


iron is attributed to fine-grained siderite that was detected
by XRD and SEM (Breit et al., 2006, 2007). The abundance
of ferrous iron in the gray sediment contrasts with the con-
tent in the sediment within a few meters of the ground sur-
face which typically has Fe2+/Fetotal ratios <0.2 (Breit et al.,
2004). Buried brown sediment typically has a ratio <0.5
(Horneman et al., 2004) but in this study was found to be
<0.8 (Breit et al., 2006). The amount of total iron extracted
by 0.5 N HCl ðFe2þ

HClÞ was used to approximate the degree
of sulfidization assuming that all of the measured bulk sul-
fur was contained in pyrite. The ratio of Fepyrite=Fe2þ

HCl ran-
ged from 0.004 to 0.5 with a median of 0.1, which indicates
that all samples contain iron in excess of that needed to
form pyrite. The amount of iron extractable by Ti3+-EDTA
from the Srirampur sediment was consistently <20% of the
iron extracted by 0.5 N HCl (Breit et al., 2006).

The amount of arsenic chemically extracted from the
Srirampur sediment is summarized in Fig. 4. The lack of
specificity of chemical extractions limits interpretation but
the contrast in measured arsenic abundances among the ex-
tracts is consistent with other analyses used in this study.

The arsenic in the 0.5 N HCl extracts may reflect absorbed
arsenic and that bound in siderite and vivianite as suggested
by the XAFS data (discussed in Section 3.3). The release of
arsenic by a reductive extraction (Ti3+-EDTA) supports the
presence of residual ferric oxides in the sediment. Samples
from depths <120 m tend to contain arsenic extractable
by Ti3+-EDTA that is either greater than or equal to the
amount extracted by 0.5 N HCl, which contrasts with the
results from the deeper samples. The median content of ar-
senic dissolved by Ti3+-EDTA was 22% of the total ex-
tracted arsenic in sediment <120 m, while the median
value in deeper sediment was 9%. In nearly all gray sedi-
ments, the oxidative extraction of H2O2-HCl dissolved

Table 1
Chemical composition of sediment from Rajoir and Srirampur

Element Rajoir Srirampur

Median Minimum Maximum Number Median Minimum Maximum Number

As (ppm) 1.3 0.61 21 42 2.8 0.6 290 59
S (wt.%) 0.012 <0.005 0.17 38 0.027 <0.005 1.5 58
Corg (wt.%) 0.07 0.02 0.91 25 0.18 0.04 0.66 35
Fe2þ

HCl (wt.%) 0.37 0.08 1.7 36 0.66 0.13 6.3 43

(Fe2þ
HCl, ferrous iron extracted by treatment of sediment with 0.5N HCl).

Fig. 3. Mole ratio of arsenic to sulfur in bulk sediment samples.
The shaded area corresponds to As:S ratios of most pyrite analyzed
in this study. The maximum amount of arsenic measured in pyrite
corresponds to a ratio of 0.009.

Fig. 4. The concentration of arsenic sequentially extracted from
preserved sediment samples collected from the Srirampur borehole.
The extracts include 0.5 N HCl (exchangeable species, siderite and
vivianite); Ti3+-EDTA, (ferric oxides); and H2O2–HCl (sulfide
phases).
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more arsenic than the other extractions, which is consistent
with the greatest content of arsenic in sulfide phases
(Fig. 4).

3.2. Sulfur speciation and sulfur isotope composition

The abundances of AVS, pyritic sulfur (PY), and acid-
soluble sulfate and their isotopic compositions are summa-
rized in Fig. 5 and listed in Table EA-1. Pyritic sulfur abun-
dances vary from 20 to 9580 ppm (Fig. 5a) with the greatest
concentrations detected in samples >100 m deep at Sriram-
pur. In contrast, the highest pyrite content at Rajoir was
measured in the top two samples. Contents of PY are great-
er than AVS in 23 of 25 samples. The ratio of AVS to PY in
samples from Srirampur decreases downward from shallow
depths to 150 m. Below 150 m the ratios are <0.1 with the
exception of 2 samples (Fig. 5b). These samples are notable
for their low content of pyritic sulfur, and therefore the cal-
culated ratios are sensitive to small differences in concentra-
tion and analytical error. Sediment from Rajoir has
generally greater AVS/PY values than Srirampur samples.
Measurable sulfate was recovered from 16 of the 25 samples
but at concentrations lower than associated sulfide (<10–
130 ppm).

