








present, however, PRISM 1961–1990 mean monthly precipitation
grids were used as a predictor in place of the DEM for the linear
regression model (Wayne Gibson, PRISM Climate Group, Oregon
State University, personal communication).

3.2.2. Initial 1-h DMIP-2 QPE data
The method for deriving the initial 1-h DMIP-2 gridded QPE was

based on an inverse distance interpolation technique (Moreda
et al., 2006; Schaake et al., 2004) to estimate precipitation at each
4 km Hydrologic Rainfall Analysis Project cell (HRAP; Reed and
Maidment, 1999), which is a grid coordinate system used opera-
tionally for NWS’s river forecasting. In this method, the ratios of
hourly gauge precipitation to the corresponding PRISM 30-year
monthly climatology (1961–1990) were interpolated instead of ac-
tual precipitation amount measured at the gauge. This approach
attempts to account for climatological spatial patterns of precipita-
tion from PRISM climatology grids during the corresponding

month, but the interpolated values are predominantly affected by
hourly gauge measurements. One-hour precipitation estimates at
each grid box are computed by multiplying interpolated fractions
of PRISM climatology by the corresponding PRISM pixel value. In
addition, the optimal power of the distance between interpolating
point and gauges for the weight was identified based on minimum
root mean square error of precipitation estimates. Gauge data
sources for the period from 1987 through 2006 are NRCS SNOTEL
and NWS COOP daily and hourly gauges, which are common gauge
data sources for PRISM data. Fig. 1 shows the DMIP QPE grid do-
main and the spatial distribution of all the gauges used for the
DMIP-2 QPE generation around the NFAR and EFCR. At an hourly
time step, the number of gauges that is used for interpolation var-
ies due to missing data and discontinued or new gauge installa-
tions. Fig. 3 presents the history of each precipitation gauge
within 50 km of the NFAR basin boundary. In Fig. 3, each square
represents a month in which observations were collected more
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Fig. 1. North Fork American River basin and East Fork Carson River basin (upper and lower zones separated by 1524 meter contour for NFAR and by 2134 meter contour for
EFCR) and NCDC and SNOTEL rain gauges used to generate DMIP-2 gridded QPE. DMIP2 QPE grid domain is indicated in a box. The numbers indicates the location of the NCDC
gauges. Letter ‘‘S’’ indicates the location of NRCS SNOTEL site. The gauges highlighted in white are within 50 km from the NFAR boundary and listed in Fig. 3 for their gauge
record history.
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than 80% of the time (i.e., more than 80% non-missing data). The
history of individual precipitation stations near the NFAR reveals
that several gauges (Gauge IDs 7, 43, 53 and 61) were discontinued
during the analysis period whereas some other gauges had been
reporting intermittently over the analysis period. We identified
the Lake Spaulding COOP gauge (ID 58, NCDC gauge 04-4713) as
being highly suspect, given its location just north of the NFAR
boundary (see Fig. 1). Moreover, the Lake Spaulding gauge was dis-
continued in February 2003, corresponding to the abrupt change in

the streamflow error trend shown in Fig. 2 This time-varying gauge
network over the simulation period likely produced inconsistent
gridded QPE data, which will be uncovered using a few consistency
analyses presented in the following section.

4. Consistency analysis for gridded precipitation data

We performed various analyses to evaluate the consistency of
the DMIP-2 QPE. These consist of simple comparisons with an

Fig. 2. Time series of cumulative error in OHD-DM simulated discharge at outlet of NFAR from WY-1988 to WY-2006 and EFCR from WY-1989 to WY-2006.

Fig. 3. Observation history for NCDC rain gauges surrounding NFAR. Y-axis is station numeric ID corresponding to the gauge ID in Fig. 1. Square symbols indicate months in
which more than 80% of hourly or daily data in one month were reported as valid data for that month. The history for Gauge ID 58 – Lake Spaulding is denoted by black to
highlight the measurement discontinuity. Labels on X-axis indicate January of each year.
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independent gridded dataset that is commonly available to the
hydrologic community (i.e. PRISM), double mass analyses (DMA),
and a statistical test. Unlike many climatological studies that
investigated annual time series data at meteorological stations
(e.g., Alexandersson, 1986; Lund and Reeves, 2002; Rasmussen,
2001), our study analyzed gridded data on a monthly basis to cor-
respond to the monthly PRISM data used herein as a reference.

