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Abstract

The plant apoplast is an important mediator of communication between the cell cytoplasm and its surroundings. Plant cell suspensions

offer a convenient model system to gain insight into apoplastic physiology. Here, we describe a novel phenomenon that took place when

two naturally occurring phenolics were added together to either soybean or tobacco cell suspensions. Acetosyringone (AS) and/or

hydroxyacetophenone (HAP), phenolics found in the extracellular/apoplast of tobacco cells, were added to soybean or tobacco cell

suspensions undergoing an oxidative burst. Individually, AS appeared to be utilized as a typical peroxidase substrate to scavenge

hydrogen peroxide, while HAP was utilized at a much lower rate. However, when added together the rate of utilization of both phenolics

increased and surprisingly resulted in the production of hydrogen peroxide. We have further characterized this novel phenomenon in

suspension cells. This study demonstrates that certain phenolics in plants can cause co-oxidation which, as in animals, could alter the

structure and bioactivity of surrounding phenolics.

Published by Elsevier Ltd.

Keywords: Co-oxidation; Phenolics; Glycine max; Nicotiana tabacum; Pseudomonas syringae; Oxidative burst; Hydrogen peroxide; Apoplast; Redox

metabolism; Suspension cells

1. Introduction

The apoplast matrix that surrounds the plant cell is a
complex and dynamic micro-environment. When outside
stresses, such as environmental changes or pathogen attack
occur, the micro-environment of the apoplast is likely to be
the first line of defense. The cross-linked cell wall
polysaccharides provide a backbone to the matrix within

which various proteins, enzymes, metabolites, and inor-
ganic ions are associated. Localized responses to bacterial
or fungal attacks often result in structural alterations, such
as lignification and papillae formation, involving multiple
matrix components including callose, phenolics, and
hydroxyproline-rich proteins [1,2], or physiological altera-
tions of the apoplast environment, such as increased pH or
production of reactive oxygen species.
Due to the complexity and inaccessibility of the

apoplast, examining its rapidly changing stress-related
chemistry in vivo remains a challenge. However, analysis
of the extracellular/apoplast chemistry of cell suspensions,
which mimic stress-related symptoms observed in planta,
can provide insight. In our studies of extracellular
phenolics during plant/bacterial interactions in suspension
cells, we found that qualitative and quantitative changes in
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phenolic composition were dependent on several factors
with the predominant factor being the type of bacteria
present [3,4]. When suspension cells were treated with a
pathogen that caused an incompatible response and
oxidative burst, the concentration of the extracellular
phenolics decreased or disappeared as a result of oxidation.
We also found that an extracellular phenolic produced by
tobacco cells, AS, had a bioactive effect that accelerated
the plant/bacterial interaction when added exogenously [5].

In this report, we demonstrate a novel phenomenon that
brought new insight to our understanding of apoplastic
redox metabolism. In an attempt to protect apoplastic
phenolics in soybean suspensions from oxidation prior to
their analysis, we added two commercially available plant
phenolics, AS and HAP, to serve as antioxidants. Surpris-
ingly, we discovered that the relatively high concentrations
of these exogenous phenolics were (1) rapidly oxidized and
(2) resulted in a large oxidative burst. We demonstrate that
certain phenolics trigger a unique chemistry in the
extracellular/apoplast environment of suspension cells that
results in a prooxidant environment rather than an
antioxidant environment as expected. In addition, we
demonstrate that phenolic co-oxidation can occur in the
extracellular/apoplast environment of suspension cells.
Phenolic co-oxidation is currently an area of intense study
and concern in the pharmaceutical industry [6,7] where the
co-administration of certain phenolic drugs can cause
modification of their structure and bioactivity.

The same principle of phenolic co-oxidation in animals
could occur in the plant apoplast, where the introduction
of certain phenolics, whether from the cell cytoplasm or
invading micro-organisms, could lead to structural and
bioactive modification of pre-existing apoplast phenolics.
Because this could be insightful for understanding the
complexity of apoplastic redox metabolism, we decided to
investigate and characterize this phenomenon in suspen-
sion cells. The chemical mechanisms involved are also
currently being investigated.

2. Materials and methods

2.1. Chemicals

Horseradish peroxidase (P-8250), soybean peroxidase
(P-1432), AS (3,5-dimethoxy-4-HAP, D134406), 4-HAP
(278564), and all suspension culture ingredients were
purchased from Sigma-Aldrich Chemicals Inc., St. Louis,
MO, USA. The peroxidases were purchased and measured
in units as described by Sigma; one unit (U) will oxidize
1 mmole of 2,20-azino-bis (3-ethylbenzthiazoline-6-sulfonic
acid)min�1.

