Randomized, Open-Label Trial of Primaquine against Vivax Malaria Relapse in Indonesia

Inge Sutanto
University of Indonesia

Bagus Tjahjono
Health Service, Army of the Republic of Indonesia, Jakarta, Indonesia

Hasan Basri
Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia

W. Robert Taylor
Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia

Fauziah A. Putri
Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/publichealthresources
Authors
Randomized, Open-Label Trial of Primaquine against Vivax Malaria Relapse in Indonesia

Inge Sutanto,a Bagus Tjahjono,b Hasan Basri,c W. Robert Taylor,c Fauziah A. Putri,c Rizka A. Meilia,c Rianto Setiabudy,c Siti Nurlelia,c Lenny L. Ekawati,d Iqbal Elyazar,d Jeremy Farrar,e,f Herawati Sudoyo,g J. Kevin Bairde,g
Faculty of Medicine, University of Indonesia, Jakarta, Indonesia; Health Service, Army of the Republic of Indonesia, Jakarta, Indonesia; Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Eijkman Institute for Molecular Biology, Jakarta, Indonesia

Radical cure of *Plasmodium vivax* infection applies blood schizontocidal therapy against the acute attack and hypnozoitocidal therapy against later relapse. Chloroquine and primaquine have been used for 60 years in this manner. Resistance to chloroquine by the parasite now requires partnering other blood schizontocides with primaquine. However, the safety and efficacy of primaquine against relapse when combined with other drugs have not been demonstrated. This randomized, open-label, and relapse-controlled trial estimated the efficacy of primaquine against relapse when administered with quinine or dihydroartemisinin-piperaquine for treatment of the acute infection. Among 650 soldiers who had returned to their malaria-free base in Java, Indonesia, after 12 months in malarious Papua, Indonesia, 143 with acute *P. vivax* malaria were eligible for study. One hundred sixteen enrolled subjects were randomized to these treatments: artesunate (200-mg dose followed by 100 mg/day for 6 days), quinine (1.8 g/day for 7 days) plus concurrent primaquine (30 mg/day for 14 days), or dihydroartemisinin (120 mg) plus piperaquine (960 mg) daily for 3 days followed 25 days later by primaquine (30 mg/day for 14 days). Follow-up was for 12 months. One hundred thirteen subjects were analyzable. Relapse occurred in 32 of 41 (78%) subjects administered artesunate alone (2.71 attacks/person-year), 7 of 36 (19%) administered dihydroartemisinin-piperaquine plus primaquine (0.06 attack/person-year). The efficacy of primaquine against relapse was 92% (95% confidence interval [CI] = 81% to 96%) for quinine plus primaquine and 98% (95% CI = 91% to 99%) for dihydroartemisinin-piperaquine plus primaquine. Antirelapse therapy with primaquine began a month after treatment of the acute attack with dihydroartemisinin-piperaquine proved safe and highly efficacious against relapse by *P. vivax* acquired in Papua, Indonesia.

Malaria caused by *Plasmodium vivax* threatens severe illness in travelers and the several billion people living at risk in zones of endemicity (1–4). Despite the long-standing dogma of benign identity for this parasite, it is pernicious and often provokes life-threatening illness (5). Unlike the other important cause of malaria, *Plasmodium falciparum*, this parasite places dormant forms in the liver (hypnozoites) that cause repeated attacks called relapses (6). The only licensed therapy against relapse is primaquine (PQ) used in combination with chloroquine (CQ) for the primary attack, together called radical cure. Worsening CQ resistance threatens this 60-year-old treatment (7), and PQ efficacy against relapse has only rarely been estimated since its development in 1947 (8). Thus, a 10% relapse rate following primary treatment of the acute attack with dihydroartemisinin-piperaquine proved safe and highly efficacious against relapse by *P. vivax* acquired in Papua, Indonesia.

Hypnozoites impose analytical ambiguities in estimating PQ efficacy. Recurrent parasitemia following primary attack may originate from failed therapy against asexual blood stages (recrudescence), biting infectious anopheline mosquitoes (reinfection), or hypnozoites (relapse). Parasitemia arising from relapse may be genetically homologous, like recrudescence, or heterologous, like reinfection (14). Discriminating these events using molecular technologies is thus not yet possible, and this imposes limitations in estimating PQ efficacy against relapse. Experimental challenge in zones of nonendemicity largely solves this problem but imposes logistical, fiscal, and ethical burdens. Recruitment of naturally infected travelers who have returned to areas of nonendemicity (and given effective blood schizontocidal therapy) can be used to rule out reinfection and recrudescence, and recurrent parasitemias could arise only from activated hypnozoites.

