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Resumen.  La densidad de nidos es frecuentemente modelada en función de variables ecológicas, pero los 
nidos, como las aves, pueden no ser detectados aunque estén presentes. En Nebraska Sandhills en 2007, utiliza-
mos el método de arrastre de cuerda en nidos previamente localizados de Sturnella neglecta para modelar el error 
asociado a la detección de nidos y la densidad de nidos. La detección de nidos con el método de arrastre de cuerda 
(usado frecuentemente para aves de pastizales) está condicionada por dos fuentes principales de disponibilidad  
de nidos, que los adultos estén visitando los nidos y que los adultos salgan del nido en respuesta al paso de la 
cuerda, lo cual es la señal comportamental necesaria para detectar los nidos. Con base en nuestras pruebas con este 
método, la probabilidad de que un adulto estuviera visitando el nido fue de 0.46. La probabilidad de que el paso de 
la cuerda resultara en una respuesta por parte de los adultos fue de 0.19, indicando que los estimados observados 
de densidad de nidos estaban sujetos a un error de detección y sesgados negativamente. Comparamos nuestra ha-
bilidad de detectar diferencias en las densidades de nidos entre dos tipos de hábitats con un análisis de poder es-
tadístico, utilizando (1) pruebas de t con estimados de densidad observada no corregida y (2) un modelo jerárquico 
Bayesiano que incorpora el error de detección de nidos. Nuestro análisis de poder indica que tener en cuenta el 
error de detección con un modelo jerárquico aumentó el poder estadístico para revelar las diferencias en las den-
sidades de nidos por tipo de hábitat. Discutimos los mecanismos que subyacen al error de detección para nidos de 
aves de pastizal y brindamos recomendaciones para muestrear y modelar de modo de maximizar la realidad de los 
modelos que determinan la detectabilidad y la densidad de nidos.

Estimating Nest Density When Detectability is Incomplete:  
Variation in Nest Attendance and Response to Disturbance  

by Western Meadowlarks

Estimación de Densidad de Nidos cuando la Detectabilidad es Incompleta: Variaciones en las Visitas 
a los Nidos y Respuestas a Perturbaciones en Sturnella neglecta

Estimating Nest Density When Detectability is Incomplete
Matthew D. Giovanni et al.

Abstract.  Researchers commonly model nest density as a function of ecological variables, but nests, like 
birds, can be undetected while present. In the Nebraska Sandhills in 2007, we used the rope-drag method on previ-
ously located Western Meadowlark (Sturnella neglecta) nests to model nest-detection error and nest density. De-
tecting nests by rope dragging (commonly used for nests of grassland birds) is conditional on two primary sources 
of nest availability, adults attending nests and adults flushing from nests in response to disturbance from the rope, 
the behavioral cue necessary for nest detection. On the basis of our trials with rope dragging, the probability of 
adults attending nests was 0.46. The probability of trials eliciting flight responses from adults was 0.19, indicating 
that observed estimates of nest density were subject to detection error and negatively biased. We compared our 
ability to detect differences in nest densities between two habitat types with a statistical power analysis, using (1) 
t-tests with estimates of apparent, uncorrected density and (2) a Bayesian hierarchical model incorporating nest-
detection error. Our power analysis indicates that accounting for detection error in a hierarchical model increased 
statistical power for revealing differences in nest densities by habitat type. We discuss mechanisms underlying de-
tection error for nests of grassland birds and make recommendations for sampling and modeling to maximize the 
reality of models for nest detectability and density.
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INTRODUCTION

Researchers recognize the importance of accounting for indi-
viduals present but not detected in designs for sampling and 
modeling species occupancy (MacKenzie et al. 2002, Tyre et 
al. 2003), abundance or density (Royle 2004), and vital rates 
such as productivity (Powell et al. 1999) and nest survival 
(Shaffer 2004). While most research has focused on incom-
plete detectability of species, researchers also sample for indi-
rect evidence of occupancy or abundance, such as nests, dens, 
hairs, scrapes, tracks, prey remains, and feces. Like the spe-
cies that produce them, these products are also subject to de-
tection error. Estimating density or abundance of items like 
nests, for example, with models that include a parameter for 
detection error is particularly important when ecologists are 
assessing effects of predictive ecological variables. Variation 
in detectability, which is inherently spatial and temporal, can 
bias the magnitude of covariates’ estimated effects and accu-
racy of predictions. In the worst-case scenario, detection er-
ror can increase type 2 (false-negative) errors or, more rarely, 
type 1 (false-positive) errors, such that correlation with some 
ecological variable is inferred to be positive when it is nega-
tive or vice versa (Tyre et al. 2003).