d34S values vary widely with similar ranges for all forms;
AVS varies from �13.8& to 39.9&, the range for pyrite is
�22.7& to 32.9& (Fig. 5c), and the acid-soluble sulfate
varies from �13.5& to 35.3&. Pyrite in 14 samples con-
tains sulfur with an isotopic composition between +6 and
�6& including the samples at the top of the saturated zone
(�0.4 and �2.3). Exceptions to this tendency are the two
deepest samples from Srirampur and the shallowest bore-
hole sample from Rajoir, which have d34SPY < �9&. These
samples also contain the greatest amount of pyritic sulfur of
the samples analyzed. Eight samples have d34SPY > +8&

and 6 of these are in the upper 150 m of the boreholes.
The isotopic composition of AVS (d34SAVS) was compared

to pyrite (d34SPY) by calculating the difference for each sam-
ple (Fig. 5d). The absolute value of the difference for most
samples is less than 6&. In four samples from <50 m depth,
d34SAVS is much greater than d34S values of pyrite. Two
samples between 200 and 300 m depth have d34SAVS much
less than d34SPY. d34SSO4 is greater than 14& for all but one
sample at 327 m depth at Srirampur (�13.5&), which is
very similar to the coexisting AVS. Four of the sulfate sam-
ples are in the depth range in which contamination from
barite in the drilling mud is possible (>230 m) (Breit
et al., 2006, 2007). However, the affect of contamination
is considered minor because the measured d34S values are
substantially different from the mud additive (Table EA-1).

3.3. Arsenic valence and solid phase speciation

The nominal arsenic valence values of Rajoir and Sri-
rampur bulk sediment range from �0.2 to 2.2 (average:
1.1, n = 6) (Fig. 6), which indicates that reduced arsenic is
the dominant form in these samples. Arsenate and arsenite
typically constitute <50% of the total arsenic in bulk
XANES and extended microXANES fits (Table 2). Partial
oxidation of the samples during handling, transport and
storage may account for some or all of the arsenate, but
our analyses of the oxidation state of 0.5 N HCl soluble
iron and the abundance of AVS suggest oxidation was min-
imal. If the calculated abundance of arsenate in the deeper
sediments is correct, then it is likely that some grains con-
tain refractory oxidized arsenic that survived burial in the
generally reducing environment of the gray sediment.

Progressive change of arsenic valence in the shallow
(<150 m depth) Srirampur aquifer sediment is evident in fits
of bulk XANES spectra. These spectra integrate over the
arsenic residence in hundreds to thousands of grains,
including arsenic-rich pyrite that is typically 10–20 lm in
diameter and the more abundant, lower-arsenic grains of
siderite, vivianite, HFO, and potentially other unrecognized
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phases that are typically associated with altered iron micas.
Analysis of bulk XANES spectra indicates that the amount
of sulfide arsenic is at a minimum at 22 m depth, increases
by about 40% at 83 m, and again by 24% at 260 m depths,
before leveling off to 71%, whereas arsenate is at a maxi-
mum in the shallowest sample, and is significantly less in
the deeper samples. The trend for arsenite is less clear but
there is a significant increase between 22 and 83 m depth
with generally lower values at greater depth. Overall, these
spectra indicate that several phases and oxidation states of
arsenic coexist in sediments, but that the relative propor-
tions of these phases and oxidation states change with
depth, in concert with overall changes in sediment
geochemistry.

The models which minimized v2 based on a linear com-
bination least-squares fit to bulk XANES and extended
microXANES spectra were arsenian pyrite, orpiment, sider-
ite, vivianite, HFO, and HAO (Table 2 and EA Appendix-
1). The use of arsenian pyrite, siderite, vivianite, and HFO
in evaluating the data is consistent with SEM and extrac-
tion results (Fig. 4). HAO is justified as a fit component
based on the weathering of abundant mica present in the
samples. Arsenian pyrite was the most common component
detected in sediment with low valent arsenic (Table 2).
Orpiment was only detected in a bulk XANES spectrum
of a shallow peat layer sampled in an excavation near Raj-
oir, a bulk XANES spectrum of Srirampur sediment from
29.1 m depth, and a microXANES spectrum of a grain in
Srirampur sediment from 39 m depth. These findings do
not preclude the possibility that both pyrite and orpiment
are present in some samples at concentrations below detec-
tion (about 5–10% of the total arsenic). For both the arse-
nian pyrite and orpiment species determinations, greater
confidence is placed in the fits to extended microXANES

spectra than fits to the bulk XANES spectra because the
latter spectra contain less noise and have more data than
the former. The low abundance of arsenite and arsenate so-
lid-phase species and noted similarities among the XANES
spectra of many arsenate/arsenite model compounds (Fos-
ter, 2003) makes these species assignments less certain.

