10-2011

Tracking large carnivore dispersal using isotopic clues in claws: An application to cougars across the Great Plains

Viviane Hénaux
University of Nebraska-Lincoln, henaux@wisc.edu

Larkin A. Powell
University of Nebraska-Lincoln, lpowell3@unl.edu

Keith A. Hobson
Environment Canada, keith.hobson@ec.gc.ca

Clayton Kent Nielsen
Southern Illinois University Carbondale, kezo92@siu.edu

Michelle A. LaRue
University of Minnesota - Twin Cities, larue010@umn.edu

Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers
Part of the [Ecology and Evolutionary Biology Commons](http://digitalcommons.unl.edu/natrespapers) and the [Natural Resources and Conservation Commons](http://digitalcommons.unl.edu/natrespapers)

http://digitalcommons.unl.edu/natrespapers/353

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Introduction

Large carnivore populations have increased in several parts of North America during recent decades following increases in their prey populations and reduced persecution. As a result, carnivores have recolonized several of their former geographical ranges (Gehring & Potter 2005; Hoffman & Genoways 2005). Cougars (Puma concolor), once considered rare or extirpated in many Midwestern states in the United States, are now observed with increasing regularity (Tischendorf & Henderson 1995). Cougar populations, following extermination efforts, were restricted to wilderness areas in the Rocky Mountains. Those populations have increased and new breeding populations have been documented in the Black Hills of South Dakota since the 1970s and southwest North Dakota since the 1990s (Cougars Network 2010). Recent evidence suggests that cougars are now breeding in northwest Nebraska (Wilson, Hoffman, & Genoways 2010), and 8% of the Midwest region is comprised of highly suitable habitat for cougars (Larue 2007).

Wildlife managers are increasingly aware of public’s interest in the long-distance dispersal of cougars into the Midwest (Davenport, Nielsen, & Mangun 2010). Indeed, confirmed sightings (photographs, roadkills, or cap-
tures) since the early 1900s of individuals extirpated from many states create a frustrating management dilemma, as biologists are uncertain of population numbers and the dispersal corridors used by individuals (Sweanor, Logan, & Hornocker 2000). Most confirmations of cougars in the Midwest have been juvenile males, suggesting that their presence likely results from the dispersal of juveniles from established populations (Nielsen et al. 2006; Cougar Network 2010). Dispersing cougars leave the natal area permanently to avoid competition for resources and inbreeding (Logan & Sweanor 2001). Subadult dispersal has recently been enhanced by the strong increase in size of the Black Hills and Rocky Mountain populations (Logan & Sweanor 2001; Thompson & Jenks 2005), and dispersal corridors between these populations and cougar confirmations exist throughout the Midwest (LaRue & Nielsen 2008).

Wildlife biologists lack empirical knowledge of paths of travel, which are needed to develop effective cougar conservation strategies. In the past decade, naturally occurring stable isotopes have proved to be useful to study long-distance wildlife migration and determine the previous origin of wild animals (Hobson & Wassenaar 2008). Naturally occurring stable isotopes provide time-integrated information that can be linked directly to geographical regions (Rubenstein & Hobson 2004). Food web isotopic signatures are reflected in the tissues of individuals, and such signatures can vary spatially based on a variety of biogeochemical processes (Hobson 1999). Isotopic measurements of feathers have provided a powerful approach in avian forensics, especially to determine moult or natal location (Hobson 1999; Hobson et al. 2004), document migratory connectivity at continental or regional scales (Norris et al. 2007) and study long-distance dispersal (Hobson 2005). Other keratinous tissues that grow continuously such as avian claws (Mazerolle & Hobson 2005; Fraser et al. 2008), baleen plates (Schell, Saupe, & Haubenstock 1989; Hobson & Schell 1998), whiskers (Hall-Aspland, Rogers, & Canfield 2005) and hair (Cerling et al. 2006) have been used to reconstruct past diets and positions of animals. Isotopic analysis of chitin has also been used to track origins of migratory insects such as monarch butterflies (Danaus plexippus; Hobson, Wassenaar, & Taylor 1999; Miller et al. 2010). Although biologists have used stable isotopes to reconstruct timing of movements of individuals across isotopically distinct regions (Cerling et al. 2006; Hobson, Barnett-Johnson, & Cerling 2010), none have previously used stable isotopes to reconstruct a distinct, spatially explicit migratory or dispersal pathway.