We employ the definition of detectability as partitioned 
into two sources of error: availability and perceptibility (John-
son 2008). Availability represents systematic error associated 
with species-specific behavior that promotes or prevents detec-
tion, such as variation in singing by birds, breaching by whales, 
or burrowing by fossorial species. Perceptibility is conditional 
on availability and represents sampling error associated with 
the ability of observers to detect a target. Variation in observers’ 
abilities (based on experience and aptitude) and environmen-
tal conditions (e.g., auditory or visual impediments like light, 
wind, rain, or topographic relief) are often primary sources of 
variation in perceptibility (Diefenbach et al. 2003, Alldredge 
et al. 2007, Simons et al. 2007). Given training and sufficient 
skill in sampling, an observer’s ability to detect a target is deter-
mined by the availability of necessary cues that facilitate detec-
tion. Additional variation in detection error will arise if cues are 
used to detect targets but those cues are not uniformly available, 
as when rates of singing vary (Best 1981, Ralph 1981, McShea 
and Rappole 1997, Alldredge et al. 2007).

Some species, such as the Bald Eagle (Haliaeetus leu-
cocephalus), build relatively conspicuous and detectable 
nests (Grier et al. 1981), while others, such as the Western 
Meadowlark (Sturnella neglecta), build cryptic ground nests 
(Davis and Lanyon 2008) that are more susceptible to false-
negative detection errors. The inconspicuousness of nests 
of the Western Meadowlark and other grassland birds gen-
erally requires nest-finding methods that are conditional on 
behavior of adults being observed (Winter et al. 2003). One 
common method is for two observers to drag a rope or chain 
between them to disturb and flush adults off nests (Bennett 

1938, Labisky 1957, Higgins et al. 1969, Martin and Geupel 
1993, Winter et al. 2003), the rope-drag method. This method 
is simple to use, but detecting 100% of nests present is condi-
tional on (1) adults attending nests while the rope is dragged 
(a source of availability), (2) adults providing detection cues 
by responding to the rope (also availability), and (3) observ-
ers detecting flight responses by adults and then locating 
associated nests (perceptibility).

Birds attend nests at different rates within a day (Glout-
ney et al. 1993, Smith et al. 2009; Davis and Donald, in press) 
and through the nesting cycle (Powell et al., in press), which 
produces temporal variation in availability of nests for de-
tection. Furthermore, breeding adults have disturbance- and 
stress-based response thresholds at which they choose their 
own safety over that of their offspring (e.g., Ricklefs 1977, 
Ydenberg and Dill 1986, Burhans and Thompson 2001, Gha-
lambor and Martin 2001). Additional variation in availability 
can therefore arise if the rope-drag method does not consis-
tently achieve or surpass those response thresholds. Evidence 
thus indicates that the consistency of conditions required to 
avoid variation in nest availability and detection error is not 
achievable. Researchers could consequently survey areas by 
rope dragging, fail to detect some proportion of nests present, 
and then estimate negatively biased nest densities. Worse yet, 
researchers could survey areas by this method, fail to detect 
different proportions of nests among temporal and/or spa-
tial factors of interest (e.g., habitat types or years), and then 
base statistical inference on biased estimates of nest density. 
Ultimately, modeling nest density as a function of ecological 
variables without accounting for detection error could lead to 
under- or over-estimating magnitudes or directions of ecolog-
ical effects (Tyre et al. 2003).

Researchers commonly model nest density based on the 
rope-drag method as a response to or predictor of ecological 
variables, including crop type (Earl 1950, Cowan 1982, Dueb-
bert and Kantrud 1987, Lokemoen and Beiser 1997, McMaster 
et al. 2005), haying or mowing (Frawley and Best 1991, Kersh-
ner and Bollinger 1996, Luscier and Thompson 2009; Devries  
and Armstrong, in press), livestock grazing (Bowen and Kruse 
1993, Kruse and Bowen 1996, Fondell and Ball 2004), rates of 
nest depredation (Ackerman et al. 2004), prescribed burning 
(Kruse and Bowen 1996; Devries and Armstrong, in press), 
topography (Frey et al. 2008), climate (George et al. 1992, 
McLandress et al. 1996), habitat-patch size (O’Leary and 
Nyberg 2000, Arnold et al. 2007), and distance to habitat 
edge (O’Leary and Nyberg 2000, Renfrew et al. 2005). Rela-
tive nest densities among levels of ecological variables have 
been traditionally used as indices of true nest density, but 
indices are unbiased only if detection error is constant spa-
tially, temporally, and among observers, which is most often 
not a realistic assumption (Best 1981, McShea and Rappole 
1997, Diefenbach et al. 2003, Alldredge et al. 2007, Simons 
et al. 2007).
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Our objectives were to (1) model the probability of nest 
attendance by adult Western Meadowlarks, (2) model the 
probability of adults flushing from nests in response to rope 
dragging, (3) estimate detection-corrected nest densities for 
two habitat types with a Bayesian hierarchical model, and (4) 
conduct a statistical power analysis to compare the effective-
ness of using observed versus detection-corrected estimates 
of nest density for revealing differences in nest densities be-
tween habitat types.