Extended microXANES spectra from the Srirampur
borehole are not representative of the overall arsenic speci-
ation, but they provide the most detailed and reliable infor-
mation on the identity of the solid-phase species of arsenic.
Nearly all of the high As areas displayed on a false-color
microXRF map have extended XANES spectra consistent
with arsenian pyrite, with a small amount of oxidized arse-
nate in some spectra (Fig. 7, Table 2). No variation in the
arsenian pyrite species could be observed between grains
high in sulfur and low in arsenic or vice versa (Fig. 7a
and b), but spots low in arsenic and sulfur (such as spot 5
in Fig. 7a, probably a mica grain based on the high K con-
tent) contain more arsenate and/or arsenite relative to arse-
nian pyrite, although the latter is still detected (see spot 5
XANES spectrum in Fig. 7d). Since the ‘‘micro’’ X-ray
beam employed was rather large (16 · 7 lm) relative to
the size of the authigenic siderite and vivianite (as estimated
from SEM images), it is likely that the spectrum collected at
this spot is an integration over several, but not hundreds of
discrete grains. Even with the knowledge that the sampling
at spot 5 may not be representative of the arsenic speciation
as a whole, the agreement is striking between the microX-
ANES spectrum of spot 5 and the bulk sediment XANES
spectrum from the same depth horizon, and suggests that
this modal proportion of arsenic species is probably the
most representative of the sample as a whole.

The arsenite and arsenate-bearing model compounds
providing the best fits to the oxidized arsenic in extended

Fig. 6. Energy position of model and bulk borehole XANES spectra. There is a shift of �3 eV with each increase in nominal oxidation state.
Selected models with well-defined oxidation states were used to generate the linear relationship between energy shift and nominal valence that
was applied to sulfide model compounds and to samples.
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Table 2
Abundance of arsenic-containing phases indicated by analyses of XANES spectra of bulk samples and individual grains

Sample Depth (m) As (mg/kg) Edge positiona (eV) Fit range (eV) Percent of model compound (not normalized)b Energy shift (eV) v2c

Sulfide Arsenite model Arsenate model

Srirampur borehole Ar-preserved sediment (bulk XANES)

SH1-1 21.9 7 11869.1 60 22 As2S3 32 (HAO) 33 (HAO) �0.8 16.7
SH1-9 83.2 10 11870.1 60 54 Fe(As,S)2 44 (HFO) �0.7 10.0
SH1-29 260.6 4 11869.2 60 73 Fe(As,S)2 13 (HAO) 11 (HAO) �1.6 4.5
SH1-36 326.1 74 11867.3 60 72 Fe(As,S)2 9 (siderite) 19 (HFO) 0.2 0.3
SH1-39 355.1 6 11866.7 60 68 Fe(As,S)2 15 (siderite) 16 (HFO) �0.8 6.7

Rajoir borehole Ar-preserved sediment (bulk XANES)
SH2-1 11.6 10 11869.1 60 81 Fe(As,S)2 11 (ferric phosphate,

amorphous)
�1.2 6.4

Rajoir Peat, surface
pit

3 4 11869.5 60 48 As2S3 43 (vivianite) 14 (vivianite) �0.09 2.6

Srirampur 39 m microXANES

Area 1, spot1 39 n.d. 11866.6 90 113 Fe(As,S)2 0.6 1.9
Area 1, spot 2 39 n.d. 11866.4 90 102 Fe(As,S)2 0.8 2.0
Area 1, spot 10 39 n.d. 11869.1 90 70 (siderite) 34 (siderite) 0.5 59.2
Area 1, spot 11 39 n.d. 11866.0 90 38 As2S3 56 (vivianite) 10 (vivianite) 0.9 1.7
Area 2, spot 1 39 n.d. 11866.4 90 98 Fe(As,S)2 3 (siderite) 0.2 2.5
Area 2, spot 2 39 n.d. 11865.7 50 87 Fe(As,S)2 15 (HFO) �0.2 4.0

Srirampur 326 m microXANES

Spot 1 326.1 n.d. 11865.7 250 99 Fe(As,S)2 0.7 2.6
Spot 2 326.1 n.d. 11866.1 250 100 Fe(As,S)2 0.4 3.2
Spot 6 326.1 n.d. 11866.2 250 100 Fe(As,S)2 0.2 3.0
Spot 3 326.1 n.d. 11866.2 250 90 Fe(As,S)2 10 (HFO) �0.5 2.0
Spot 4 326.1 n.d. 11866.6 250 90 Fe(As,S)2 3 (siderite) 7 (siderite) �0.8 2.5
Spot 5 326.1 n.d. 11866.3 76 Fe(As,S)2 11 (vivianite) 20 (vivianite) �0.3 2.8

a Measured on the maximum of the 4 point smoothed first derivative of the XANES spectrum.
b HAO, hydrous aluminum oxide; HFO, hydrous ferric oxide. See text for details.
c Sum of squares of the residuals.
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microXANES spectra were siderite and vivianite; only two
of the 12 spots examined at the 39 and 326 m depth inter-
vals employed HFO in a fit (as an arsenite-HFO coprecip-
itate; see EA Appendix 1). This is in marked contrast to the
bulk XANES fits, where HAO and HFO model compounds
provided the best fit in the majority of analyses (the only
exceptions are the 326 and 355 depth intervals, in which
arsenite coprecipitated with siderite is the preferred arsenite
model). However, due to the high noise content of the bulk
XANES spectra, it is impossible to assess whether the use
of a different species in the least squares fits to these spectra
is significant. There was no consistency or trend in the par-
ticular arsenite and arsenate model compounds providing
the best fits to the extended microXANES spectra. The
intrinsic limitations of the information provided in the arse-
nite and arsenate XANES spectra is certainly a factor, but

the non-representative nature of this type of analysis might
also give rise to differences between fits to bulk and micro-
XANES spectra.

