2015

Yellowstone wolf (*Canis lupus*) density predicted by elk (*Cervus elaphus*) biomass

L. David Mech
USGS Northern Prairie Wildlife Research Center, david_mech@usgs.gov

Shannon M. Barber-Meyer
USGS Northern Prairie Wildlife Research Center, sbarber-meyer@usgs.gov

Follow this and additional works at: https://digitalcommons.unl.edu/usgsnpwrc

Part of the [Animal Sciences Commons](https://digitalcommons.unl.edu/usgsnpwrc), [Behavior and Ethology Commons](https://digitalcommons.unl.edu/usgsnpwrc), [Biodiversity Commons](https://digitalcommons.unl.edu/usgsnpwrc), [Environmental Policy Commons](https://digitalcommons.unl.edu/usgsnpwrc), [Recreation, Parks and Tourism Administration Commons](https://digitalcommons.unl.edu/usgsnpwrc), and the [Terrestrial and Aquatic Ecology Commons](https://digitalcommons.unl.edu/usgsnpwrc)

https://digitalcommons.unl.edu/usgsnpwrc/350

This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Northern Prairie Wildlife Research Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Yellowstone wolf (*Canis lupus*) density predicted by elk (*Cervus elaphus*) biomass

L. David Mech and Shannon Barber-Meyer

Abstract: The Northern Range (NR) of Yellowstone National Park (YNP) hosts a higher prey biomass density in the form of elk (*Cervus elaphus* L., 1758) than any other system of gray wolves (*Canis lupus* L., 1758) and prey reported. Therefore, it is important to determine whether that wolf–prey system fits a long-standing model relating wolf density to prey biomass. Using data from 2005 to 2012 after elk population fluctuations dampened 10 years subsequent to wolf reintroduction, we found that NR prey biomass predicted wolf density. This finding and the trajectory of the regression extend the validity of the model to prey densities 19% higher than previous data and suggest that the model would apply to wolf–prey systems of even higher prey biomass.

Key words: gray wolf, *Canis lupus*, elk, *Cervus elaphus*, Yellowstone, population regulation, prey biomass, biomass index, intraspecific mortality.

Introduction

The question as to whether wolf (*Canis lupus* L., 1758) numbers are determined by food supply or social factors has been debated since 1967 (summarized in Cariappa et al. 2011; Cubaynes et al. 2014; McRoberts and Mech 2014). For many years, the issue seemed settled, as Keith’s (1983) meta-analysis showing a significant relationship between wolf density and prey biomass was continually updated with new data and became stronger (Fuller 1989; Fuller et al. 2003). (Unfortunately, Wolff (1997) seemed unaware of this literature when Wolff published “Population regulation in mammals: an evolutionary perspective.”)

Recently, Cariappa et al. (2011) presented a more-refined analysis of the data used by Fuller et al. (2003) which suggested that at higher prey densities, wolf numbers might be self-regulated rather than determined by prey biomass. McRoberts and Mech (2014) challenged the Cariappa et al. (2011) statistical methodology and found that parsimoniously even at high prey densities there was no significant evidence that the relationship between wolf density and prey biomass would be any different from the Fuller et al. (2003) model. However, concurrently, Cubaynes et al. (2014) concluded that more variation in adult wolf survival in the Northern Range (NR) of Yellowstone National Park (YNP) was explained by wolf density than by the abundance of the wolf’s main prey there, the elk (*Cervus elaphus* L., 1758). During the years Cubaynes et al. (2014) studied (1998–2010), the NR hosted a higher density of wolves and prey than any of the other systems included in the Fuller et al. (2003) model. Cubaynes et al. (2014: 1344) reported that their findings suggested that “...intrinsic density-dependent mechanisms have the potential to regulate wolf populations at higher ungulate densities”. While not disputing that intraspecific aggression can be an important proximate factor in wolf–population regulation, McRoberts and Mech (2014) concluded that such a mechanism would not in itself regulate wolf populations.

The Cubaynes et al. (2014) findings, however, do raise the question of why variation in their adult wolf survival was better explained by wolf density than by prey biomass if prey biomass ultimately determines wolf populations. Is Yellowstone wolf density ultimately determined by intraspecific strife instead of prey biomass? If so, this conclusion would represent the only known exception to the Keith (1983), Fuller (1989), and Fuller et al. (2003) model based on 32 wolf–prey systems. Thus, a closer examination of wolf density and prey biomass in the NR is required. We hypothesized that, like in all other wolf–prey populations studied except for those recolonizing or heavily hunted (Cariappa et al. 2011) (summarized by Fuller et al. 2003), Yellowstone wolf density would be predicted by prey biomass even though that biomass is higher than any previous wolf–prey biomass studied.