Variability in the timing and risk of relapse imposes another analytical problem. The risk of relapse without PQ therapy ranges from about 10% to 90%, and the first relapse may occur at anytime between 3 and 52 weeks (15). Thus, a 10% relapse rate following...
PQ may represent 0% to 90% efficacy, depending on natural re-
relapse behaviors (16). Reliably estimating PQ efficacy thus requires
knowing the natural timing and risk of relapse, and a relapse con-
trol arm, i.e., subjects receiving no PQ, achieves this (17, 18).

The current study leveraged heavily exposed travelers who had
returned to an area of nonendemicity, together with a relapse control
arm, to derive relatively unambiguous estimates of PQ efficacy. After a year of duty in malarious Papua, Indonesia, Indo-
nesian soldiers with vivax malaria were randomized to radical cure
with DHA-PP or QN and PQ or treatment with artesunate (AS)
without PQ and followed for 12 months in an area free from risk of
reinfection at their base in Java, Indonesia. The QN treatment arm
essentially served as a surrogate CQ arm in terms of a proven
partner drug with PQ, i.e., a positive control for PQ efficacy
against relapse. Prevalent CQ-resistant parasites where these infections were acquired (7) precluded a CQ treatment arm
in this study. The study thus aimed principally at estimating the
efficacy of PQ when partnered with DHA-PP.

MATERIALS AND METHODS

Study design and oversight. This randomized, open-label, relapse-con-
trolled trial estimated PQ efficacy against relapse when partnered with QN
or DHA-PP. Patients randomized to relapse control received AS. Subjects
were followed until they had recurrent P. vivax or for 12 months. Prior to
recruitment, the research team undertook structured seminars aimed at
familiarizing soldiers and commanders with informed consent to partic-
ipate in medical research. Institutional ethics review boards of the Faculty
of Medicine, University of Indonesia, Jakarta, Indonesia, and the Nuffield
Department of Medicine, University of Oxford, Oxford, United King-
dom, reviewed and approved a protocol detailing the conduct of this work. Authorized food and drug regulators for Indonesia (Badan Penga-
was Obat dan Makanan, Jakarta, Indonesia) reviewed, approved, and later
audited the trial in progress. An appointed data safety monitoring board
(DSMB) reviewed periodic summaries of adverse events and reports of
severe adverse events within several days of their occurrence. The trial was
registered with ISRCTN as trial no. 38290380 after commencement of
enrollment as a consequence of administrative error. The editor of this
journal reviewed the approved protocol for this trial as a condition of
acceptance of the manuscript for publication.

Study sites and subjects. The Indonesian army base at Lumajang, East
Java, Indonesia, served as the study site. The surrounding district of
Lumajang (1,053,000 residents) had an average population density of 588/
km². Twenty-five health care delivery centers and five hospitals performed
mass blood surveys commenced on 30 November 2010 and continued on
the same area of that deployment showed infection rates of 2/person-
year (21, 22). The soldiers departed Papua on 1 November 2010, and on 8
November 2010 they disembarked from a ship at Surabaya, East Java.
They remained at port for several days for routine health screening prior
to their repatriation to Lumajang. After the soldiers resettled at their base
and the study was explained to troops and commanders, screening by
mass blood surveys commenced on 30 November 2010 and continued on
a rolling basis through April 2011, when enrollment closed. The research
team operated an all-hours clinic and encouraged soldiers with illness to
visit at any time.

Soldiers positive for vivax malaria by microscopy were invited for
counseling, to provide informed consent, and clinical assessment. Labo-
ratory screening of venous blood included a complete blood count
(Coulter Ac-T diff analyzer; Beckman Coulter, Brea, CA), analysis of liver
and renal function (BS-120 chemical analyzer; Mindray, Guangdong,
China), electrolyte concentrations (ILyte electrolyte analyzer; Medica
Corporation, MA), and glucose-6-phosphate dehydrogenase (G6PD) defi-
ciency (NADPH qualitative spot test; kit 203A; Trinity Biotech, Wicklow,
Ireland). Physical examination included an electrocardiogram (BTL-08;
BTL Industries Inc., MA) that used 12 leads with a paper speed of 50 mm/s
and that was calibrated to 10 mm/mV. Exclusion criteria included refusal
to provide informed consent, any condition requiring hospitalization, a
history or evidence of any disorder incompatible with subject safety, def-
finite plans for absence from the site within 28 days, G6PD deficiency, liver
transferase levels >2.5-fold above the upper limit of normal, a Fridericia-
corrected QT interval of >450 ms, or anemia (hemoglobin level, <8 g/dl).