3.4. Sulfide textures and morphology

Polished grain mounts examined with the SEM contain
authigenic and sparse detrital sulfide mineral grains. The
distinction between authigenic and detrital origin was based
on grain morphology. Grains with broken and/or rounded
edges were classified as detrital; although some abrasion
may have occurred during drilling and handling of the sam-
ples. Framboids and euhedral forms were classified as
authigenic. Although transport of framboidal forms has
been observed (Hossain, 1975; Damke et al., 1999), their
transport in Bangladesh likely represents local reworking

Fig. 7. MicroXAFS results of Srirampur sample (326.5 m). (a) False color image illustrating grains with high arsenic and sulfur contents. (b)
Extended XANES spectra (solid lines) of spots 1, 3, and 4 and least-squares fits (dotted lines) show most arsenic is in pyrite. (c) XANES
spectrum of spot 5 (solid line), corresponding least squares fit (heavy dotted line) and fit deconvolution (lighter, labeled dotted lines). Note the
similarity in the relative proportion of the arsenian pyrite peak to the arsenate+arsenite peak in this microXANES spectrum to that of (d) the
bulk spectrum of the corresponding depth interval.
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rather than distant transport because pyrite will not survive
weathering processes in the wet and oxidizing environment
of the Bengal region (Nickson et al., 2000).

Pyrite, and trace amounts of Zn–Cu-rich pyrite, pyrrho-
tite, sphalerite, and chalcopyrite were detected during the
SEM examination. Arsenopyrite and other arsenic-contain-
ing minerals, such as orpiment and realgar, proposed by
Das et al. (1996) and Chowdhury et al. (1999) were not de-
tected, but XAFS spectroscopy suggests that orpiment may
be present. No authigenic pyrite was detected in the river
sediment, although rare detrital grains, 10–20 lm in diame-
ter are present. Authigenic pyrite, both framboidal and
massive, is abundant in gray samples, especially in those
collected from depths greater than 50 m. Pyrite inter-
growths with biotite and chlorite were common in the gray
sediment, but were not observed in the river sands, in shal-
low unsaturated sediments, or within Fe deficient micas.

More than 90% of pyrite grains analyzed by EPMA are
classified as authigenic using the guidelines described
above. Atomic ratios of iron and sulfur calculated from
electron probe analyses (Table EA-2) and X-ray diffraction
confirm the iron sulfide phase to be pyrite as opposed to
marcasite, mackinawite, or greigite. Although Akai et al.
(2004) report greigite at �49 m in western Bangladesh, it
was not detected in this study. Authigenic FeS was
observed only in a shallow sample collected at Srirampur
where it formed a �7 lm massive rim on framboidal
pyrite.

Framboid diameters range from 2 to 50 lm with an
average diameter of �10 lm. Crystallites, either spherical
or octahedral, comprising individual framboids are of uni-
form size and shape and average 1 lm in diameter. Framb-
oidal pyrite was subdivided into open and filled categories
dependent on how readily individual crystallites were dis-
tinguished. Open framboids are composed of isolated
(non-touching) crystallites whose size and shape could eas-
ily be determined (Fig. 8a). Filled framboids contain inter-
grown crystallites or voids between crystallites have been
infilled with massive pyrite. Most framboids, regardless of
being open or filled, are spherical. The few irregularly
shaped framboids were distorted by compaction or by the
space available for growth. Some framboids have been
overgrown with massive or octahedral pyrite, particularly
those in close vicinity to organic matter (Fig. 8b and c).
Massive pyrite is divided into octahedral, cubic, and irreg-
ular forms. Octahedral (and cubic) crystals were found as
overgrowths on framboids and as clusters of octahedra lo-
cated near organic matter (Fig. 8d). The size of the octahe-
dra ranges from 2 lm to over 50 lm. The irregular forms
have features that suggest they grew in place because the
delicate surface structures would not survive transport.
The irregular forms range from 10 lm to over 100 lm.
The most notable occurrence of an irregular form was
found as massive pyrite replacing chloritized biotite in
SH2-37 (Fig. 8e). Progressive replacement of biotite by
authigenic pyrite was noted in several gray samples. Small
framboids apparently nucleate well within mica plates
(Fig. 8f), progressively grow resulting in ‘kinking’ of the
plates, and eventually become a massive replacement of
the entire grain (Fig. 8e).