Materials and methods

Study area

Gray wolves were reintroduced to Yellowstone in 1995 and 1996, and their numbers immediately began increasing (Smith 2005).
Although wolves colonized the entire park, their greatest concentration was in the northern part of the park on 995 km² of the 1530 km² NR (Cubaynes et al. 2014). There they preyed primarily on elk (Smith et al. 2004), which numbered >17 000 (Table 1). As wolves increased on the Yellowstone NR, elk decreased, although the role of wolves in the elk decline is not agreed upon (Vucetich et al. 2008; White and Garrott 2005; Varley and Boyce 2006). By 2003, wolf numbers peaked, and by 2005, elk numbers began to stabilize (Table 1). Adult wolf mortality was due primarily to intraspecific strife (Cubaynes et al. 2014) and pup mortality was due to disease (Almberg et al. 2009, 2010, 2012).

A test of whether prey biomass on the NR determines wolf density must include a period when wolf and prey numbers had persisted long enough to have reached some kind of equilibrium (Table 1). Adult wolf mortality was due primarily to intraspecific strife (Cubaynes et al. 2014) and pup mortality was due to disease (Almberg et al. 2009, 2010, 2012).

Table 1. Wolf (Canis lupus) and elk (Cervus elaphus) numbers (Peterson et al. 2014) and density in the Northern Range (NR), Yellowstone National Park (YNP). a

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of wolves/1000 km²</th>
<th>No. of elk/km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>42</td>
<td>17 838</td>
</tr>
<tr>
<td>1999</td>
<td>35</td>
<td>16 888</td>
</tr>
<tr>
<td>2000</td>
<td>65</td>
<td>15 638</td>
</tr>
<tr>
<td>2001</td>
<td>70</td>
<td>13 938</td>
</tr>
<tr>
<td>2002</td>
<td>78</td>
<td>12 838</td>
</tr>
<tr>
<td>2003</td>
<td>98</td>
<td>11 138</td>
</tr>
<tr>
<td>2004</td>
<td>84</td>
<td>12 861</td>
</tr>
<tr>
<td>2005</td>
<td>54</td>
<td>8 849</td>
</tr>
<tr>
<td>2006</td>
<td>75</td>
<td>9 241</td>
</tr>
<tr>
<td>2007</td>
<td>94</td>
<td>8 570</td>
</tr>
<tr>
<td>2008</td>
<td>57</td>
<td>9 675</td>
</tr>
<tr>
<td>2011</td>
<td>38</td>
<td>5 496</td>
</tr>
<tr>
<td>2012</td>
<td>34</td>
<td>5 168</td>
</tr>
</tbody>
</table>

Some of the NR wolf packs range outside the park at times; the wolf-pack density outside the park is lower, but the wolf-density data in the park, based on intensive aerial radio-tracking and observation, are quite accurate. The BMI data (based on aerial elk counts) may be less accurate. As per Peterson et al. (2014), the elk data are from Eberhardt et al. (2007) for 1998–2004 and White et al. (2012) for 2005–2009. Estimates for 2010–2012 used the methods of White et al. (2012), multiplying the number of elk aerially observed by 1.32 to account for those not observed.

Some of the NR wolf packs range outside the park at times; the wolf-pack density outside the park is lower, but the wolf-density data in the park, based on intensive aerial radio-tracking and observation, are quite accurate. The BMI data (based on aerial elk counts) may be less accurate. As per Peterson et al. (2014), the elk data are from Eberhardt et al. (2007) for 1998–2004 and White et al. (2012) for 2005–2009. Estimates for 2010–2012 used the methods of White et al. (2012), multiplying the number of elk aerially observed by 1.32 to account for those not observed.

Since 2008, half or more of the elk typically migrated out of the park during winter (P.J. White, personal communication). Because some of the elk migrate out of the 995 km² part of the NR inside the park for part of the year, a reviewer suggested that we should also analyze the data accordingly. That reviewer supplied a range of wolf numbers (18–34) for the 535 km² of the NR outside the park, admitting that those numbers were not as accurate as those for wolves in the park. Thus, we added the midrange of the results obtained for 2005–2012 to the data used for part of the year, a reviewer suggested that we should also analyze the data accordingly. That reviewer supplied a range of wolf numbers (18–34) for the 535 km² of the NR outside the park, admitting that those numbers were not as accurate as those for wolves in the park. Thus, we added the midrange of the reviewer’s data (26) for the 535 km² to the mean of the wolf data for the 995 km² of the NR inside the park and used the resulting density for the full 1530 km² of the NR in our analysis. We also performed weighted regressions assuming that the mean NR BMI data were lower and higher by 20%.