2.2. Plant material

Soybean (Glycine max L. Merr. cv Harosoy) suspension
cells were originally isolated from hypocotyl callus and
maintained in Gamborg’s B-5 medium (Gibco, Grand

Island, NY, USA) augmented with 1mgL�1 2,4-D, pH 5.0.
Suspension cultures of tobacco (Nicotiana tabacum L.
cultivar Hicks) were derived from pith and maintained on
MS media, supplemented with 0.2mgL�1 KH2PO4,
0.2mgL�1 2,4-D and 0.1mgL�1 kinetin, pH 5.8. Soybean
and tobacco cultures were routinely transferred, 10 into
80mL of fresh media in 250mL flasks, every 4 days and
incubated on a rotary shaker at 150 rpm and 27 1C in the
dark.
Suspension cells were washed and suspended in assay

buffer, containing 0.5mM CaCl2, 0.5mM K2SO4, 175mM
mannitol and 0.5mM MES, pH 6. Then 25mL of the cell
suspensions, 0.05 gmL�1, were dispensed into 50mL
beakers on a rotary water bath shaker set at 27 1C and
180 rpm to keep cells suspended. Stock solutions, 20mM,
of AS and HAP, were made in assay buffer and were added
directly to the cell suspensions using less than 125 uL per
beaker to produce final phenolic concentrations ranging up
to 100 mM. All experiments were preformed at least twice
with two or more replicates per treatment.

2.3. Heat-killed bacteria (HKBac) preparation

Cultures of Pseudomonas syringae pv. syringae 61, isolate
WT, were grown for 20 h in Kings B broth, centrifuged,
washed, and suspended in deionized water. Based on
optical density, the concentration of the suspension was
adjusted with water so that addition of about 200 mL of the
bacterial suspension to plant cell suspensions resulted in
the desired final concentration of about 108 cfumL�1. The
bacterial suspensions were then autoclaved for 15min and
frozen until used.

2.4. HPLC-UV quantification of phenolics

One-milliliter samples of cell suspensions were filtered
through Miracloth and centrifuged at 12,000g for 5min
prior to HPLC analysis. AS and HAP were separated and
quantified using a Onyx monolith C18 analytical column,
100� 4.6mm i.d., (Phenomenex, Torrence, CA, USA) with
a Waters (Milford, MA) quaternary pump, autosampler,
photodiode array detector, and Empower data acquisition
on a Dell Pentium 4 computer. Aliquots, 150 mL, of
samples were acidified with phosphoric acid (0.1%) and
placed in the autosampler using a 10 mL injection volume.
An isocratic mobile phase of 30% methanol in 0.01%
aqueous phosphoric acid, 2mLmin�1, separated the
phenolics within 4min. Quantification using peak height
was preformed using the UVmax wavelength for each
peak, AS, 300 nm, HAP, 276 nm, and calibration with
standards.

2.5. FOX2 (ferrous oxidation in xylenol orange) assay for

hydrogen peroxide

In this spectrophotometric method, ferrous ions are
oxidized by hydrogen peroxide to ferric ions, which bind
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with xylenol orange to give a colored complex with
increased absorbance at 560 nm [8]. The advantage of this
technique is that it does not rely on peroxidase which is
affected by the exogenous phenolics added during this
study. The FOX2 reagent contains 125 mM xylenol orange,
250 mM ammonium ferrous sulfate, 4mM butylated
hydroxytoluene in 90% methanol containing 25mM
sulfuric acid. Using a 96-well plate, 270 uL of FOX2
reagent was added to 30 uL samples that had been filtered
through Miracloth to remove cells. After 30min incuba-
tion, the plates were read at 560 nm using a Molecular
Devices Versamax micro-plate reader (Sunnyvale, CA,
USA). The absorbance change was compared to hydrogen
peroxide standards.

3. Results

3.1. Metabolism of exogenous AS and HAP by suspension

cells

AS and HAP, 100 mM, were added to soybean suspen-
sion cells either separately or in combination (Fig. 1). The
concentrations of each of the phenolics were monitored
periodically by HPLC-UV. The concentration of H2O2 in
the supernatant was measured using a peroxidase-indepen-
dent spectrophotometric assay (FOX2). Untreated soybean
cells, 0.05 gmL�1, produced a small initial burst of H2O2,
nearly 20 mM, due to the physical transfer of cells to assay
buffer (Fig. 1A). This initial accumulation of H2O2 was not
observed in soybean cells treated with exogenous AS,
100 mM, which is consistent with phenolics serving as
peroxidase substrates during the scavenging of H2O2. This
is supported by HPLC-UV analysis (Fig. 1B), which
indicated that the extracellular AS concentration in these
suspensions decreased about 30 mM during the first 2 h of
the monitoring period. Soybean cells treated with 100 mM
HAP produced a burst of hydrogen peroxide similar to
untreated cells, suggesting that under these conditions
HAP was not as good a substrate for apoplastic
peroxidases to efficiently scavenge H2O2 (Fig. 1A). The
concentration of HAP in these suspensions decreased
about 7 mM over this monitoring period (Fig. 1B).