Massive and framboidal pyrite in the shallow sediment
are similar to those in the deep sediment, with the exception
that no massive forms were found in the shallowest samples
in either borehole or the samples from the surface excava-
tions (SP-5-1 and SP41-1). While morphologies were not re-
stricted to specific depths, a few textural variations with
depth were noted. The number of filled framboids increases
with depth relative to open framboids. The size of the mas-
sive grains increases with depth although the number of
samples is limited. Framboid and crystallite size and the
proportion of framboidal to massive grains do not vary sys-
tematically with depth.

3.5. Arsenic content of pyrite

Arsenic content of pyrite grains as determined by elec-
tron microprobe is summarized in Tables 3 and EA-2.
The inverse correlation of arsenic and sulfur is consistent
with arsenic substitution for sulfur (Fig. 9). Observed scat-
ter in arsenic atom percent at values less than 0.05 is attrib-
uted to higher error at low concentrations. A linear least
squares fit for arsenic and sulfur for the massive varieties
at Srirampur has an r2 value of 0.675. In contrast, arsenic
does not systematically substitute for sulfur in framboids
based on the arsenic-sulfur r2 value of 0.035. Similar As–
S relations were detected in the Rajoir borehole.

The median arsenic content of the framboids is
1500 ppm with an observed range from <300 to over
11,000 ppm. Higher arsenic contents in framboids are asso-
ciated with those found near organic matter and in mica-
and clay-rich samples. Framboids within a sample have a
range of arsenic contents, however multiple spot analyses
within a framboid yielded similar arsenic contents. There
is no systematic change in the arsenic content of framboids
with depth, nor is there systematic difference in arsenic con-
tent in closed relative to open framboids (Table 3).

The median arsenic content of the massive pyrite is
3200 ppm with an observed range from <300 to
13,000 ppm arsenic. Massive overgrowths on arsenic-poor
framboids generally contain between 2000 and 8000 ppm
arsenic; some overgrowths contain as much as
10,000 ppm arsenic. The massive varieties have higher ar-
senic contents than framboids (Fig. 10). Oscillatory arsenic
zoning, with a range from <300 to over 13,000 ppm As, was
observed in some of the octahedra, particularly those asso-
ciated with organic matter (Fig. 8d). No systematic differ-
ences in the arsenic contents of octahedral, cubic, and
irregular morphologies were observed.

The arsenic contents of pyrite from the Bengal basin sed-
iments overlap with arsenic in pyrite preserved in other sed-
imentary units. Arsenic contents in natural pyrites range
from 20 to 300 ppm in marine sediment, up to �100 ppm
in brackish settings, <50 ppm in lacustrine settings, and
as much as 10,000 ppm in coal (Schoonen, 2004, Table 2).
Pyrites analyzed from the Black Warrior coal basin in Ala-
bama contain from 3000 ppm to 4.5 weight percent arsenic
(Goldhaber et al., 2003) and Kolker et al. (2003) report val-
ues up to 7 weight percent arsenic in authigenic pyrite in
sandy glacial aquifers in southeastern Michigan. Although
some of these occurrences are the product of diagenesis
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and fluid migration (T > 25 �C), the importance of incorpo-
rating arsenic into pyrite is evident.

4. DISCUSSION

4.1. Arsenic in the Bengal Basin sediment

Arsenic speciation within the Bengal Basin sediment var-
ies with depth. Breit et al. (2004) recognized that arsenic in
shallow sediment above the water table is present as arse-
nate bound to iron oxides while the immediately subjacent
gray, water-saturated sediment contains mainly As(III)
bound to several phases and arsenic in pyrite. With increas-

ing depth, arsenite and arsenate variably contained in sider-
ite, vivianite, and sorbed to HFO and HAO-type phases
persist with decreasing abundance (Table 2 and Fig. 4). Fer-
ric oxyhydroxides are of minor importance as an arsenic
residence below �100 m. Pyrite accounts for more than
70% of the arsenic in deep sediment (Table 2, Figs. 3 and
4). Polizzotto et al. (2005) similarly recognized that 60%
of the total arsenic in the Holocene aquifer sediments (5–
60 m) in central Bangladesh is incorporated in (unidenti-
fied) arsenic-bearing sulfides with the remaining portion
in arsenate- and arsenite-containing phases. Although
empirically recognized as important, details of arsenic
incorporation into pyrite has been described only generally.

Fig. 8. Backscattered electron images of pyrite forms in Bangladesh sediment. (a) Open framboid texture (Rajoir 99 m). (b) Massive
overgrown framboid texture (Rajoir 167 m). (c) Octahedral overgrowths on framboidal pyrite (Srirampur 355 m). (d) Octahedral pyrite
(Srirampur 355 m). Brighter zones indicate areas with greater arsenic contents. (e) Massive pyrite formed by replacement of a biotite grain.
Residual biotite was detected within the grain (Rajoir 450 m). (f) Pyrite nucleating between biotite layers (Srirampur 1071 m).