4.1. Comparison of MAP time series

First, monthly basin-wide mean areal precipitation (MAP) time
series were computed from hourly DMIP-2 QPE and monthly
PRISM precipitation grids to make an overall assessment. As men-
tioned earlier, both datasets have similar grid sizes (�4 km) and
use the same gauge data sources (NWS COOP and NRCS SNOTEL).
However, the methodology of interpolation is different; therefore
it is likely that there is a consistent difference in precipitation esti-
mates. This analysis is not intended to prove which dataset is more
accurate, but rather to evaluate the consistency of the two derived
MAP time series. To investigate this, cumulative PRISM MAP values
were subtracted from cumulative DMIP-2 MAP values at each
monthly time step (Fig. 4). As shown in the plot, the difference be-
tween the two datasets is consistent over the EFCR (i.e. the DMIP-2
MAP is consistently greater than PRISM MAP), indicated by the
approximately constant upward slope in the plot. On the other
hand, for NFAR, the DMIP-2 MAP produces an underestimation un-
til the end of 2002 and then switches to overestimation. In addi-
tion, a discontinuity is seen around January 1995, which is
coincident with the trend in cumulative error in streamflow simu-
lation as seen in Fig. 2. We repeated this MAP analysis with two
elevation zones partitioned at the 1524 m contour line. These
zones are used for lumped model operational river forecasting by
the NWS, California Nevada River Forecast Center (CNRFC). The
same consistency change in the difference of the two MAP time
series was seen over the lower zone and upper zone in NFAR
(not shown here).

Based on these results, we conclude that there is no major
inconsistency in the DMIP-2 gridded QPE for EFCR relative to
PRISM data. However, it is highly likely that DMIP-2 QPE for NFAR
does contain inconsistencies, leading to the trends in streamflow
simulation seen in Fig. 2. Therefore the analyses and discussions
in the rest of the paper are focused on the NFAR domain.

4.2. Double mass analysis

In order to evaluate the inconsistencies of the DMIP-2 QPE inde-
pendently from PRISM, which might also contain inconsistencies
due to the methodology change in 1997, we performed a double
mass analysis (DMA) for a quick visual check of inconsistencies
in the time series. DMA is a graphical tool traditionally used to de-
tect inconsistencies in multi-year gauge data by comparing cumu-
lative time series at one gauge to a ‘reference’ cumulative time
series based on several nearby gauges (Chang and Lee, 1974; Koh-
ler, 1949; Searcy and Hardison, 1960). Bends or deflections in the
double mass curve reflect changes in gauge catch characteristics
that produce a data inconsistency at the suspected gauge. In con-
trast to a single gauge whose data acquisition is independent from
the other gauges, an individual grid cell shares multiple gauges
with other grid cells because of the spatial interpolation process.
In other words, multiple neighboring cells may contain similar
inconsistencies. However, the degree of inconsistency should vary
from cell to cell. For gridded precipitation data generated based on
an inverse distance technique like the DMIP-2 QPE, for example,
cells that are farther from a suspect gauge are less affected than
closer ones. To address this, we formed eight cell groups, each of
which consists of four cells that might have a similar degree of
inconsistency, to perform the double mass analysis for each cell
group as shown in Fig. 5.

For DMA, generating a consistent reference series is crucial for
detecting inconsistencies in a series at a target location (i.e. cell
group). In this study, four neighboring gauges were selected
around NFAR (Gauge-IDs 13, 23, 52 and 54 in Figs. 1 and 3) to gen-
erate the reference time series. These gauges provide complete
time series of daily or hourly precipitation values from WY-1989
to WY-2006. Each gauge time series was quality controlled by fol-
lowing the techniques used for NWS historical data analysis
(Anderson, 2002; Smith et al., 2003) and then aggregated to
monthly totals. The following formula (Beaulieu et al., 2008) was
used to generate a monthly reference series Ri for each target cell
group

Ri ¼
P4

j¼1q2
j

�P
�Gj

Gij

Pk
j¼1q2

j

i ¼ 1; . . . ;n ð1Þ

where n is the number of months from October 1988 to September
2006, qj is the correlation coefficient between monthly time series
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at a target cell group and at a neighbor gauge series j, Gij is the
monthly series of a neighbor gauge j, �P is the mean of the monthly
series at the target cell group, and �Gj is mean of the monthly series
at the neighbor gauge j.