Drug therapy. A randomized list of study numbers that were block
allocated was generated by varying the blocking number at random (23).
An envelope revealing the assigned therapy was opened after informed
consent. Assignments were as follows: for AS, 200 mg AS (Arsuamoan; a
50-mg artesunate tablet packaged with an amodiaquine hydrochloride
tablet [discarded]; Guilin Pharmaceuticals Co. Ltd., Shanghai, China) was
administered, followed by a daily dose of 100 mg daily for 6 days. For QN
plus PQ (QN+PQ), 200-mg quinine base tablets (Q; Kimia Pharma,
Bandung, Indonesia) were administered 3 times/day for 7 days at 10
mg/kg of body weight per dose and were given concurrently with a single
daily dose of two tablets each containing 15 mg primaquine base (Mala-
free; Shin Poon Pharmaceuticals, Seoul, South Korea) for 14 days. Sub-
jects weighing >70 kg received a 45-mg PQ daily dose. For DHA-PP plus
PQ (DHA-PP+PQ), a single daily dose of 3 tablets, each containing 40 mg
dihydroartemisinin base and 320 mg piperaquine base (Urartesim; Sigma
Tau, Italy), was administered for 3 days. Primaquine was adminis-
tered precisely as detailed above, except that dosing commenced on day 28
following enrollment.

The WHO recommends a daily adult primaquine dose of 15 mg, 22.5
mg, or 30 mg for 14 days, depending on geographic origin; i.e., in South-
east Asia or Oceania, the higher dose is required (24). This study applied
the 30-mg daily dose or a 45-mg daily dose to subjects weighing >70 kg
(25). PQ dosing commenced on day 28 after starting DHA-PP because the
safety of concurrent administration remains unknown.

Clinical procedures. A clinical team member witnessed and signature affirmed all doses, as did the subject. Subjects were offered and encour-
gaged to consume a nonfatty, carbohydrate snack prior to consuming med-
ication. Subjects were observed for 1 h, and emesis prompted repeated
dosing. On days 3, 7, 14, 28, 41, and 84, venous blood was analyzed by the
methods detailed for screening. Additionally, a noninvasive oximeter
(Masimo set; Masimo Corp., CA) recorded peripheral blood oxy- and
methemoglobin (metHb) levels. Subjects were queried for adverse events
during the same clinical visits. Blood for routine blood films was collected
on days 3, 7, 14, 21, 28, 35, 41, 56, 63, 70, 84, 126, 140, 180, and 365. All
visits to the clinic with illness prompted blood film examination, regard-
less of the day of study.

A positive diagnosis of malaria confirmed by a second microscopist
prompted immediate rescue therapy according to national treatment
guidelines (8), except that a 0.5-mg/kg daily primaquine dose was applied
(in lieu of 0.25 mg/kg). Blots of blood were collected onto Whatman FTA
Classic card filter paper when subjects had malaria. DNA extracted from
these was analyzed using a multiplex sphere-based PCR assay (26).

Statistical analysis. Data were double entered into an Access data-
base and validated using EpInfo (version 3.5.1) software. The statisti-
cal analysis used the Stata (version 11) program. Descriptive statistics
were performed to determine the proportions for categorical data and
the summary statistics for continuous data. Chi-square and Fisher’s
exact tests compared proportions. The Kruskal-Wallis test was used for
nonparametric comparisons. The primary endpoint was the per-
cent therapeutic efficacy of the treatment groups, calculated using the

March 2013 Volume 57 Number 3 aac.asm.org 1129

Primaquine Efficacy against Relapse in Indonesia
incidence density (ID) of recurrent *P. vivax*, as follows: \[\frac{[ID_{AS} \times ID_{QN} \times ID_{DHA-PP}]}{ID_{AS}} \times 100. \]

The 95% confidence interval (CI) for the estimate was calculated from the binomial distribution. Incidence density was the number of *P. vivax* recurrences divided by the sum of person-years at risk at the end of the study. Cumulative incidence was estimated using life table calculations with application of weekly intervals (27). The study was powered for a primary assessment of the noninferiority of primaquine against relapse when partnered with QN versus DHA-PP for radical cure. Per protocol, this required 60 subjects per treatment arm, a number not realized in recruitment. We thus defaulted to the secondary objective, precision in individual estimates of PQ efficacy in each treatment arm, as reported here.