METHODS

Study area and sampling

Our study area was located at the University of Nebraska-
Lincoln’s Gudmundsen Sandhills Laboratory, which sits at 
the junction of Grant, Hooker, and Cherry counties (42° 4′ N, 
101° 27′ W) in the central Nebraska Sandhills. The property 
includes approximately 5000 ha of upland prairie pastures 
and 500 ha of lowland wet meadow pastures and stream cor-
ridors. The Sandhills region is characterized by mostly lin-
ear sand dunes with topographic gradients in soil structure, 
water availability, and temperature, creating relatively xeric 
prairie plant communities (upland prairies) on the sand dunes 
and relatively mesic communities (wet meadows) a high water  
table within reach of plants’ roots in the valleys. Wet mead-
ows represent approximately 10% of the land area in the Sand
hills and are typically managed for hay production, with a 
single annual harvest from early July to mid-August. Upland 
prairies are dominated by sparsely distributed warm-season 
grasses, forbs, and shrubs, whereas wet meadows support 
denser vegetation dominated by cool-season grasses, forbs, 
and sedges (Giovanni 2009). Upland prairies are generally 
managed with rotational or continuous grazing by beef cattle 
at moderate rates (0.5–1.7 animal-unit months ha−1) from May 
through February, with a rest period in March and April. Thus 
topography and land management produced markedly differ-
ent plant communities in wet meadows and upland prairies, 
collectively creating two distinct habitat types for Western 
Meadowlarks.

We focused our trials on nests of the Western Meadow-
lark because it is relatively abundant in the Sandhills and a 
widely distributed, grassland-obligate species (Davis and 
Lanyon 2008). We located nests by rope dragging and by for-
tuitous encounters in wet meadow and upland prairie pastures 
from 22 May to 30 July 2007. We searched each pasture two 
to four times by rope dragging and used a geographic-infor-
mation system to estimate area searched per pasture. We used 
modified visual-obstruction poles (Robel et al. 1970) to esti-
mate vegetation density around nest bowls within 1 to 3 days 
of a nest’s abandonment. We conducted trials by having two 
primary observers drag a weighted 27-m rope once over 
previously located nests from a random direction approxi-
mately 50 m away from each nest. Trials concluded when (1) a 

nest-attending adult flushed in response, or (2) an adult did not 
flush and we subsequently approached and visually inspected 
the nest for presence or absence of the adult. We excluded the 
trial from the analysis if the nest attempt had been terminated. 
While there is some uncertainty regarding detection of adults 
that could have run from the nest, we never observed this 
occurrence, and no data to support the occurrence of such 
behavior exist. We therefore assumed that our ability to detect 
responses by adults was constant because (1) there was no evi-
dence suggesting that adults run from the nest, (2) the same 
two observers intently focused on nest sites during trials, and 
(3) our many observations through three breeding seasons of 
searching for nests by rope dragging indicate that an adult 
flushing from a nest is audibly and visually conspicuous.

We assumed nest detectability did not vary across the 
sampling period because Powell et al. (in press) identified nest 
stage (egg versus nestling) as the primary source of variation 
in the probability of a Western Meadowlark attending a nest 
at the same study sites. We had no biological reason to ex-
pect rates of nest attendance and consequent nest detectability 
to vary through the breeding season because Western Mead-
owlarks commonly renest multiple times within one breeding 
season (Davis and Lanyon 2008), thereby ensuring that nests 
in both stages were available for trials throughout the breed-
ing season. To assess this assumption with our data, however, 
we also included an ordinal-day model in our set of compet-
ing models for estimating probabilities of nest attendance and 
flushing by adults.

We allowed a minimum of two days to pass before re-
peating trials at nests that survived for longer periods, and 
we assumed trials to be independent with respect to behav-
ioral responses from adults (i.e., there was no “rope-happy” or 
“rope-shy” behavior based on previous trials). We attempted 
to conduct trials at least once during both egg and nestling 
stages because rates of nest attendance vary by stage (Smith et 
al. 2009; Powell et al., in press). Some nests, however, failed 
during the egg stage, and others were found during the nest-
ling stage, thereby preventing trials at both stages for all nests. 
We also attempted to distribute trials evenly through the day 
because of potential intra-day variation in nest-attendance 
rates (Gloutney et al. 1993; Davis and Donald, in press).

Statistical analyses

We used R version 2.6 (R Development Core Team 2007) for 
statistical modeling. We developed a set of competing a priori 
generalized linear models with logit-link functions (Bolker 
2008) to estimate probabilities of adults attending nests and 
flushing from nests in response to rope-drag trials. Models 
included (1) a null model, (2) a time-of-day model, (3) an or-
dinal-day (season) model, (4) a nest stage (egg or nestling) 
model, (5) a model for density of vegetation around the nest 
site, and (6) a global model. We used Mazerolle’s (2010) “AIC-
cmodavg” package version 1.13 to calculate parameters for 
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selection of models, assess model support, and model-average 
coefficients for multimodel inference (Anderson 2008).