Precipitation in the Sierra Nevada exhibits strong seasonal pat-
terns (e.g., Dettinger et al., 2004). Much less precipitation occurs
during the summer season than during the winter season, and zero
precipitation is recorded during some summer months at some
low elevation cells. We used only the data during winter months
(October through May) because the inconsistency in the time ser-
ies appears more clearly during the winter due to the greater
amount of precipitation and subsequent influence on the hydro-
logic processes over the study area.

In this DMA, the cumulative MAP time series of each cell group
was plotted against the cumulative reference series. The plots for
DMIP-2 QPE and PRISM are shown in Figs. 6 and 7, respectively.
To highlight any breaks in the slope, we plot the deviation of the
accumulated four-cell group precipitation from the accumulation
of the reference data as is done in NWS historical data analysis
(Anderson, 2002; Smith et al., 2003). A constant slope of the double
mass curve indicates that the accumulation rate of a target cell
group is consistent compared to the reference series. A change in
the slope indicates a change in accumulation rate of a target cell
group relative to the reference data, thus an inconsistency. In the
DMA, each point in the curve corresponds to a particular time of
the series (i.e. month). A visual inspection of the DMIP-2 QPE dou-
ble mass curve reveals that a clear slope deflection occurs in higher
elevation cell groups (cell groups – four through eight) in January
2003. This break in the slope indicates a severe inconsistency of
the DMIP-2 QPE data: from 1988 to 2003, the accumulation slope
is negative, while after 2003 the slope is positive compared to
the reference series. This inconsistency is less severe for cell group
three compared to the higher elevation cell groups, and there is no
clear inconsistency found in the time series for cell groups one and
two. Based on the timing of this deflection, it is concluded that the
bias pattern change in streamflow simulation seen in Fig. 2 is asso-
ciated with the DMIP-2 QPE inconsistency.

Fig. 7 shows there is also some inconsistency in PRISM data.
However, the PRISM data exhibits a different type of inconsistency
than in the DMIP-2 QPE data. For all the cell groups except cell
group one, the accumulation rate is approximately equal to the
rate for the corresponding reference series until a certain time.
Thereafter, the accumulation rate becomes less compared to the
reference series. The timing and manner of this pattern changes

from cell group to cell group. It does not appear that the breaks
in double mass curves reflect the change in the PRISM technique
in 1997.

4.3. Statistical tests

For more objective detection of inconsistencies in precipitation
and other hydrometeorological time series, there are various sta-
tistical tests available. Several authors have presented comparative
studies on the performance of statistical tests (e.g., Beaulieu et al.,
2008; Buishand, 1982; Ducré-Robitaille et al., 2003; Sahin and Cig-
izoglu, 2010). Statistical methods include relative tests such as the
Bivariate test, which like DMA rely on a reference time series, and
absolute tests including the Standard Normal Homogeneity Test
(SNHT), the Sequential T test, the Sequential Wilcoxson test and
the Bayesian method, which do not require a reference dataset.
Many of these techniques are based on assumptions such as data
normality, which is an obstacle in our case since monthly precipi-
tation data do not follow a normal distribution (Beaulieu et al.,
2008). It is noted that most of the past studies about climate data
consistency used annual time step datasets, which are assumed to
be normally distributed (e.g., Ducré-Robitaille et al., 2003; Lund
and Reeves, 2002).