RESULTS

Screening and enrollment. Figure 1 summarizes the patient and subject flow during the study. Malaria occurred in 152 soldiers, with 9 cases being *P. falciparum* malaria. Among 143 eligible patients diagnosed with acute *P. vivax* infection, 27 were not enrolled: 4 were G6PD deficient, 6 were clinically unfit (because of recent antimalarial therapy *n = 2*), elevated liver enzymes *n = 2*, or acute hepatitis *n = 2*, 6 refused consent, 2 had planned absences, and 9 declined to specify a reason. These 36 patients were promptly treated according to national guidelines and monitored until they fully recovered. One hundred sixteen soldiers with vivax malaria were randomized to AS (*n = 41*), QN+PQ (*n = 39*), or DHA-PP+PQ (*n = 36*). One subject assigned to QN+PQ withdrew informed consent after enrollment but prior to initiating treatment, leaving 38 subjects in this arm. PCR diagnostics later confirmed the enrollment diagnosis of *P. vivax* infection in 114 subjects; 2 discordant PCR diagnoses were positive for *Plasmodium falciparum* and *Plasmodium malariae*, respectively. Both of those subjects had been assigned to QN+PQ and were excluded from analysis, leaving 36 evaluable subjects in that arm. In all, 113 subjects were evaluable at the close of the study.

Figure 2 illustrates the timing and means of case detection during the period of enrollment (30 November 2010 to 26 April 2011). The first mass screening of soldiers for asymptomatic malaria occurred during the first 2 weeks of subject recruitment, during which 45 soldiers were found to be positive for vivax malaria by screening and 3 soldiers reported to the clinic complaining of illness. Despite further mass blood film screening up to week 21 of recruitment, no soldiers were found to be positive. The remaining 88 soldiers found to be positive all came to the study clinic complaining of illness throughout the recruitment period.

Table 1 lists the baseline demographic, laboratory, and clinical features among the treatment groups. Young men (mean age, 27 to 28 years; age range, 22 to 42 years; *P = 0.89*) of similar weights (mean weight, 65 to 67 kg; weight range, 52 to 90 kg; *P = 0.90*) having similar parasitemias (median, 1,304 to 2,264 parasites/μl blood; range, 32 to 15,248 parasites/μl blood; *P = 0.83*) composed the study population. Fever (>37.5°C) occurred in 17% to 33% of subjects among the groups (*P = 0.17*). No significant differences in any mean vital sign or laboratory measurement of blood appeared. The incidence of complaints of illness among the groups at enrollment was essentially similar, with headache (>0.7 complaint/person-day), fever (>0.6 complaint/person-day), muscle ache (>0.4 complaint/person-day), nausea (>0.2 complaint/person-day), cough (>0.05 complaint/person-day), and vomiting (>0.05 complaint/person-day) being the dominant complaints.

Tolerability and safety. The dominant complaints of illness and many minority complaints fell sharply during treatment and resolved by the end of treatment. Only two exceptions occurred: no one complained of tinnitus or hearing loss at enrollment, but individuals in the QN+PQ group did so during treatment (0.2 and 0.1 complaint/person-day, respectively). Four subjects were hospitalized during the study and were recorded as having serious adverse events, but the DSMB considered none to be related to either acute malaria or study drugs (appendicitis, colitis, and trauma *n = 2*).

Most laboratory findings during the first 3 months of study among the groups remained within normal ranges before, during, and after treatment. These included white blood cell counts; percent monocytes; red blood cell count; mean corpuscular volume; mean corpuscular hemoglobin; mean corpuscular hemoglobin concentration; percent red cell distribution width; and glucose, urea, creatinine, serum glutamic oxalacetic transaminase, serum glutamic pyruvic transaminase, total protein, albumin, alkaline phosphatase, gamma glutathione, lactate dehydrogenase, creatine...
TABLE 1 Characteristics of subject patients among assigned treatment arms at enrollment