Flushing by adults in response to trials may have varied in 
part because of previous rope-drag trials, akin to “trap-shy” or 
“trap-happy” behavior, potentially creating non-independence 
among responses to trials. We therefore assumed that prior ex-
posure to a trial did not influence the probability of an adult’s 
response to subsequent trials. We assessed our assumption 
of independence between trials by modeling comparative 
probabilities of adults flushing at nests that were and were not 
exposed to prior trials. Variation in adults’ flushing responses 
may have also been affected by the fact that our trials were 
biased toward nests that survived longer, whereas nests that 
failed at relatively early ages were less likely to be represented 
in our sample (sensu Mayfield 1961). Therefore, although we 
attempted to distribute trials across nest stages (ages), the 
possibility exists that adults at nests that failed early could 
have responded to trials at rates different from those of adults 
at nests that survived longer. For example, adults at nests 
that tend to succeed may be less likely to flush in response 
to presence of predators, potentially concealing nest locations 
at higher rates. Alternatively, they may be more likely to de-
tect predators and flush before predators detect nests. For our 
analysis, we assumed that the responses of adults at failed and 
successful nests did not vary. We assessed this assumption by 
modeling and comparing probabilities of flushing by adults 
at nests that did and did not survive long enough to (1) transi-
tion from the egg stage to nestling stage and (2) successfully 
fledge nestlings.

We used two simulation models and a power analysis to 
quantify the effect of nest-detection error on our ability to 
reveal differences in nest densities between two habitat types. 
The first simulation model compared apparent mean esti-
mates of nest density in the two habitat types with results of 
iterative, one-tailed t-tests (α = 0.05) and represented the more 
traditional approach of analysis. The second simulation model 
predicted corrected nest densities by accounting for detection 
error with a Bayesian hierarchical model. We parameterized 
the simulation models on the basis of the field-sampling de-
sign used to find nests for a related study of nest survival and 
selection (Giovanni 2009), where seven sites were classified 
as lowland wet meadows and four sites were classified as 
upland prairies.

Our first model simulated pastures that were visited from 
one to four times in a search for new nests. We simulated data 
by assuming the number of new nests found during each visit 
arose from a Poisson process. We made this assumption be-
cause finding a nest is a discrete event and, from an observer’s 
perspective, an independent random event that occurs at a par-
ticular rate. Thus, during each simulated visit, new nests were 
“found” as random draws from a Poisson process (Pois):

N Aij c i~ ( )Pois λ

where N is the number of new nests in the ith pasture on the 
jth visit, λ was the average nest density for one of the habi-
tat types c, and A was the area in hectares of the ith pasture. 
These definitions of indices and parameters remain the same 
throughout the rest of the description of the model. By esti-
mating λ in this way, we made inferences about the number 
of nests an observer was expected to find given a search of a 
specified area of size A. We simulated variation in sampling 
effort (i.e., number of visits to a pasture) as a random draw 
from a uniform distribution with a range of 1 to 4, which rep-
resents the variation in our field-sampling effort because sam-
ple size increases with effort. We assumed that the mean rate 
of nest detection was constant across visits in our simulations, 
although one could model the mean rate as a function of time 
if evidence indicated that the mean declined over the course of 
the breeding season or with consecutive visits.

We introduced detection error into simulated nest discov-
eries during each visit with the following binomial process 
(Bin) because finding a nest is a discrete event:

y N pij ij~ ( ),Bin

where y is the apparent number of nests and p is the detection 
rate. We assumed that only a portion p of the Poisson-distrib-
uted N nests was found at any one time. Thus, we treated the 
number of nests found as a random draw from a binomial re-
alization of the Poisson process. Simulating our data thus con-
sisted of making random draws from a Poisson distribution, 
inserting the resulting values into a binomial distribution, and 
then making random draws from a binomial distribution. We 
used our field-based empirical estimate of overall probability 
of flushing for p in the binomial distribution. We calculated 
simulated apparent densities of nests for each habitat type 
by summing simulated numbers of observed nests (y) in each 
pasture over all visits and then dividing by pasture area. We 
then tested for differences in simulated nest densities by habi-
tat type with independent, one-tailed t-tests (α = 0.05).

We began this simulation under a scenario where habi-
tat types had equal mean nest densities of 0.1 nests ha−1, the 
estimated nest density from our observed data for the upland-
prairie habitat type. We then increased mean nest density in 
the wet meadows by 0.005 nests ha−1 because we felt this value 
was precise enough for us to accurately identify thresholds 
in statistical power. We increased densities in wet meadows 
to find a threshold for power with regard to our expected 
effect of habitat type. We repeated nest-density increases for 
wet meadows until the difference in mean nest density be-
tween habitat types reached 0.30 nests ha−1, a difference large 
enough to illustrate the effect of detection error on power. For 
each increase in nest density, we simulated 1000 datasets, 
which consisted of observations of nests in each of the 11 pas-
tures. We recorded the proportion of datasets in which the 
t-test identified a significant difference in mean nest densities 
between habitat types.
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We then developed a second simulation that used a 
Bayesian hierarchical model (McCarthy 2007) to correct for 
detection error and predict nest densities. As in the previous 
analysis, we simulated an apparent number of nests (y) on the 
basis of a binomial distribution with the empirical detection 
probability p. The true number of nests (N) was based on a 
Poisson distribution. As in the first analysis, we calculated the 
simulated apparent nest density from the observed number of 
nests (y) in each pasture and the area of each pasture. We then 
analyzed the simulated data by fitting the following mixture 
likelihood based on Royle’s (2004) N-mixture model:

Bin Pois( | ) ( | ),y N p Nij ij ij i
j

I

j

J

λ
==

∏∏
11

where p was estimated by logistic regression and λ was es-
timated by Poisson regression. This method of analysis is 
different from the t-test used in the first analysis because it 
corrects average estimates of nest density for detection error 
by assuming that the true number of nests (N) was not directly 
observed but could be estimated as a parameter. We estimated 
mean densities for each pasture as the mean of an overdis-
persed Poisson model:

log( )λ ei i iA= +µ

where μ is a collection of log-linear model parameters (β0 + β1 ×  
habitat type) and e is a random effect for each pasture with a 
zero mean and a variance to be estimated. We included this  
error term to account for additional statistical errors at the 
level of the pasture that could not be accounted for by the 
mean. We parameterized the variance term as the inverse vari-
ance (τ, Bayesian precision), which is common in Bayesian 
analyses because of how posterior conditional distributions 
are derived. The covariate for the habitat-type parameter in 
our Poisson regression was a binary variable (1 = wet meadow, 
0 = upland prairie).

We fit our hierarchical model by Markov chain Monte 
Carlo (MCMC) simulation with a metropolized Gibbs sam-
pler (Gilks et al. 1995, Robert and Casella 1999), similar to 
methods used in the software package WinBUGS (Lunn et al. 
2000). Our algorithm used a Gibbs sampler or Metropolis al-
gorithm depending on the availability of the full conditional 
distribution (i.e., the distribution of a parameter given all of 
the other quantities in the model). Sometimes we were able to 
build conditional distributions that were proportional to the 
product of the prior of the parameter and the likelihood of that 
parameter. The resulting distribution function was then easy 
to use because we sampled directly from it, which is known as 
Gibbs sampling. In other cases, we could not derive this func-
tion because we could not easily multiply the prior times the 
likelihood, such as with the mixture model presented above. 
Instead we developed an approximating function and iteratively 
proposed new values that could belong to that distribution, 

which is known as the Metropolis algorithm. The steps of our 
hybrid algorithm are as follows:

(1) We drew new values of p for each pasture during each 
visit from a normal distribution with mean of logit(0.19) and 
standard deviation of 0.05. We estimated the parameters of 
this distribution from our empirical data.

(2) We updated values of the pasture-specific mean nest 
density (λ) by using a Metropolis updating step, which esti-
mates a parameter by evaluating the relative probability be-
tween the current value and newly proposed values of the 
parameter. This relative probability r is represented as:

r
N p
N pi

i ij

i ij
=

pr
pr

( * | )
( | )

,

,

λ
λ

where λi is the current value and λi* is the new value pro-
posed as a random draw from a normal proposal distribu-
tion with mean λi and standard deviation 0.10. We then drew 
the probability of accepting the new nest-density value from 
a uniform distribution on the interval [0,1]. If r was less 
than the random acceptance probability then we kept the old 
value. If r was greater than the acceptance probability, we ac-
cepted the new value. We used this method for all of the pa-
rameters for which we could not compute the full conditional 
distribution.

(3) We updated the “true” number of nests by randomly 
increasing or decreasing the current value of each N by 1. Pro-
posed values of N had no upper limit, but they could not go 
lower than the observed value of y. We then accepted or re-
jected these new values according to a Metropolis step:

r
N p
N pij

ij i

ij i
=

pr
pr

( * | )
( | )

,

,

λ
λ

Again, we accepted or rejected each value of Nij (the true num-
ber of nests in the ith pasture on the jth visit) by comparing rij 
against an acceptance probability.

(4) We updated the values of μ (β0, etc.) by using a Gibbs 
sampler, which works by drawing values from the full condi-
tional distribution. In our case, this was represented as a mul-
tivariate normal distribution (MVN):

µ µ~ ( , / )MVN 1 τn

where µ is a vector means for the log-linear model and n is the 
number of pastures.

(5) We updated the current value of our precision, τ, by 
drawing values from a full conditional gamma distribution:

τ µ~ { , . [ ( ) ]}.Gamma / /1 10 1 10 0 5 2+ ∑ −mi

We assumed an inverse-gamma prior with a mean of 1 and 
variance of 10. This produced a relatively uninformative prior 
distribution with a strong peak around a value of 1 and a 95% CI 

22_MS100076.indd   227 2/24/11   5:58:34 PM



228    Matthew D. Giovanni et al.

that covers values close to zero (1/τ is very large) up to values 
around 10 (1/τ is small).

Algorithms sometimes have difficulty converging on an 
estimate when the Markov chain generated in these simula-
tions is based on a complicated likelihood, and a common so-
lution is to run the chain from a long number of iterations (i.e., 
use a burn-in period) to allow the chain to settle into a station-
ary sampling distribution (Gilks et al. 1995, McCarthy 2007). 
We ran our algorithm for a single chain with 110 000 itera-
tions, and discarded the first 10 000 iterations. We used the 
last 100 000 as our stationary distribution and thinned each 
chain to every 100 iterations in order to reduce the amount of 
serial autocorrelation, which can affect estimates of the poste-
rior variance of a parameter (Gilks et al. 1995). Thus our pos-
terior inference was based on 1000 iterations. We simulated 
100 replicate datasets for each change in nest density in wet 
meadows. We ran fewer datasets for the Bayesian model be-
cause of the time-consuming process of fitting the model. For 
instance, in some cases it took ≥3 hr to finish 100 replicates 
for one mean value. In order to speed up the processing, we 
used a parallel processing approach with Prairiefire, a bank 
of 400+ processors maintained at the University of Nebraska-
Lincoln’s Research Computing Facility.