Surprisingly, when soybean suspensions were treated
with both phenolics, 100 mM each, a greater production of
H2O2 occurred reaching concentrations of 80–90 mM (Fig.
1A). In addition, the loss of both phenolics was greater
than when these compounds were added individually,
depleting nearly all of the AS within 3 h, and reducing the
HAP to 50 mM. Despite the continued presence of H2O2,
the loss in HAP appeared to nearly stop after 3 h when the
AS was nearly depleted.

3.2. Metabolism of AS and HAP by peroxidases

To determine whether extracellular peroxidases may be
involved in this phenomenon, we carried out similar
experiments in vitro with similar activities of horseradish

peroxidase and soybean peroxidase in 25mL of assay
buffer. The phenolics, 50 mM, were added separately or in
combination with exogenous H2O2, 100 mM. The findings
were similar for both, but only the horseradish peroxidase
results are shown (Fig. 2). Using peroxidase activities
similar to the soybean suspension cells, AS alone was a
much better substrate than HAP alone, based on the
utilization of H2O2 (Fig. 2A) and phenolic degradation
(Fig. 2B); AS was reduced nearly 70% over the 3 h
monitoring period while HAP was reduced less than 5%.
As with the soybean suspension cells, the in vitro

degradation of both phenolics was increased when they
were present together; more than 90% of the AS was
degraded and about 50% of the HAP (Fig. 2B). The
utilization of H2O2 appeared to be about 35 mM (Fig. 2A),
about half the total phenolic degradation of AS plus HAP,
70–75 mM. Interestingly, in reactions with HAP alone, the
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Fig. 1. Monitoring the extracellular H2O2 levels and phenolic concentra-

tions of suspensions of soybean cells treated with acetosyringone (AS) and

hydroxyacetophenone (HAP). The suspensions contained cells, 0.5 gmL�1

and either 100mM AS or HAP, or both AS and HAP. Samples were

periodically removed. (A) Hydrogen peroxide was measured spectro-

photometrically @ 560nm using the FOX2 assay which involved

oxidation of xylenol orange. (B) The concentration of the exogenously

added phenolics, AS and HAP, was quantified using HPLC-UV. See

Section 2 for details.
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H2O2 decreased nearly 10 mM (Fig. 2A) while the HAP
concentration decreased less than 3 mM.

3.3. Need for an initial oxidative burst

The need for an oxidative burst to initiate this reaction
was apparent when using tobacco suspension cells. Unlike
soybean cells, our tobacco cell suspensions do not produce
an oxidative burst upon preparation and transfer to assay
buffer. Addition of AS and HAP to tobacco cells did not
elicit H2O2 production or stimulate phenolic degradation
(Fig. 3). Previous studies [9] had demonstrated that
addition of HKBac to tobacco suspension cells would
produce a brief burst of H2O2, about 50 mM with these
suspensions (Fig. 3A). The same general pattern of H2O2

production and phenolic degradation that was seen in
soybean treatments occurred with the HKBac treated
tobacco cells (HKbac-tobacco). HKbac-tobacco suspen-
sions treated with 100 mM HAP responded similarly to

untreated tobacco cells, producing an initial burst of H2O2

(Fig. 3A). HPLC-UV analysis indicated that less than
10 mM HAP was degraded over the 6 h period (Fig. 3B),
indicating, as in soybean, that HAP was not an ideal
substrate for apoplastic peroxidases to scavenge the H2O2.
HKbac-tobacco suspensions treated with 100 mM AS did
not accumulate H2O2 during the 6 h period (Fig. 3A).
Nearly 40 mM AS was metabolized during the 6 h period
(Fig. 3B), suggesting that AS can be utilized in tobacco, as
well as soybean, to scavenge H2O2.
As with soybean cells, when HKbac-tobacco cells were

treated with both AS and HAP, 100 mM each, H2O2

accumulated reaching 15 mM (Fig. 3A), which was less than
in soybean (Fig. 1A). The phenolic degradation response of
the HKBac-tobacco was similar in magnitude to that of
similarly treated soybean cells (Fig. 1B), depleting nearly
all of the 100 mM AS within 4 h, and reducing the HAP by
50 mM (Fig. 3B).
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3.4. Effect of varying the phenolic concentration