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Result by treatment assignment</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (%) of subjects</td>
<td>AS (35.3)</td>
<td>41 (33.6)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>Mean 27.7</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td>Range 21.5–38.8</td>
<td>22.1–31.5</td>
</tr>
<tr>
<td>Wt (kg)</td>
<td>Mean 66.5</td>
<td>65.4</td>
</tr>
<tr>
<td></td>
<td>Range 52–90</td>
<td>52–90</td>
</tr>
<tr>
<td>Mean tympanic temp (°C)</td>
<td>36.7</td>
<td>36.7</td>
</tr>
<tr>
<td>No. (%) of febrile patients</td>
<td>7 (17.1)</td>
<td>7 (18.0)</td>
</tr>
<tr>
<td>Parasite count (no. parasites/µl blood)</td>
<td>Median 1,408</td>
<td>1,304</td>
</tr>
<tr>
<td></td>
<td>Range 32–15,248</td>
<td>32–8,560</td>
</tr>
<tr>
<td>Mean hemoglobin concn (g/dl)</td>
<td>14.2</td>
<td>14.0</td>
</tr>
<tr>
<td>Mean blood glucose concn (mg/dl)</td>
<td>108</td>
<td>107</td>
</tr>
<tr>
<td>Mean total bilirubin level (mg/dl)</td>
<td>1.95</td>
<td>1.69</td>
</tr>
<tr>
<td>Mean platelet count (no. of platelets [10^12]/ml)</td>
<td>167</td>
<td>162</td>
</tr>
<tr>
<td>Mean white blood cell count (no. of cells/µl)</td>
<td>7,700</td>
<td>7,500</td>
</tr>
</tbody>
</table>

kinase, sodium, potassium, and chloride concentrations. Some values did change (Fig. 3), however: initially depressed lymphocytes and platelets (approximately 20% and 180,000/µl, respectively) recovered to normal within 3 to 7 days (approximately 35% and 200,000/µl, respectively) of treatment in all groups, and elevated granulocytes and total bilirubin (approximately 75% and 2 mg/dl, respectively) returned to normal levels (approximately 60% and <1 mg/dl, respectively) within 3 days of treatment. All groups showed a slight drop in mean hemoglobin concentration (<0.5 g/dl to approximately 13 to 14 g/dl) within 3 days of starting treatment, followed by incremental increases up to day 84 (to approximately 15 g/dl). One soldier randomized to DHA-PP had just 8.3 g/dl hemoglobin at enrollment, and his recovery to normal levels may be seen in Fig. 3 as the lowest outlier data point up to day 41. This borderline anemic soldier did not experience a post-therapy drop in hemoglobin but saw steady increases on days 3, 7, 14, 41, and 84.

Figure 4 illustrates methHb levels sharply rising among groups dosed with PQ, peaking at about day 7 postpatency and remaining at that level until the cessation of dosing a week later. The mean methHb level peaked at approximately 6%, with interquartile ranges not exceeding 10%. A single measurement in one subject (QN+ PQ group) was 17% (not shown in Fig. 3). methHb returned to normal levels in all subjects within 2 weeks of completing PQ.

Therapeutic response. All except 3 subjects (1 in the QN+ PQ group and 2 in the DHA-PP group) were negative for blood-stage parasites within 3 days, and none of these subjects later had a recurrence. No subjects were positive at day 7 or day 14. The earliest recurrence appeared at day 17 in a subject in the AS group, and he was followed in rapid succession by most other subjects in the AS arm; 32 of 41 (78%) had recurrences, and 25 of these 32 (78%) appeared on or before day 28 postpatency. The seven other recurrences appeared between days 29 and 163; day 21 was the median day of recurrence in this group. All recurrences in all three treatment arms were identified by microscopy and confirmed with PCR diagnostics to be P. vivax monoinfections. All 41 recurrences among the subjects in the three arms were classified as relapses (see Discussion).

DISCUSSION

This study found good safety, tolerability, and efficacy of PQ against relapse in G6PD-normal men when administered after DHA-PP for acute vivax malaria. The efficacy of PQ (by incidence density) with QN was not significantly lower than that of PQ with DHA-PP (P = 0.19), but PQ therapy came with side effects typical of cinchonism, along with less convenient dosing than DHA-PP. These findings show excellent PQ efficacy when partnered with this new artemisinin-combined therapy (ACT) (28) for radical cure of vivax malaria.