Results and discussion

The mean wolf density on the 995 km² of the Yellowstone NR inside the park was 54 wolves/1000 km² and the mean prey BMI was 14.98 (Table 1). The Fuller et al. (2003) model predicted a wolf density of 55 wolves/1000 km² based on the BMI of 14.98 (Table 1).
Fig. 1. Relationship between Yellowstone National Park Northern Range (NR) wolf (Canis lupus) density and biomass index (BMI) based on wolf and elk (Cervus elaphus) populations during 2005–2012 (Table 1) in relation to data from Fuller et al. (2003) with deletions by Cariappa et al. (2011) and McRoberts and Mech (2014). Weighted regression: \(r^2 = 0.81 \) (\(p < 0.0001 \)). The Yellowstone NR point is the highest point in the graph. The broken lines represent 95% confidence intervals.

Thus, these data fit the Fuller et al. (2003) BMI model well (Fig. 1), increasing the \(r^2 \) from 0.79 to 0.81 (\(p < 0.0001 \)). Even assuming the BMI data were higher or lower by as much as 20\%, \(r^2 \) still was 0.80–0.81 (\(p < 0.0001 \)). Using the wolf density on the full 1530 km\(^2\) of the NR inside and outside the park (52 wolves/1000 km\(^2\)) in the analysis also yielded an \(r^2 \) of 0.81 (\(p < 0.0001 \)).

The question remains as to why the variations in Yellowstone NR adult wolf survival were better explained by wolf density rather than by prey biomass (Cubaynes et al. 2014). Two important aspects of the Cubaynes et al. (2014) study are key. First, the study demonstrated that adult wolf survival, not wolf numbers, was density dependent. Wolf-population regulation, however, is the net result of both adult and pup survivals, along with dispersal and pup production (Mech et al. 1998; Adams et al. 2008). Second, the period of the Cubaynes et al. (2014) study (starting in 1998, which was 3 years after reintroduction of wolves to the ecosystem) included several years during which the wolf population was still establishing itself and during which there was a surfeit of elk, the wolf’s primary prey there (Smith et al. 2004). For at least several years of the study, there was not enough time for wolf and elk numbers to reach any kind of equilibrium. For example, the Yellowstone NR elk numbers during the Cubaynes et al. (2014) study dropped from an estimated 17 838 to 8 012 from 1998 to 2004 (Table 1). Wolf density in the 995 km\(^2\) park part of the NR also fluctuated between 35 wolves/1000 km\(^2\) and 98 wolves/1000 km\(^2\). This instability itself might explain why elk biomass did not explain more variability in adult wolf survival, although it did explain 43\% of the variance, compared with 55\% explained by wolf density (Cubaynes et al. 2014). It is notable that from about 2005 when the elk population started stabilizing (Table 1), the mean wolf density was very close to that which the Fuller et al. (2003) model predicted. Before that period (1998–2004), the model using the mean BMI of 28.33 predicted a wolf density of 102 wolves/1000 km\(^2\), 4 wolves more than the 2003 wolf density, the highest density the wolves reached (Table 1).

Thus, although more variation in adult wolf survival from 1998 to 2010 in the Yellowstone NR was explained by wolf density in the Cubaynes et al. (2014) study, the best evidence is that ultimately the wolf population in the Yellowstone NR, as in other wolf-prey systems studied (Fig. 1), is determined by prey biomass. It is probably true that one of the main mechanisms involved is intra-specific aggression (Cubaynes et al. 2014) and it is easy to understand how food competition could lead to such aggression. Other social factors discussed in detail by Packard and Mech (1980) presumably operate similarly in conjunction with food availability.

These findings not only support the hypothesis that the Yellowstone NR wolf density is ultimately determined by prey biomass, but they also extend the model of Keith (1983), Fuller (1989), and Fuller et al. (2003) to higher prey biomass, as Cariappa et al. (2011) stated should be attempted. The updated regression suggests that the model would apply to wolf–prey systems of even higher biomass. Known winter wolf densities in some systems greatly exceed even the Yellowstone NR wolf density (McRoberts and Mech 2014), implying that in those systems prey biomass would be correspondingly higher. In view of our findings, future research on those systems (and a re-analysis following Cubaynes et al. (2014) but of NR data only—excluding the interior—from 2005 to 2012) would be valuable to determine whether the model continues to apply there.

Acknowledgements

We thank the following for critiquing earlier drafts of the manuscript and offering helpful suggestions for improvements: D.R. MacNulty, D.W. Smith, D.R. Stahler, P.J. White, and J.M. Packard.

References