To gain insight into the relationship between the two
phenolics and H2O2 production, soybean cells were treated
with varying concentrations of each phenolic. When
soybean cells were treated with a constant amount of
HAP, 100 mM, plus varying amounts of AS, 0–100 mM, the
amount of H2O2 detected increased with the amount of AS
present in the initial treatment (Fig. 4A). The initial rate of
H2O2 accumulation appeared to be the same for the
different concentrations of AS. The major effect of the AS
concentration was the duration of the H2O2 accumulation
and therefore the magnitude of the H2O2 accumulation
(Fig. 4A). The accumulation of H2O2 ceased at about the
same time the AS concentration was nearly depleted (Fig.
4C), and the HAP degradation decreased (Fig. 4B). For
example, the H2O2 accumulation in cells treated with HAP
plus 50 mM AS stopped around 2 h (Fig. 4A), concurrent
with the depletion of AS (Fig. 4C) reduced degradation of
HAP (Fig. 4B).

When soybean cells were treated with a constant amount
of AS, 100 mM, plus varying amounts of HAP, 0–100 mM,
the amount of H2O2 detected increased with the HAP
concentration in the initial treatment (Fig. 4D). The
starting time of H2O2 accumulation was similar for the
different concentrations of HAP; however, the rate of
accumulation increased with HAP concentration. The
accumulation of H2O2 appeared to cease when AS was
nearly depleted (Fig. 4F) and the HAP degradation
decreased (Fig. 4E). For example, in treatments with AS
plus 100 mM HAP, the H2O2 accumulation stopped around
3 h (Fig. 4D), concurrent with the depletion of AS (Fig. 4F)
reduced degradation of HAP (Fig. 4E).

4. Discussion

This study demonstrated two interesting phenomena
related to apoplastic metabolism, (1) the synergistic co-
oxidation of certain apoplastic phenolics and (2) the
subsequent production of ROS in the extracellular
environment of suspensions cells. When equal amounts of
AS and HAP were added to soybean suspension cells
undergoing an oxidative burst, and thus producing H2O2,
the rate and amount of degradation of each phenolic
compound was increased (Figs. 1 and 4). When the same
phenolics were added to tobacco suspension cells, a similar
synergistic co-oxidation accompanied by the production of
ROS occurred, but only after the cells were treated with
HKBac to elicit an initial oxidative burst (Fig. 3). The
synergistic co-oxidation of AS and HAP could be
duplicated in vitro, with both horseradish peroxidase
(Fig. 2) and soybean peroxidase (data not shown);
however, the production of ROS could not be demon-
strated. The ROS production by cells treated with these
phenolic compounds coincided with a comparable increase
in oxygen consumption by the suspension mixture (data
not shown).

The mechanism involved in this phenolic co-oxidation
would appear to involve peroxidase activity based on the
similarity of the synergistic phenolic metabolism that
occurred with horseradish peroxidase (Fig. 2B) and the
suspension cells (Figs. 1B and 3B). Unlike most biological
redox reactions, which require specific cofactors, perox-
idases have a wide range of substrates from which they can
abstract electrons. The catalytic cycle of peroxidase is
shown in Fig. 5a–c. The native enzyme is oxidized by H2O2

losing two electrons to form Compound-I. Compound I
takes an electron from a reducing phenol, producing a
phenolic radical and forming the Compound-II. Com-
pound-II repeats the later step forming another phenolic
radical reverting back to the native enzyme. These phenolic
radicals can have many fates including disproportionation,
dimerization, polymerization, or oxidation of other sub-
strates including other phenolics (co-oxidation) or oxygen
(Fig. 5).
In order to aid chemical analysis of the exogenous

phenolics added to the cell suspensions, relatively high
concentrations, 50–100 mM, were used compared to the
endogenous concentrations, 2–6 mM, detected in previous
studies with tobacco cell suspensions [5]. As discussed in
the previous study, it seems feasible that the concentration
of the phenolics in the cell wall matrix of suspension cells
would be much greater than that detected after dilution
into the total suspension fluid. In suspensions, the cell
volume is about 5% of the total volume and only a fraction
of this cell volume is composed of the cell wall matrix.
Therefore, although the total amount of exogenous
phenolics metabolized by these cells was probably much
greater than they would normally encounter, the concen-
tration of the phenolics seems biologically feasible.
Based on the work described in this study as well as