Following the SNHT test procedure demonstrated by Beaulieu
et al. (2008), we computed a time series of the ratio qi between
the target and reference series on a monthly basis. This improves
the normality of the time series data. A v square goodness of fit
test (Wilks, 2005) was performed on the monthly ratio time series
of DMIP-2 QPE for each cell group to assess the normality (Table 1).
The p-value of the v square test statistic computed using the ratio
time indicate the ratio series for all the cell group exhibits normal-
ity at 90% significance (the p-value greater than 0.1) while monthly
precipitation time series do not fit a normal distribution well.

It is possible to perform several absolute tests given the normal-
ity of the ratio series. The objective of this study is not to evaluate
the performance of various statistical tests for the gridded dataset
used in this study. Rather, in this study, we use SNHT because of its
simplicity and relatively good performance compared to other
tests (Beaulieu et al., 2008). In SNHT, the null hypothesis that a
standardized anomaly time series (in this case, ratio series qi is
standardized) follows a normal distribution with zero mean and
a standard deviation of one is tested against the alternative
hypothesis that there is shift in the mean. Using the ratio series,
the weighted average series of the ratio Ti is defined by,

Fig. 5. NFAR basin defined on 4 km HRAP grid, indicated by light gray cells, and eight cell groups used for double mass analysis. Each cell group consists of four HRAP grid
cells. NFAR upper and lower elevation zones separated by 1524 m contour are also shown.
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Ti ¼ i � �z2
1 þ ðn� iÞ � �z2

2 i ¼ 1; . . . ;n ð2Þ

�z1 ¼
1
i

Xi

j¼1

ðqj � �qÞ=sq

�z2 ¼
1

n� i

Xn

j¼iþ1

ðqj � �qÞ=sq

where �q is mean of the ratio series, n is the sample size (in this case
the number of time steps or 144), and sq is its standard deviation.
The test statistic T0 is defined as the maximum {Ti}. If T0 exceeds
the critical value, which depends on sample size (Khaliq and Ouarda,
2007), the null hypothesis will be rejected. Although DMA methods
graphically indicated only one abrupt change in the error
consistency in the time series, examination of the time series of
the T statistic can quantify the degree of abrupt changes in the error
consistencies at each time step throughout the time series.

The results of SNHT for the DMIP-2 QPE are shown in Fig. 8. T0

values for cell groups four, five, six and seven exceed the 99% level

critical value of 12.6 for the sample size n of 144. The timing of T0

also corresponds to the slope break point in the double mass curves
(Fig. 6). These results indicate a statistically significant inconsis-
tency for these data around 2003. T0 values for cell groups one,
two, three, and eight also peak around beginning of 2003, although
the values do not exceed the critical value. Unlike the T values from
the DMIP-2 QPE data, T values computed with PRISM data exhibit
much less distinct peaks in the time series (not shown). This is be-
cause the inconsistency in the PRISM data occurs more gradually as
seen in the double mass curves of Fig. 7. Therefore the timing of T0

for the PRISM data is also difficult to determine.

5. Influence of precipitation data consistency on hydrologic
simulation

To stress the importance of precipitation data consistency for
the simulation of streamflow, hydrologic simulations were per-
formed in a lumped mode using two MAP datasets: the DMIP-2
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Fig. 6. Double mass curves of cell group DMIP-2 monthly series against a reference series for eight cell groups. X-axis is the accumulation of the reference series; Y-axis shows
the deviation of the accumulation of the subject four-cell group.
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MAP mentioned in Section 4, which contains inconsistent bias and
an ‘adjusted’ DMIP-2 MAP, in which the inconsistency was cor-
rected. Zhang et al. (2010) described a method for correcting ra-
dar-based QPE bias on a cell-by-cell basis using PRISM monthly
precipitation estimates. Since the PRISM estimates are subject to
some inconsistencies for our study area shown in Fig. 7, we
decided to forgo the PRISM-based adjustments. Instead, 1-h
DMIP-2 MAP time series defined for the two NFAR elevation zones
were adjusted so that the double mass slope (i.e. ratio of DMIP-2
MAP accumulation rate to the rate for the reference data) from

January 2003 onward matches the accumulation rate between
October 1988 and January 2003. This double mass-based correc-
tion could be done per an individual grid cell. However, our goal
here was not to correct the inconsistency of the DMIP-2 QPE grid-
ded data, but to illustrate the effect of data consistencies on overall
simulation results. In fact, we developed and successfully used an
entirely new method to derive gridded QPE data for the DMIP 2
Sierra Nevada basins (Smith et al., 2010). Our experience with
lumped and distributed modeling in NFAR has shown that incon-
sistent QPE data leads to similar behavior in accumulated runoff
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Fig. 7. The same as Fig. 6 except using PRISM monthly series.