The claws of carnivores have potential as a tissue to store isotope information. The tissue consists primarily of keratin which is metabolically inert after synthesis. Cougar claws grow continuously and thus record a temporal dietary time series. The distal region of the claw is the oldest record of diet from previous habitats, while the proximal region reflects the most recent diet and habitat. We predicted that the claws of dispersing cougars could integrate dietary and habitat information during a suitable temporal scale to allow the cougars’ migratory path to be spatially assessed. We obtained claw material from two individuals road-killed in Nebraska, and two individuals shot in Chicago, Illinois, and Saskatoon, Saskatchewan, Canada.

Isoscapes (i.e., spatial patterns of stable isotopes in food webs or inorganic matrices) are largely continental or regional. Small-scale variation in stable isotope patterns has been more difficult to assess (Powell & Hobson 2006). Recent cougar dispersal in the Midwest USA has occurred over large distances, relative to regional variation in stable carbon and hydrogen isoscapes. Stable hydrogen isotope values (δD) in animal tissues vary according to growing-season precipitation patterns (δDf), which have proven especially useful in many studies of animal movement (Hobson 2005). Large-scale isotopic information can be inferred from the δDf basemap of Bowen, Wassenaar, & Hobson (2005). Stable carbon isotope values (δ13C) in animal tissues may be affected by altitude, latitude, climate, land-use practices, and by photosynthetic pathways and water-use efficiencies of predominant plants (Rundel, Ehleringer, & Nagy 1989; Marshall, Brooks, & Lajtha 2007). We also predicted that cougar prey would show regional variation in δD and δ13C values that could be used to trace movements of cougars across the landscape over short distances.

Our goal was to determine whether stable isotopes could inform our understanding of cougar dispersal. Our objectives were (i) to assess local variation in δ13C and δD values in deer tissues to determine whether predictable variation exists in prey species across the landscape through which cougars disperse, (ii) to assess variation within cougar claws to determine whether changes in the isotopic signature of local diets are detectable in claw tissue, and (iii) to predict spatially explicit cougar dispersal paths by comparing isotopic variations within dispersing cougars’ claws to regional and large-scale isoscapes of δD and δ13C values in prey species.

Methods

TISSUE COLLECTION

Deer samples

As part of a state-wide chronic wasting disease surveillance program, lymph nodes from white-tailed deer (Odocoileus virginianus) and mule deer (O. hemionus) were collected in 2005 from across Nebraska, and from the Black Hills of South Dakota. This provided an opportunity to describe isoscapes for our region of interest. We reasoned that although patterns of isotopic discrimination in general are not well known for individual tissues, all things being equal, these samples would act as a useful proxy to assess spatial patterns in δD and δ13C values of cougar prey and ultimately isotopic origins predicted by cougar claws. We used deer tissue samples from 21 harvest check stations in Nebraska and four check stations in South Dakota. Locations were chosen from a list of potential check stations to provide spatial representation of potential dispersal paths across these states. All samples were frozen after collection. We thawed the samples and randomly selected 2–3 individuals from each check station. Lymph nodes for each check station were cut into ca. 1-cm² pieces, dried for >24 h at 65°C and ground to a fine powder in a mortar/pestle.
Tracking large carnivore dispersal using isotopic clues in claws

Ackerman, Lindzey, & Hemker (1984) reported that mule deer were 81% of the diet of cougars in Utah; deer are very abundant in Nebraska and South Dakota and we have no reason to expect differences in cougar diet in our study area. We assumed that deer sampled at each check station were representative of the area immediately surrounding the check station. Given that deer home ranges usually cover less than 730 ha (Root, Fritzell, & Giessman, 1988), we are confident that deer isotopic variation reflected variation in isotopic values of local diets.

Cougar samples

We obtained claw material from one- to two-year-old male cougars found near Valentine, Nebraska (42°8′N, 106°5′W), Gretta, Nebraska (41°1′N, 96°1′W), Chicago, Illinois (41°9′N, 87°7′W), and Saskatoon, Saskatchewan, Canada (52°1′N, 106°7′W). The Gretta cougar was found as a roadkill on 6 November 2005, as was the Valentine cougar on 27 June 2006. The Chicago and Saskatoon cougars were shot by law enforcement officials in Chicago, IL, on 15 April 2008, and Saskatoon, SK, on 7 October 2008, respectively. The Valentine and Saskatoon cougars had been previously captured, radiomarked (VHF transmitters) and released in the Black Hills, SD, allowing biologists to follow their movements in their natal area. The Valentine cougar’s last observation alive was in Custer State Park, SD, on 13 April 2006, and the Saskatoon cougar was last recorded in Black Hills, across the Wyoming border, in April 2008. Genetic investigations determined that the Chicago cougar was the same animal as observed near Milton, Wisconsin, three months before death (Wisconsin Department of Natural Resources 2008); this animal’s location of origin was confirmed to be the Black Hills, SD (Cougar Network 2010). The Gretta cougar had unknown origin.