other studies of co-oxidation [6,7,10,11], it would appear
that AS would be the preferred substrate to react with
peroxidase (Fig. 2). The AS radicals are fairly stable
[12] and react with either AS*, O2, or HAP if present
(Fig. 5d–f). The presence of HAP would increase its
oxidation by AS, as well as reduce disproportionation of
AS (Fig. 5d), which might explain the observed apparent
increase in oxidation rate of both phenolics (Figs. 1B, 2B).
Consistent with this: (1) the rate of HAP metabolism
decreased once the AS was depleted in suspension cell
treatments containing both phenolics (Figs. 1–4); (2) the
initial rate of HAP metabolism was proportional to the AS
concentration (Fig. 4B).
The mechanism of H2O2 production observed in this

study is not clear. It could occur via the reaction of
phenolic radicals with oxygen, producing superoxide and
subsequently H2O2 (Fig. 5f, h); however, it is likely that
other circumstances are involved since this was only
observed in suspension cells. It seems likely that the HAP
radical was the major component involved in ROS
production, since in the absence of HAP, AS was
metabolized but did not produce H2O2. Also the initial
rate of H2O2 production appears dependent on the HAP
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concentration (Fig. 4D). Unfortunately, the accumulation
of H2O2 cannot be explained by the stoichiometry of these
reactions. One cycle of the peroxidase pathway would
consume one molecule of H2O2 and under the best of
conditions produce one molecule of H2O2, since two
phenolic radicals would produce two superoxide radicals
and subsequently one H2O2 (Fig. 5). Additional factors
must be involved in the apoplastic H2O2 production. Other
sources of apoplastic ROS production have been nicely
summarized by Bolwell and Wojtaszek [13], however, their
connection to the current phenomenon is not clear.

The phenomenon of co-oxidation of phenolics has been
an area of intense investigation in the pharmaceutical field
where two or more phenolic drugs are prescribed and has
revealed effects that could just as likely occur in plants
[6,11]. Peroxidases and other redox-active proteins in
animals have been shown to metabolize a number of
phenolic compounds in vivo, leading to modifications of
their bioactivity, which could be either beneficial or
detrimental [10,14–17]. For example, rifampicin, a broad-
spectrum antibiotic used in tuberculosis therapy, inhibits
bacterial RNA polymerase, but also has immunosuppres-
sive properties in humans that are attributed to its
oxidation product, rifampicin quinone [10]. The quinone
results from the oxidation of rifampicin by ROS at the

infection or inflammation site. This oxidative reaction can
be increased substantially by co-oxidation with paraceta-
mol, a phenolic painkiller often taken by patients. There is
concern that the paracetamol radically reduce the rifampi-
cin concentration to ineffective levels. Another example of
phenolic co-oxidation affecting bioactivity involves the
interaction of acetaminophen, a common painkiller, and
anthracycline drugs used in anticancer therapy [16]. The
acetaminophen is a good substrate for endogenous
peroxidase when oxidative conditions occur in stressed
tissue. The phenolic radical produced will oxidize and
degrade the anthracycline drug which normally would not
be affected. Because of this finding, the practice of using
these drugs together to treat cancer is being reexamined.
We have previously demonstrated the bioactive potential

of AS, an apoplastic phenol found in tobacco suspension
cells, in plant bacterial interactions [5]. When added
exogenously to tobacco or potato cell suspensions treated
with bacterial pathogens, AS caused physiological symp-
toms to occur earlier. In light of the current study, the
possibility that the AS might have had a co-oxidative effect
on other apoplastic phenolics in these suspension cells thus
altering their bioactivity must be considered. Several
studies have noted that addition of various phenolic
compounds, such as salicylic acid, aromatic monoamines,
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and phenylethylamine, have all been found to induce
responses similar to pathogens induced responses [18–21].
Although the ROS production is often the focus of these
investigations, the co-oxidative effects of these chemicals
on the apoplastic phenolics is often overlooked.

Because the apoplast is one of the first arenas in which
the molecular interaction between the plant and pathogen
occurs, it is essential to understand the molecular processes
that take place. It is a complex environment and due to its
separation from the cytoplasm, can undergo rapid transi-
tions and conditions that would not be tolerated in the
cytoplasm. Because of the complexity of this environment,
it has been very difficult to examine the exact nature of
many of the events that occur. The cell suspension system
described herein allows minimally invasive sampling and
analysis of the extracellular/apoplast fluid providing some
insight into the apoplastic chemistry.
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