs, but also where envi-
ronmental change is more significant.

Conserving marine resources requires understanding how com-
pounded pressures affect populations and communities. Inter alia,
the effects of fisheries with climate and environmental change (De-
lord et al., 2008; Rolland et al., 2009; Trebilco et al., 2011), and with
management decisions (e.g. Okes et al., 2009; Pichegru et al., in
press). The management of the krill fishery should thus carefully
consider the large uncertainty associated with the data presented
here, which calls for a precautionary approach rather than man-
agement based on specific conservation objectives for Antarctic
pack-ice seals.
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