The relatively low estimate of efficacy of QN+PQ by cumulative incidence (75%) versus incidence density (92%) calculations derives from the effect of mathematical management of the respective denominators and the relatively long period of follow-up. Similar effects have been observed in trials of malaria chemoprophylaxis also involving prolonged follow-up (22, 29). The primary distinction between the two approaches is a denominator that does not increase as time passes versus one that does, i.e., cumulative incidence versus incidence density, respectively. As more time passes, the difference expands. The mathematics of this phenomenon have been explained (30, 31). Like those statisticians, we consider incidence density to be the preferred analytical approach in estimating primaquine efficacy because, like trials of chemoprophylaxis, inclusion of person-time at risk offers more meaningful estimates of efficacy against intrinsically prolonged events.
like relapse. The informative visual representation of timing of relapse represents the primary utility of the cumulative incidence analysis in this study.

Evidence of Lumajang being free of malaria transmission permitted assignment of a very low probability to reinfection confounding in this study. Recrudescence must likewise be carefully considered. If AS, QN, or DHA-PP failed to kill all asexual blood stages, recrudescence would confound estimates of PQ efficacy against hypnozoites. However, late recurrences (Fig. 5) and good evidence of efficacy for the applied regimens of QN and DHA-PP (9, 10, 32–34) also render recrudescence an improbable confounder. The rapid recurrences following AS therapy warrant greater caution, but evidence supports these being classified as relapses. First, the doses of AS applied have been demonstrated to be completely efficacious against asexual blood stages of *P. vivax* (32, 35, 36). Second, the rapidity and risk of relapse seen in the AS group (Fig. 5) precisely mirrored the natural rate of relapse for the Chesson strain of *P. vivax* (37) from an American soldier infected in New Guinea in 1944 (38). This high rate of relapse also occurred among Thai patients observed as inpatients in a hospital in Bangkok, Thailand (32). The Chesson strain from New Guinea, where the infections treated in this study were acquired, has historically been considered PQ tolerant (7, 39) but typically responsive to the 420-mg total dose delivered in this study (14).

Alving et al. (11) demonstrated that QN or CQ, despite having no effect on relapse without PQ, strongly potentiated the hypnozoitocidal activity of PQ when administered concurrently. Recent findings of the activity of a PQ-like drug against relapse of *Plasmodium cynomolgi* in rhesus macaques also point to potentiation: the dose minimally effective against relapse decreased 10-fold.
when administered with blood schizontocides (40). DHA-PP may also have potentiated PQ against relapse, despite a 25-day interval before PQ administration. If potentiation occurred, PP seems to be the agent more likely responsible because DHA is rapidly excreted (elimination half-life, 1 h), whereas the elimination half-life of PP is 3 to 4 weeks (41). PP thus would have been present through PQ dosing in weeks 5 and 6, but the relationship between those levels and the possible potentiation of the therapeutic activity of PQ remains unknown.

The timing of post-PQ relapse demonstrates an important factor in estimating the efficacy of PQ, especially in the context of a rapidly versus a slowly eliminated blood schizontocide. Despite the high risk of relapse by day 28 (as in the AS group; Fig. 5), PQ failure (relapse) did not occur during that period but occurred later and continued up to 28 weeks. Similarly, subjects with candidate 8-aminoquinoline failures against Chesson strain relapse in experimental challenge trials also relapsed later than 28 days (42). The therapeutic efficacy of PQ may not be ascertained with a fol-

![Figure 4](image-url)

FIG 4 metHb levels (percent for each y axis) among subjects showing the median (horizontal lines), interquartile range (boxes), 1.5-fold the quartile range (vertical lines), and outlying observations (points) relative to the days of daily primaquine dosing (gray boxes).

![Figure 5](image-url)

FIG 5 Cumulative incidence of recurrent parasitemia among treatment groups over 1 year of observation. The first relapse occurred on day 17 post-patency (AS), and the last occurred on day 194 (QN + PQ).
low-up of less than 3 months even for the rapidly relapsing strains from Southeast Asia and Oceania; subjects infected with strains having much longer relapse intervals (6) would likely require 8 to 12 months of follow-up. In the current study, no first relapses occurred in the latter half of the 12-month observation period; a 6-month follow-up may suffice in the future.