We removed 1–2 claws from each cougar’s distal phalanx bone and cleaned with distilled water. Claw length ranged from 35 to 49 mm. We used a rotating, hand-held grinder to produce successive samples of about 1 mm width along the claw from tip to root. We obtained samples from one claw for each cougar, but we added samples from a second claw for the Saskatoon cougar to assess between-claw variation in isotopic values. Our sample of cougars allowed us to assess δD and δ13C isotopic variation within claws (δDclaw and δ13Cclaw, respectively) of short- (Valentine), medium- (Gretta) and long-distance (Chicago, Saskatoon) dispersers. We were also able to use the known origins for two cougars (Valentine, Saskatoon) and genetically confirmed observation for the Chicago cougar to check predictions of our proposed dispersal paths.

Isotopic analyses

We measured δD in claw and deer lymph node tissues. Stable hydrogen isotope analyses were performed at the National Water Research Institute in Saskatoon, SK. Measurements were performed on H2 derived from high-temperature flash pyrolysis of samples and continuous-flow isotope ratio mass spectrometry (CF-IRMS). Pure H2 was used as the sample analysis gas and the isotopic reference gas. A Europa 3000TM (Crewe, England) high-temperature elemental analyzer (EA) with autosampler was used to automatically pyrolyze claw samples to a single pulse of H2 gas (and N2 and CO gas). The resolved H2 sample pulse was then introduced to the isotope ratio mass spectrometer [Micromass LisoPrimeTM (Manchester, England) with electrostatic analyzer] via an open split capillary. Within each analytical run, we also measured replicates of three keratin standards (CFS, BWW-II and CHS) that we used to calibrate our unknown keratins to provide an estimate of δD of nonexchangeable H (Wassenara & Hobson 2003, 2006). As no comparable calibration standards are available for lymph node material, that tissue was still run in the same manner. Repeated analysis of hydrogen isotope intercomparison material IAEA-CH-7, routinely included as a check, yielded an external repeatability of better than ±1.5‰.

For δ13C measurements of cougar and deer samples, approximately 1 mg of each powdered sample was loaded into tin cups. Isotopic measurements were made on a Europa Robo Prep combustion system interfaced with a Europa Tracermat continuous-flow isotope ratio mass spectrometer (Europa, Crewe, England). Samples were analyzed as five unknowns separated by two albumen standards. Based on within-run replicates of standards, the analytical precision was estimated to be ±0.1‰.

All stable isotopes values are expressed in the δ notation (in units of per mil, ‰): δX = [(Rsample / Rstandard) - 1] × 1000, where X denotes 12C or 13C or D, and R the corresponding ratio 12C/13C or D/H. The standards are Vienna Pee Dee Belemnite (VPDB) standard for carbon and Vienna Standard Mean Ocean Water–Standard Light Antarctic Precipitation (VSMOW–SLAP) for hydrogen. When two–three successive claw samples were combined to obtain the mass needed to make one measurement, the isotopic value was associated with the mean distance of these samples from the claw tip. We were not able to obtain δ13C values for the Chicago cougar and for deer tissue from South Dakota because of small tissue sizes provided from these collections.

ISOSCAPES

Local deer isoscapes

We used δD and δ13C values from deer lymph nodes (δDcollagen and δ13Ccollagen, respectively) to construct local, fine-scale isoscapes for Nebraska and the Black Hills, SD. The locations of the 25 deer sampling stations were geo-referenced. The spatial trend of δD and δ13C in deer lymph nodes was modeled in ArcGIS (ESRI, Redlands, CA) using ordinary kriging (spherical semivariance model), which interpolates isotope values in unsampled areas from data associated with the deer stations. We used these regional isoscapes (as described below) to predict the dispersal paths of the Valentine and Gretta cougars.

Large-scale δD isoscape in deer tissues

Our local, fine-scale δD and δ13C isoscapes, created from deer lymph nodes, did not extend to cover the dispersal paths of the Chicago and Saskatoon cougars because we lacked deer samples from across the range of interest. Instead, we used the growing-season precipitation δDbasemap of Bowen, Wassenara, & Hobson (2005) to infer a predicted, large-scale isoscape of δD in deer tissues. However, we needed a means of associating predicted mean growing-season average precipitation δD values expected at a given location with the corresponding deer isotopic value that would be expected there. Fortunately, Cornie, Schwarz, & Gray (1994) derived a relationship between δDp and deer bone collagen δDcollagen as δDcollagen = 4 + 1.02 × δDp. We used this relationship and the precipitation isoscape of Bowen, Wassenara, & Hobson (2005) to create a δDcollagen isoscape for North America. This large-scale isoscape is of lower resolution than our local isoscape, because of the greater distance (typically >300 km) among the long-term precipitation sampling stations forming the basis of the δD data used by Bowen, Wassenara, & Hobson (2005). We were unable to produce an equivalent δ13C isoscape across the larger region because to our knowledge no large-scale sampling of animal tissues has been conducted for this isotope. By anchoring claw
tissues to expected prey $\delta D_{\text{collagen}}$ at known sites (e.g., mortality locations), we were able to avoid the need to know claw-diet isotopic discrimination factors a priori (see below).