Once parameters were estimated, we recorded a differ-
ence in mean nest density for each model run, a 1 for a dif-
ference or a 0 for no difference. For the Bayesian model, we 
estimated the posterior distribution for the difference in nest 
densities between habitat types. We then calculated the cu-
mulative probability of the lower tail of that distribution. We 
defined the tail as no difference between the means. We con-
sidered the densities different if this probability was 0.23 or 
less, which made the test for the Bayesian model equivalent to 
a t-test with α = 0.05. We fit a smoothing spline through our 
power calculations to smooth predictions because the Bayes-
ian analysis was based on fewer simulated datasets. We then 
compared these results to those from the simulation using a t-
test and observed nest-density estimates. We present individ-
ual means with standard errors (SE), comparative means with 
95% confidence intervals (CI), estimated means from models 
selected with AICc with 85% CI, and model-averaged coeffi-
cients (β) with unconditional 85% confidence intervals (UCI) 
(Anderson 2008, Arnold 2010).

RESULTS

We searched for Western Meadowlark nests by rope dragging 
to estimate density in seven wet meadow pastures (mean size 
57 ± 5 ha, range 38–70 ha) and four upland prairie pastures 
(61 ± 10 ha, range 43–90 ha), representing a total area of 396 
and 245 ha, respectively. We conducted 52 rope-drag trials 
on 23 nests (2.3 ± 0.2 trials per nest, range 1–5), including 
10 nests subjected to a single trial and 13 nests subjected to 
more than one trial. Time elapsed between trials at nests with 

greater than one trial was 90 ± 10 hr (range 42–270 hr). Time 
of day for trials was 13:27 ± 0.8 (range 07:50–19:33). Age of 
nests during trials was 14.9 ± 1.2 days (range 3–28 days) after 
clutch initiation, with 32 and 20 trials during the egg and nest-
ling stages, respectively. Vegetation density at nests for tri-
als during which adults were attending nests and absent from 
nests was 19.6 cm (95% CI 17.3–21.8) and 23.8 cm (95% CI 
21.5–26.1), respectively. Vegetation density at nests for tri-
als during which attending adults did and did not flush was 
23.6 cm (95% CI 21.3–25.9) and 16.7 cm (95% CI 14.0–19.4), 
respectively.

Adults attended nests during 24 of 52 trials (46%). The 
vegetation-density model for probability of adults attending 
nests was most informative within our model set, but model-
selection uncertainty was high so we report model-averaged 
coefficients (Table 1). Vegetation density (β = −0.120, 85% 
UCI = −0.195 to −0.046) and nest stage (βnestling = −1.074, 85% 
UCI = −1.979 to −0.168) were negatively correlated with prob-
ability of nest attendance (Fig. 1), but UCI for time of day (β = 
0.000, 85% UCI −0.002–0.001) and ordinal day (β = 0.004, 
85% UCI −0.017–0.025) overlapped zero. The estimated prob-
ability of attendance from the null model was 0.46 (85% CI 
0.37–0.56).

Adults flushed from nests during 10 of 52 trials (19%). 
Model-selection uncertainty was high among models for 
probability of flushing (Table 1). Model-averaged coefficients 
for vegetation density (β = 0.065, 85% UCI −0.027–0.157), 
time of day (β = 0.000, 85% UCI 0.002–0.002), ordinal day 
(β = −0.011, 85% UCI −0.032–0.010), and nest stage (βnestling = 
−1.124, 85% UCI −2.37–0.123) overlapped zero. The estimated 
probability of flushing (including when adults were confirmed 

Table 1. M odels for probability of adult Western Mead-
owlarks attending and flushing from nests in the Nebraska 
Sandhills, 2007. K, number of model parameters; lnL, log 
likelihood; ΔAICc, relative differences in values of Akaike’s 
information criterion for small sample sizes; wi, weight.

Model K lnL ΔAICc wi

Attending nest
Vegetation density 2 −32.8 0.0 0.63
Nest stage 2 −34.2 2.8 0.16
Null 1 −35.9 4.1 0.08
Global 5 −31.4 4.4 0.07
Ordinal day 2 −35.8 6.0 0.03
Time of day 2 −35.8 6.1 0.03

Flushing from nest
Null 1 −25.5 0.0 0.30
Nest stage 2 −24.5 0.2 0.27
Vegetation density 2 −25.0 1.2 0.17
Ordinal day 2 −25.1 1.5 0.14
Time of day 2 −25.5 2.2 0.10
Global 5 −23.3 4.8 0.03
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post-trial as absent) from the null model was 0.19 (85% CI 
0.13–0.28). Given adults’ attendance at nests, adults flushed 
during 10 of 24 trials (42%), and the probability of flushing 
from the null model was 0.42 (95% CI 0.24–0.60). As re-
searchers do not know if nests are attended by adults while 
searching for new nests by rope dragging, our detectability 
estimate of 0.19 is the most realistic in practice.