Table 1
The p-value of test statistics obtained from v2 distribution for monthly precipitation time series and time series of the ratio qi between monthly precipitation at cell group and
reference gage precipitation R (Eq. (1)). The higher p-value indicates less likelihood that null hypothesis that the time series data are drawn from normal distribution is rejected.

Cell group 1 Cell group 2 Cell group 3 Cell group 4 Cell group 5 Cell group 6 Cell group 7 Cell group 8

Precipitation 0.041 0.134 0.068 0.015 0.002 0.002 0.009 0.004
Ratio, qi 0.659 0.130 0.529 0.183 0.328 0.453 0.756 0.364
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error for both modeling approaches. Therefore for simplicity, the
lumped model was chosen over the distributed model for this
illustration.

Fig. 9 shows the double mass curve for the zonal MAPs com-
puted with gridded DMIP-2 data as well as PRISM data. The same
types of inconsistencies as in the finer spatial scale MAP series
(i.e. MAP for eight cell groups) are observed for the DMIP-2 and
PRISM MAPs. The adjustment factor (AF) to correct the DMIP-2
MAP inconsistency was computed as follows:

AF ¼ B1:m

Bm:n
where Bs:t ¼

Pt
i¼1Pi �

Ps
i¼1PiPt

i¼1Ri �
Ps

i¼1Ri
ð3Þ

where Bs:t is a slope of a double mass curve between sth and tth
months, m is a month when a double mass break occurs, Pi is
monthly total at a target location (i.e. zonal MAP) during the ith
month and Ri is a monthly value in a reference series (see Eq. (1))
during ith month. Each 1-h DMIP-2 MAP value after the mth month
was multiplied by the value of AF. January 2003 is identified as the
month containing the double mass break and AF values were com-
puted for the lower and upper zones (0.82 and 0.92, respectively).

The lumped simulations are derived using the same snow and
rainfall–runoff models as in the OHD-DM. The lumped model is
run over the two elevation zones of NFAR instead of at each HRAP
grid cell. The lumped model also requires a unit hydrograph to
transform runoff depth to discharge whereas the OHD-DM utilizes
a kinematic hillslope and channel routing scheme to route runoff
volumes. Despite the difference in routing methods, the impact
of inconsistent precipitation data on the simulation is presumed
to be the same based on our past experience. The lumped model
parameters used here were calibrated with 1-h DMIP-2 MAPs for
the upper and lower zone as well as zonal mean areal temperature
(MAT) data, which was also computed from 1-h gridded air tem-
perature data generated for DMIP-2. The calibration period for
the lumped models is from October 1988 through September
1997-therefore the model calibration was not affected by the data
inconsistency identified in January 2003.

Fig. 10 shows the time series of cumulative errors from the two
lumped simulations, which were made with the same model
parameters. As seen in Fig. 10, the simulation with the original
DMIP-2 MAP is relatively stable before January 2003 except for
the sharp drop in the beginning of 1995, which was also observed
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in the OHD-DM simulation seen in Fig. 2. However, the simulation
starts overestimating after January 2003, corresponding to the
occurrence of the DMIP-2 QPE inconsistency. This drastic increase
in error is the same behavior seen in Fig. 2 in the result from the
OHD-DM. By contrast, an abrupt increase in error trend after Janu-
ary 2003 was not shown in the streamflow simulation with the
corrected DMIP-2 MAPs (the second simulation).

6. Conclusions

Consistent long term QPE is important to simulation with
hydrologic models such as the ones used operationally in NWS

River Forecast Centers. Given the expanding operational use of
distributed models, spatially distributed QPE time series for
mountainous basins are essential. At least for now, such QPE
products are based in large part on point gauge measurements.