Table 3
Arsenic contents (ppm) of framboidal and massive morphologies from the depth intervals sampled

Locale Sample Depth (m) Framboid Massive

Min Max Median n Min Max Median n

Rajoir SP41-1 2.5 <300 6020 2670 4 np np np 0
Rajoir SH2-09 99 573 11030 4750 8 790 4640 2040 25
Rajoir SH2-15 167 <300 6240 1210 24 300 11500 7230 14
Rajoir SH2-37 450 350 8180 1600 5 320 12600 3570 14
Srirampur SP-5-1 3.2 2700 9450 3570 6 np np np 0
Srirampur SH1-01 22.6 <300 7360 1580 10 3600 6530 5750 4
Srirampur SH1-12 114 <300 4220 1300 17 <300 6790 1270 5
Srirampur SH1-37 355 577 6750 1930 7 470 5660 3810 7

Min, minimum; Max, maximum; n, number of analyses; np, not present.
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4.2. Assimilation of arsenic into pyrite

The incorporation of arsenic into pyrite is affected by ar-
senic specification and processes of crystal growth. Previous
XAS studies suggest that when arsenite is adsorbed to pyr-
ite, an ‘‘arsenopyrite-like’’ surface precipitate is formed
(Bostick and Fendorf, 2003), whereas when arsenic is incor-
porated into growing pyrite (under hydrothermal condi-

tions, at least) it substitutes for sulfur in crystallographic
sites (Savage et al., 2000). Since arsenopyrite and arsenian
pyrite can be readily distinguished (see Appendix AE-1),
our findings indicate that the majority of pyrite-associated
arsenic was incorporated into pyrite concurrent with its for-
mation. Inferred substitution of arsenic for sulfur is also
evident in the microprobe data (Fig. 9). However, since dis-
solved arsenite is present in ground water in contact with

Fig. 9. Sulfur versus arsenic concentrations in pyrite measured by electron probe for Rajoir (bottom) and Srirampur (top) samples. The extent
of arsenic substitution for sulfur is consistent with bulk sediment composition (Fig. 3). (closed symbols, framboids; open symbols, massive).
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these pyrite-rich sediments, it is possible that the arsenian
pyrite is coated with arsenopyrite-like surface precipitates.
The quality of the microXANES spectral fits using arsenian
pyrite alone (fit totals near 100% for most samples) suggest
that an arsenopyrite-like surface precipitate, if present, is of
minor abundance.

The presence of arsenian pyrite and possibly orpiment
are consistent with calculated thermodynamic stabilities.
Arsenic phases predicted to be stable in contact with water
compositions typical of those recovered from gray Holo-
cene sediment (BGS and DPHE, 2001) were evaluated with
Geochemist’s Workbench. The thermo.com.v8.v6.full data-
base was modified with arsenic thermodynamic data of
Nordstrom and Archer (2003) and Pokrovski et al.
(2002); thioarsenite species were suppressed based on the
abundance of reactive iron in the sediment (Wilkin et al.,
2003). The stability of arsenian pyrite was approximated
by the stabilities of arsenopyrite and pyrite because thermo-
dynamic data for arsenian pyrite is not available. In addi-
tion, pyrite is kinetically favored to form relative to direct
precipitation of FeAsS (Fleet et al., 1989) as reflected in
many of the octahedral pyrite grains that have As zoning
(Fig. 8d). As expected, ground waters are saturated with
arsenopyrite and pyrite at the circumneutral pH of most
Bangladesh ground water. Orpiment dominance is pre-
dicted in water with pH < 6 and dissolved iron content less
than 0.5 mg L�1. These conditions are likely in carbona-
ceous sediments that have elevated pCO2 and lack clastic
iron input such as the peaty sediment near Rajoir.

The concentration of arsenic in pyrite is the product of
growth rate, the abundance of arsenic in solution, and the
dissolved As:S ratio (Bostick and Fendorf, 2003; Fleet
et al., 1989). Akai et al. (2004), Kirk et al. (2004), and

O’Day et al. (2004) have proposed that arsenic incorpora-
tion into iron sulfide is dependent on the rate of sulfur sup-
plied by bacterial sulfate reduction. Arsenic incorporation
in pyrite is expected to increase in response to lowered sul-
fur activities found in Bengal Basin sediment deeper than
20 m (Fig. 11). As sulfur is depleted, pore waters cease to
be supersaturated and pyrite growth becomes more preva-
lent than nucleation, which results in euhedral morpholo-
gies (Wang and Morse, 1996; Grimes et al., 2002;
Sawlowicz, 2000). Under conditions of slower growth,
greater content of arsenic in the pyrite is likely based on re-
sults of Bostick and Fendorf (2003) who found that arsenic
sorption to pyrite increased with longer exposure to arsenic-
rich solutions. The massive pyrite common in deeper sam-
ples generally contains more arsenic than associated fram-
boids (Fig. 10), an observation that is not unique to the
pyrite in Bengal Basin sediment (Goldhaber et al., 2003;
Kolker et al., 2003).