Given attendance by adults at nests, the probabilities of 
adults responding to trials when preceded and not preceded 
by previous trials were 0.44 (95% CI 0.18–0.75) and 0.40 (95% 
CI 0.19–0.65), respectively, suggesting that the probability of 
adults flushing in response to subsequent trials was not af-
fected by exposure to previous trials. Given attendance by 
adults at nests, the probabilities of adults flushing in response 
to trials at nests that survived from the egg to nestling stage  
(n = 13) and at nests that failed in the egg stage (n = 10) were 
0.50 (95% CI 0.22–0.78) and 0.38 (95% CI 0.13–0.72), respec-
tively. Probabilities of nest-attending adults flushing in response 
to trials at nests that fledged nestlings (n = 9) and at nests that 
failed (n = 14) were 0.43 (95% CI 0.14–0.77) and 0.45 (95% CI 
0.20–0.73), respectively, indicating that probabilities of adults 
flushing from more or less successful nests did not vary.

We observed greater densities of nests in wet meadows 
(1.7 nests per 10 ha, 95% CI 0.8–2.6) than in upland prairie 
pastures (0.1 nests per 10 ha, 95% CI 0.0–0.3) (Table 2). Pre-
dictions from the Bayesian hierarchical model of nest density 
for wet meadows and upland prairie pastures were 14.2 ± 1.1 
nests per 10 ha and 1.5 ± 0.3 nests per 10 ha, respectively, an 
increase of 12% and 7% over apparent estimates of nest den-
sity. While differences between habitat types in apparent nest 
densities were clearly large, our power analysis illustrates that 
using uncorrected estimates of apparent nest density provided 
less power to detect differences between habitat types than 
that obtained from model-predicted estimates of nest density 

Table 2.  Observed and model-predicted estimates of mean nest 
density in lowland wet meadow (WM) and upland prairie (UP) pas-
tures and estimation bias (Δ = predicted − observed) for Western 
Meadowlarks in the Nebraska Sandhills, 2007.

Nest density (nests 10 ha−1)

Pasture
Area  
(ha) Nests Observed

Predicted  
(± SE) Δ

WM1 63.4 25 3.9 14.7 ± 0.7 10.7
WM2 61.7 15 2.4 13.4 ± 0.7 11.0
WM3 70.4 13 1.8 11.5 ± 0.6 9.7
WM4 37.8 6 1.6 19.6 ± 1.2 18.0
WM5 67.6 7 1.0 11.1 ± 0.7 10.1
WM6 49.0 3 0.6 14.5 ± 0.9 13.9
WM7 46.1 1 0.2 15.0 ± 1.0 14.8
UP1 43.1 2 0.5 2.3 ± 0.5 1.9
UP2 61.1 0 0.0a 1.3 ± 0.4a 1.3
UP3 51.1 0 0.0a 1.6 ± 0.4a 1.6
UP4 90.0 0 0.0a 0.9 ± 0.2a 0.9

aNo nests observed. Predictions based on apparent mean nest density 
of UP 1 − 4.

Figure 1. M odel-predicted probabilities (±85% confidence in-
tervals) of nest attendance as a function of vegetation density around 
nests of Western Meadowlarks in the Nebraska Sandhills, 2007.

Figure 2.  Simulation-based power analysis illustrating statisti-
cal power to detect a difference in mean nest densities between habi-
tat types for the Western Meadowlark in the Nebraska Sandhills, 
2007. Solid line, power of detecting a difference between habitat 
types with mean nest-density parameters corrected for detection  
error in a Bayesian hierarchical model. Dashed line, power of detect-
ing a difference between habitat types with a one-tailed, independent 
t-test (α = 0.05) of apparent, uncorrected mean densities of nests.

corrected for detection error (Fig. 2). For example, we would 
need a difference in mean nest density of >0.20 nests ha−1 
to achieve statistical power of 0.80 with our first simulation 
model based on apparent nest densities. We achieved the same 
level of power with a mean difference of approximately 0.10 
nest ha−1 by correcting for detection error in our hierarchical 
simulation model (Fig. 2).

22_MS100076.indd   229 2/24/11   5:58:37 PM



230    Matthew D. Giovanni et al.

DISCUSSION

Our results illustrate that finding nests by rope dragging or 
similar cue-based methods depends primarily on (1) adults at-
tending nests and, (2) given the presence of adults, adults re-
sponding to disturbance produced by the rope, both of which 
are primary sources of variation in availability and neither of 
which were constant according to our data. Variation in rates 
of nest attendance and responses by adults produced a high 
level of detection error, a low probability of detecting nests, 
negatively biased estimates of nest density, and diminished 
statistical power for revealing differences in nest densities be-
tween habitat types. Our estimates of nest density are rela-
tive, but researchers could estimate more absolute densities 
by incorporating information from daily nest-survival data, 
thus accounting for nests that failed before detection (May-
field 1961, Shaffer 2004).