We presented an approach to uncover the inconsistencies
potentially contained in multi-year gridded datasets. We investi-
gated the hourly gridded QPE from WY-1988 through 2006 gener-
ated via interpolation of gauge network data over the mountainous
areas. Traditional DMA methods were applied to gridded data to
identify inconsistencies. This simple technique is shown to be
capable of detecting inconsistencies in gridded datasets at grid cell
locations. In addition to DMA, one of the statistical tests, SNHT, was

0 0.5 1 1.5 2 2.5 3
x 104

−2500

−2000

−1500

−1000

−500

0

500

DMIP2−Upper Zone

C
um

ul
at

iv
e 

P 
at

 a
 ta

rg
et

 z
on

e−
 C

um
ul

at
iv

e 
re

fe
re

nc
e 

P,
[m

m
]

0 0.5 1 1.5 2 2.5 3
x 104

−2500

−2000

−1500

−1000

−500

0

500

PRISM−upper Zone

0 0.5 1 1.5 2 2.5 3
x 104

−2500

−2000

−1500

−1000

−500

0

500

DMIP2−Lower Zone

0 0.5 1 1.5 2 2.5 3
x 104

−2500

−2000

−1500

−1000

−500

0

500

PRISM−Lower Zone

Cumulative P at a target zone,[mm]
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Fig. 10. Monthly accumulated error of 1-h lumped model simulations for NFAR using (a) 1-h MAP created using original DMIP-2 QPE and (b) 1-h MAP adjusted based on
double mass curve with the same model parameters. The lumped model was calibrated with lower and upper zone MAP during WY-1989 through WY-1996 using the original
DMIP-2 MAP.

N. Mizukami, M.B. Smith / Journal of Hydrology 428–429 (2012) 129–141 139



performed on the DMIP-2 QPE, showing a clear inconsistency in
the same cell groups in the dataset and occurring at the same tim-
ing as indicated by DMA. Potentially, such statistical tests as well
as DMA could be used to detect inconsistencies on a cell by cell ba-
sis objectively. Finally in order to illustrate the impact of input data
consistency on hydrologic simulations, two streamflow simula-
tions were made using the inconsistent and inconsistency-cor-
rected MAP series. Not surprisingly, streamflow simulations
based on the corrected input QPE data are more consistent and
accurate than those based on the inconsistent QPE data. Although
a lumped model was used for this discussion, the results and con-
clusions are assumed to be transferable to distributed hydrologic
model simulation with gridded QPE. The methodology of adjust-
ment for gridded precipitation data over complex terrain on a
cell-by-cell basis still needs to be investigated.

At a minimum, the generation of consistent gauge-based QPE
grids requires following throughout the study period – (1) gauge
observations that are consistent, (2) a gauge network that is stable,
and (3) an effective technique to interpolate grid values from point
observations. One of the plausible causes of the inconsistency in
the initial DMIP-2 QPE is the discontinuation of one of the gauges
closest to the NFAR. A possible solution to this problem is to gen-
erate complete and consistent time series at each station for the
analysis period using historical data analysis such as the methods
described in Smith et al. (2003) and Eischeid et al. (2000). These
complete and consistent station time series could then be spatially
interpolated to form a gridded QPE dataset.

This quality control of gauge data is essential to the generation
of long term consistent radar-based QPE as well. As in non-moun-
tainous areas, radar-based QPE relies partly on gauge data to adjust
radar-only QPE to generate multisensor precipitation estimates
(Seo, 1998). While radar-only QPE fields can posses more reason-
able spatial variability than gauge-only gridded products, caution
should be taken in merging radar QPE and gauge data over mul-
ti-year periods. As experienced in DMIP-2, where hourly gauge
data was interpolated over the areas continuously for 20 years, fre-
quent gauge network changes due to missing data, gauge reloca-
tion and discontinuation could adversely affect the radar based
QPE. In addition, there are several studies to develop multi-year
gridded datasets based on reanalyses using consistent hydromete-
orological model simulations and other means (e.g., Nelson et al.,
2010). Temporally consistent forcing grids as well as the same
model configuration throughout the modeling period are necessary
to generate consistent hydrometeorological gridded outputs.
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