Suppression of early relapse by slowly excreted blood schizontocides should also be considered in the timing of relapse in trials of PQ efficacy. In this study, the QN treatment arm demonstrated PQ killing of the hypnozoites responsible for the early relapses evident in the AS treatment arm (Fig. 5). Conversely, in the DHA-PP treatment arm, many relapses would have occurred before the first dose of PQ on day 28, but these emergent blood stages were almost certainly killed by the therapeutic levels of the PP blood schizontocide lingering for about 1 month (9). It is doubtful, however, that such activity explains the apparently good efficacy of PQ against hypnozoites with this partner drug; multiple relapses are the rule for strains of _P. vivax_ from New Guinea (6). In earlier studies (43), a 55% relapse rate was detected between days 38 and 63 posttreatment with slowly eliminated CQ, whereas the relapse rate from days 17 to 28 was 60% among subjects treated with rapidly eliminated QN (no PQ either group). This slight difference reflects the very high probability of relapse, despite suppression of the earliest relapses by a slowly eliminated blood schizontocide.

All of the acute vivax malaria cases treated in this study were very likely relapses rather than primary attacks. Most subjects recruited were initially negative for malaria at mass screening and only later developed acute vivax malaria (Fig. 2). Even the 45 soldiers found to be positive in the first mass screening within 2 weeks of commencing enrollment were almost certainly not experiencing primary attacks; at that point they had not been exposed to biting infectious anopheline mosquitoes for over a month. All of these soldiers probably experienced one or more primary attacks during their 1 year of duties in the high-transmission area (21, 22). Chemoprophylaxis is not medical doctrine of the Indonesian army, and it is not routinely practiced. The battlefield medical team reported treating many soldiers while deployed, but records were not maintained. Soldiers were treated with stocks of various ACTs provided by the army health authorities in the region. At no time did the army medical team administer primaquine therapy for acute malaria in the field, as they lacked a capacity for screening for G6PD deficiency and feared causing serious harm. First exposure to primaquine by the infections acquired by the study subjects occurred with the therapies administered in this study.

The findings of this study provide clinical evidence of the good safety, tolerability, and efficacy of DHA-PP + PQ for radical cure of vivax malaria. This option may be applied in the face of emerging CQ-resistant _P. vivax_. The safety of the more convenient concurrent administration of DHA-PP + PQ remains to be evaluated. Despite this significant progress in chemotherapeutics for vivax malaria, the problem of PQ toxicity in G6PD-deficient patients and the prohibition of its use in pregnant women and very young children remain very significant obstacles to effective PQ therapy against relapse in zones of endemicity. Practical point-of-care diagnostics for G6PD deficiency constitute an urgent requirement in support of broader application of this therapy against relapse in malaria control and elimination. As the data in Fig. 5 starkly illustrate, failure to attack the hypnozoite reservoir in zones of endemicity poses a conspicuously serious threat to the health of several billion people.

ACKNOWLEDGMENTS

We express our sincere gratitude to the many soldiers, officers, and commanders of the Army of the Republic of Indonesia who actively and enthusiastically supported the efforts represented in this report. We are especially indebted to Lt. Col. Trio Tangkas, Lt. Muhammad Sya’ir, Lt. Winarso, Sgt. Desantu Harwono, and Sgt. Dharmo Indarto Yogo, who each contributed throughout the 15 months of study operations in their battalion. We also owe debts of gratitude to members of the clinical research team: Winarni Arimunanggul, Yulia Widya Santy, Decdy Subekti, Sofyan Masbar, Baitur Rohmam, Sunardi, Asep Sutisna, Saraswati Soebianto, Ungke Antonya, Fitria Wulandari, and Ratno Nugroho. Gratitude is likewise owed to the Data Safety Monitoring Board: Steve Wignall (Bali), Paul Tambayab (Singapore), and Elizabeth Ashley (Bangkok, Thailand). We are indebted to the officers of the Medicines for Malaria Venture (MMV; Geneva, Switzerland) and the ALERTAsia Foundation (Jakarta, Indonesia) for their active support of the work, especially Stephan Duparc at MMV and Claudia Surjadijaya and Shanti Gayatri at the ALERTAsia Foundation.

This study was funded in part by a clinical trials capacity-building award from the Medicines for Malaria Venture (Geneva, Switzerland) to the ALERTAsia Foundation (Jakarta, Indonesia). J.K.B. is supported by grant B9RJX0 from the Wellcome Trust.

Sigma Tau (Italy) graciously provided the DHA-PP used in this study and helped with the documentation necessary for its importation into Indonesia.

REFERENCES