We assumed that our ability to detect responses by adults 
during rope-drag trials was 100%, but rope-drag surveys for 
undiscovered nests may also be subject to variation in the 
perceptibility component of detectability because of observer 
error in detecting flight responses and locating associated 
nests. Species-specific behavioral and/or morphological traits 
may affect the ability of observers to detect nests. For example, 
species of the order Galliformes may be more likely to flee 
nests on foot and under dense vegetation cover, thereby poten-
tially avoiding detection. Observers may also fail to detect 
inconspicuous flight responses from physically less conspicu-
ous species such as the Grasshopper Sparrow (Ammodramus 
savannarum). Numerous researchers have partially accounted  
for the perceptibility component of detection error by isolat-
ing inter-observer variation from estimates of nest density.  
For example, Nichols et al. (1986) applied an observer-based, 
capture–recapture approach to account for detection error 
during surveys for nests of the White-winged Dove (Zenaida 
asiatica), and Conway and Simon (2003) used a double-observer 
method to estimate detectability of nest sites of the Burrowing 
Owl (Athene cunicularia). Such methods partially address the 
perceptibility component of detection error by accounting for 
inter-observer variation, but they do not directly address the 
availability component by identifying and quantifying the under-
lying mechanisms.

Detection error inherent to the rope-drag method could 
be decreased by increasing the number of observers and spac-
ing them more closely as they search (Renfrew et al. 2005). 
Increased sampling intensity could thus decrease bias by in-
creasing probabilities of nest-attending adults responding 
to disturbance, but it still may not reveal all nests present if 
nests are not attended by adults and available for detection. 
Increasing the frequency of searches by sampling sites repeat-
edly until no additional nests are located may also increase 
the probability of finding adults attending nests (McLandress 
et al. 1996, Ackerman et al. 2004). Similarly, repeated visits 

can be used to increase probabilities of detecting nests, but the 
number of visits required to maximize nest detectability can 
vary by species, and repeated visits are effective only for spe-
cies with periods of nest survival long enough to accommo-
date multiple visits (Smith et al. 2009).

Other researchers have used alternative methods for find-
ing nests, such as walking 1-m-wide transects with or without 
tools to part vegetation (Basore et al. 1986, Bryan and Best 
1994, Camp and Best 1994, Scheiman et al. 2003, Henning-
son and Best 2005, Smythe and Haukos 2009), focused obser-
vation of adults’ behavior (Martin and Guepel 1993, Winter 
et al. 2003), or tracking females to nests with radioteleme-
try (Powell et al. 2005). These approaches may reduce detec-
tion bias in searches for nests, but we contend that most of 
them are also subject to detection error and consequent bias 
in estimates of nest density. The extent of detection error and 
bias, however, will vary depending primarily on (1) the type 
of method and sampling intensity, (2) species-, nest-stage-, 
and time-specific rates of nest attendance and behavioral re-
sponse, and (3) nest-site structure and weather conditions. 
For example, observers spaced closer together and walking 
transects while parting vegetation may be more effective than 
the rope-drag method in eliciting flight responses by adults. 
Such methods, however, cover less area than the rope dragging 
with equivalent time invested, and they are still conditional 
on adults attending nests.

Numerous factors should be accounted for in sampling 
and modeling designs used to estimate nest detectability and 
density for grassland birds. Our sample of rope-drag trials was 
too small to reveal correlations between ordinal day and time 
of day with probabilities of nest attendance and flushing by 
adults. In reality, however, variation in nest attendance within 
a day and among days (i.e., season effects) could affect estimates 
of nest detectability and density (Gloutney et al. 1993; Davis 
and Donald, in press).

Density of vegetation at nest sites may be an important 
factor for sampling and modeling nest detectability. Renfrew 
et al. (2005) suggested the rope-drag method is less effective 
as plant height increases through the growing season, and 
Burhans and Thompson (2001) found nest concealment and 
distance to approaching observer before adults responded to 
be inversely related. Our data provide further evidence that 
behavior of nest-attending adults can vary with level of nest 
concealment. For grassland passerines, this relationship could 
be magnified if birds perceive a dragged rope as a source of 
disturbance less intense than direct approach by researchers 
(as in Burhans and Thompson 2001). We recommend that 
researchers use sampling and modeling designs accounting 
for study-specific variables that produce detection error, in-
cluding variables representing time (e.g., time of day, time of 
season, and nest age or stage), nest-site structure, and inter-
observer effects (i.e., perceptibility) related to detection of 
adults flushing from nests.
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Our model and predictions could be refined by allowing 
the probability of nest detection to vary stochastically, but our 
primary goal was to demonstrate that incorporating sources 
of detection error can help researchers make more accurate 
ecological inference. Researchers modeling nest density for 
grassland birds may benefit from a sampling design similar 
to ours, in which rope-drag trials (or equivalent method) are 
conducted on subsamples of known nests to quantify and 
correct for detection error. Subsequent estimation of nest den-
sity with a hierarchical modeling approach (e.g., Royle 2004) 
should produce more accurate estimates of nest density and 
associated effects of ecological variables.
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