Framboidal pyrite is favored in the upper 20 m of
Bengal Basin borehole sediment because of rapid precipita-
tion rates in settings with adequate supplies of both Fe and
S (Wang and Morse, 1996; Grimes et al., 2002). Consistent
with this interpretation framboids were the only morphol-
ogy observed in the gray sediment from excavations and
the borehole samples from <22 m. The uniform content
of arsenic within an individual framboid suggests the
crystallites formed under similar pore-water compositions
that sustained nucleation and growth (Matijevic, 1996;
Wilkin and Barnes, 1997). The variation in arsenic content
among framboids within a sample is attributed to heteroge-
neity of the sediment or microniches of varying saturation
states (Grimes et al., 2002; Diehl et al., 2005; Sawlowicz,
2000).

Fig. 10. Box plot comparing arsenic concentrations measured by EPMA between massive and (n, 66) and framboidal pyrite (n, 78) from both
boreholes.
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Although useful, these findings do not shed light on the
many unanswered questions regarding the mechanism and
timing of low temperature pyrite formation (e.g., Butler
and Rickard, 2000). However, some information is gleaned
from the bulk chemical data and textural observations of
Bengal Basin pyrite. The pyrite most likely forms via at
least two mechanisms. The first is conversion of AVS to
pyrite as indicated by the AVS to pyrite ratio which de-
creases with depth (Fig. 5). The second possible method
of pyrite formation is through heterogeneous nucleation

on surfaces without amorphous FeS precursors. This is evi-
dent from the formation of pyrite framboids within the
sheets of iron-rich micas which eventually grow to replace
the entire mica grain (Fig. 8e). Rickard et al. (2007) were
able to nucleate pyrite framboids within the cell walls of cel-
ery via a two step process whereby Fe(II) diffusion and sub-
sequent S(-II) penetrate and react within the cell walls.
Once formed, the pyrite seeds act as nucleation sites to
facilitate further pyrite growth (Schoonen, 2004; Rickard
et al., 2007).

4.3. Sulfur supply

Multiple sources of sulfur are necessary to reasonably
explain the isotopic composition and abundance of sulfur
forms in the sediment. Natural sources of sulfate available
for reduction within the Bengal Basin sediment include oxi-
dation of detrital sulfides, atmospheric deposition, river
water, and sea water. Detailed evaluation of these sources
is described in the EA Appendix 2 and summarized in
Fig. 12. The median amount of sulfur in the sediment
(Table 1) exceeds the amount that can be supplied by atmo-
spheric deposition or redistribution of sulfur in existing sur-
ficial sediment based on likely rates of sediment
accumulation (0.1–1 cm a�1). Therefore, riverine and sea-
water inputs are required. To refine this conclusion, three
groups of sediment samples were evaluated using the results
of the sulfur isotope and sulfur speciation analyses (Fig. 5).
The first group has d34S values between +6 and �6& and
pyritic sulfur (SPY) concentration between 60 and
1000 ppm. These values are consistent with a riverine sulfur
supply that would increase the sediment sulfur content to
between 100 and 1300 ppm S depending on the rate of sed-
iment deposition. The second population consists of 7 sam-
ples with d34SPY values from 8& to 32& and SPY contents
ranging from 40 to 1100 ppm. Although these results can be
explained by advective transport of partially reduced river-
ine sulfate to a site of further reduction, a limited supply of
seawater sulfate offers a simpler explanation. A seawater
source is particularly favored to explain a sample from Sri-
rampur at 114.5 m depth that contains 1090 ppm SPY with
a d34SPY of 29.2&. The third population includes 3 samples
with >1500 ppm SPY and d34S values <�9&, which is

Fig. 11. Probable depth intervals for the formation of framboidal
(fram.) and massive pyrite based on petrographic observations.
Concentration curves for sulfate and arsenic are best fit Loess lines
calculated using the data of BGS and DPHE (2001). Plotted curves
based on data from wells south of 23.5 north latitude and between
89.5 and 91.8 degrees east longitude (n = 97).

Bay of
Bengal

River

Sediment
540,000 mg m-2 a-1 

30 mg m-2 a-1

   ??
1800 mg m-2 a-1

Fig. 12. Generalized diagram of sulfur fluxes from natural sources into the subaerial sediment of the Bengal Basin. Fluxes estimated from the
concentrations of sulfur as described in the electronic annex and assuming a 0.6 m a�1 annual recharge (BGS and DPHE, 2001). Influence of
sea water likely is limited to within 100 km of the coastline. Contributions of river water are restricted to flood plains marginal to the rivers.
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explained by a sulfate source of high concentration that was
only partially reduced. The high abundance of sulfur and
low d34SPY values render sea water the most likely source
of sulfate and that the amount of sulfate exceeded the
reducing capacity of the sediment.