PREDICTION OF PATHS

Claw growth rate

Claw tissue grows continuously and therefore records a temporal dietary isotopic record. However, claws wear at the tip, and the oldest dietary information is continuously removed from the tip. We determined the growth rate of claw tissue (i.e. the time integrated per 1 mm of claw) through a combined assessment of our claw isotopic values and the available telemetry records from the radio-marked Valentine cougar. We had the most information regarding this cougar’s prior locations, and we could be certain the entire short-distance dispersal was recorded on its claw. We hypothesized that a dispersal event would be indicated by a shift from equilibrium δD_{claw} and $\delta^{13}C_{\text{claw}}$ values at the former location (i.e. representing integrated isotopic conditions at a natal region). To interpret distance reflected in changes in δD_{claw} and $\delta^{13}C_{\text{claw}}$ values between adjacent 1-mm samples of the Valentine cougar, we calculated the straight-line distance between its dispersal initiation and eventual death. We related that dispersal distance to the length of claw growth during the dispersal, and by dividing the dispersal distance by the length of claw growth during dispersal, we obtained an approximate, straight-line dispersal distance represented by each 1 mm of claw sample of the Valentine cougar. Because the claws of mid- and long-distance dispersers do not provide information about their natal place, the mean dispersal speed of these individuals could not be directly estimated. Cougars may travel at speeds ranging between 1–8 km day$^{-1}$ (Maehr 1997; Thompson & Jens 2005; Stoner et al. 2008), with highest mean daily distances during May–November (Stoner et al. 2008). We considered two scenarios of mean straight-line distance travelled per day: 3 km day$^{-1}$ and 5 km day$^{-1}$ and we took into account the season integrated in the claw to select the best scenario for each cougar.

Potential origins and least-cost dispersal paths

Origins of Gretna and Chicago cougars were unknown. We used available information to develop hypothetical, potential sources for our dispersing cougars. Each potential source was located on the eastern border of the established range for cougar in North America and has been identified as a breeding population (LaRue & Nielsen 2008): western North Dakota (ND), Black Hills of South Dakota (SD), southeast Wyoming (WY), central Colorado (CO), the panhandle of Oklahoma (OK) and west Texas (TX). For the Saskatoon cougar, we considered two other potential sources, in western Montana (MT) and on the west of the mortality location at the border between British Columbia and Alberta (AB), to test the extent in which our model discriminate the known origin (SD) and most likely dispersal path of this cougar among several plausible distinct routes. We identified the centroid of each source patch to use as the hypothetical initiation point of dispersal. Two-km-wide dispersal corridors were backward modeled from the mortality locations to each potential source, using a habitat suitability model and least-cost path (LCP) analysis (LaRue & Nielsen 2008). Because the habitat suitability model has not been developed for Canada, we created straight paths from each potential source to the mortality location of the Saskatoon cougar. In addition, taking advantage of the confirmed re-sighting of the Chicago cougar in Wisconsin, we considered an additional route of dispersal going straight north-west through Wisconsin (WI) that will allow us to check model predictions. We identified each dispersal corridor Ω_i with regard to the associated route from each source (e.g., ND, SD, WY, CO, OK, TX, MT, AB, WI). When routes overlapped geographically, we limited our analysis to only one of the routes. We considered each dispersal corridor as a hypothesis to explain a route from a potential site of origin for each cougar.

Dispersal path prediction

We evaluated the likely origin of each cougar using likelihood-based assignment as described by Royle & Rubenstein (2004). The rationale behind this method is that a migrating animal can be associated with the location most likely to produce the observed tissue isotope value. Royle & Rubenstein (2004) used their assignment method to distinguish whether an individual was a member of >1 subpopulations, but we extend their method to take advantage of the time series of information available within the cougar claw (i.e., >1 samples available for an individual). We used their method to identify the most probable route of a dispersing individual, rather than simply assigning an individual to one of >1 areas of origin.