The two shallowest samples from the Rajoir borehole
are examples of populations 2 and 3. Sediment at 11 m
depth contains the greatest amount of measured SPY

(1 wt.%). This pyrite has a d34S value of �9.1& and is asso-
ciated with +35& sulfate. In contrast, a sample at 22 m
depth contains SPY of 350 ppm and a d34SPY of +33&.
The simplest explanation for this distribution is that sea
water interacted directly with the carbonaceous sediment
at 11 m and that residual, isotopically evolved sulfate was
transported in ground water downward through the sedi-
ment and was further reduced to form pyrite in the sedi-
ment at 22 m. Exposure of sediment in this depth range
to sea water is consistent with the estimated coastline posi-
tion near Rajoir 6–3 ka BP (Goodbred and Kuehl, 2000).

The difference between d34SAVS and d34SPY in most sed-
iment samples is positive or close to zero (Fig. 5d). Positive
values are attributed to initial formation of 34S depleted
pyrite and subsequent formation of AVS from the 34S en-
riched reservoir. Samples in the upper 50 m of both bore-
holes have this characteristic. In contrast, samples in the
vicinity of 200–300 m depth at Srirampur have lower
d34SAVS values which imply addition of sulfate in ground
water subsequent to formation of most pyrite in those sam-
ples. Perhaps sea water intrusion affected this interval after
much of the pyrite had formed.

The sulfur isotope composition of dissolved sulfate
(d34SSO4-D) in Bangladesh ground water further supports
multiple sulfate sources. d34SSO4-D determined by BGS
and DPHE (2001) and Zheng et al. (2004) ranges from
�0.9& to 53&. d34SSO4-D values <5& are attributed to
oxidation of authigenic sulfide as is likely to explain the
acid-soluble sulfate deep (326.5 m) in the Srirampur bore-
hole (�13.4&). Although the data of BGS and DPHE
(2001) and Zheng et al. (2004) show that d34SSO4-D gener-
ally increases with decreasing concentration as expected
for bacterial sulfate reduction (Lyons, 1997; Schoonen,
2004; Zheng et al., 2004), the large range of 0–26&

measured in a narrow sulfate concentration range
(10–20 mg L�1) is greater than expected for any single
source outlined above.

The markedly low As/S ratios in the sediment (Fig. 3)
between approximately 20 and 50 m at Srirampur and to
a lesser degree at Rajoir are considered a direct reflection
of depositional conditions. The brown sediment at 50 m
depth marks the position of the Holocene–Pleistocene
unconformity in the Srirampur borehole. Goodbred and
Kuehl (2000) and Acharyya (2005) proposed that following
the unconformity, sea level rose as fast as 1–2 cm yr�1 from
12 to 6 ka BP resulting in rapid aggradation of sediment.
Rapid sediment deposition between 50 and 20 m depth
effectively diluted the sulfur fluxes, particularly because
sea water input was unlikely. Applying the riverine and
atmospheric fluxes to sediment accumulating at 1 cm yr�1

would result in sediment with concentrations of sulfur less
than 0.01 wt.% while arsenic provided in ferric oxyhydrox-

ide grain coatings likely remained constant. From 6 to
about 3 ka BP the aggradation of sediment reduced sharply
and further declined after 3000 years BP (Goodbred and
Kuehl, 2000). Deposition at slower rates near 0.1 cm yr�1

is likely to produce sulfur concentrations near 0.1 wt.%
with riverine input, which is similar to the value measured
in some of the slowly deposited sediment in the upper
20 m. The shallowest Rajoir sediment is marked by very
low As/S ratios which is attributed to a large influx of sulfur
from sea water. The relative lack of sulfur in sediment be-
tween 50 and approximately 100 m could be related to cir-
culation of dilute ground water in response to the position
of sea level 120 m below the current mean sea level at the
end of the Pleistocene (Ravenscroft and McArthur, 2004).
Alternatively, the lower sulfur content could reflect deposi-
tional conditions during the Pleistocene, which limited sul-
fur content much as it was limited in the lower Holocene.
Full interpretation of the sediment at >50 m depth requires
a more complete description of depositional environments
and rates of accumulation.

5. SUMMARY

Pyrite has a major role in the arsenic geochemistry in
the sediment of the Bengal Basin. Arsenic released during
weathering of rocks and sediment from the Himalayas
adds to the arsenic load of modern sediments in the form
of ferric oxides that coat grain surfaces. Reducing condi-
tions in the subsurface dissolve ferric oxides and release
contained arsenic. In the presence of adequate sulfate,
the dissolved arsenic is partitioned into pyrite. Framboids
form near the top of the saturated zone while massive tex-
tures form deeper in the sediment in response to slower
growth attributed to limited sulfate. Higher dissolved
arsenic:sulfur ratios are likely in the deeper sediment
which favors incorporation of proportionally greater
amounts of arsenic into the massive pyrite. Pyrite abun-
dance in deep sediment and active sulfate reduction in
very shallow sediment (< 20m) could account for the gen-
erally low concentration of arsenic in ground water from
those depth intervals.
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