As a general introduction to our extension of Royle & Rubenstein’s (2004) method, we can consider an individual with an unknown dispersal origin and path, we could hypothesize (based on best available anecdotal data) that the individual may have followed R potential routes, $r = 1, 2, ..., R$ from the hypothetical sources. We can then assume that the expected stable isotope values (for any given isotope X) along Ω_i, have been predicted (e.g., using the Bowen, Wassenaar, & Hobson (2005) calculator) and are defined as $y'_{i,X}$ and $\sigma_{i,X}$ where μ and σ represent the mean δX value and standard deviation, respectively, at the approximate distance from the death place integrated in sample i of the claw. The index i ranged from 0 to n, with 0 representing the sample at the root of the claw and n the sample at the tip of the claw. We used $y'_{i,X}$ to denote the isotopic value measured in sample i of the claw. To determine the most likely dispersal route of this individual, one can evaluate the likelihood of dispersal from a potential site of origin for each cougar. The likelihood of $y'_{i,X} | y'_{\text{SD}}, y'_{\text{BC}}$ is defined as the conditional probability of $y'_{i,X}$ given that the individual travels on Ω_i from a potential source, is calculated as:

$$f(y'_{i,X} | y'_{\text{SD}}, y'_{\text{BC}}) = \frac{1}{\sqrt{2\pi\sigma_{i,X}}} \exp \left(-\frac{1}{2\sigma_{i,X}^2} (y'_{i,X} - \mu_{i,X})^2 \right)$$

where

$$\sigma_{i,X} = \sqrt{\frac{\sum_{i=0}^{n} (y'_{i,X} - \mu_{i,X})^2}{n}}$$

is the standard deviation of the differences between the observed $y'_{i,X}$ and predicted $\mu_{i,X}$ values along all potential paths (e.g., Hobbs & Hillborn 2006). If expected values for two isotopes (e.g., δD and $\delta^{13}C$) are known along the dispersal corridor, the framework could be extended to a two-isotope approach. The bivariate normal likelihood corresponding to the set of observations $y' = (y'_{\text{SD}}, y'_{\text{BC}})$ would be

$$f(y'_{\text{SD}}, y'_{\text{BC}} | \mu_{\text{SD}}, \mu_{\text{BC}}, \sigma_{\text{SD}}, \sigma_{\text{BC}}, \rho_{\text{SD},\text{BC}}) = \frac{1}{2\pi\sigma_{\text{SD}}\sigma_{\text{BC}} \sqrt{1 - \rho_{\text{SD},\text{BC}}^2}} \times \exp \left\{ -\frac{1}{2(1 - \rho_{\text{SD},\text{BC}}^2)} \left[\frac{(\delta D - \mu_{\text{SD}})^2}{\sigma_{\text{SD}}^2} - 2\rho_{\text{SD},\text{BC}} (\delta D - \mu_{\text{SD}}) (\delta^{13}C - \mu_{\text{BC}}) \right] \right\}$$

$$\times \left\{ \frac{\delta^{13}C - \mu_{\text{BC}}}{\sigma_{\text{BC}}} + \frac{(\delta^{13}C - \mu_{\text{BC}})^2}{\sigma_{\text{BC}}^2} \right\}$$

This allows us to calculate the most likely dispersal path based on the isotopic values recorded on the claw, taking into account the expected values for each potential source. The method involves calculating the likelihood of dispersal from each potential source for each route and selecting the route with the highest likelihood as the most probable dispersal path.
where $\rho_{D,\delta C}$ is the correlation coefficient between δD and $\delta^{13}C$, estimated from isotopic values at deer check stations.

We applied this general approach to the data available in our study area. When we had data from cougars and expected data from isoscapes for both δD and $\delta^{13}C$ tissue values, we employed the two-isotope approach to improve predictions (e.g., Royle & Rubenstein 2004). We estimated $\pi_i^{(r)}$, defined as the probability that the cougar dispersed along Ω, at a distance i from the death place using a Bayesian approach. Our initial (a priori) values of $\pi_i^{(r)}$ were calculated as 1 / number of hypothetical routes. We then estimated the probability of travelling along route Ω, at each sample i sequentially from the root to the tip of the claw, as:

$$\pi_i^{(r)} = \frac{\pi_0^{(r)} \times f(y_i^{(r)} | \mu_r, \sigma)}{\sum \pi_0^{(r)} \times f(y_j^{(r)} | \mu_r, \sigma)}$$

The probability of origin $\pi_i^{(r)}$ for $i = 1, 2, \ldots, n$, is used as prior information in the Bayesian framework, and the cumulative probability of travelling along a given path gains more weight if the observed isotope values for the claw segments are closer to the expected values for a path, relative to other paths under consideration. Finally, the cumulative probabilities reach their end-point at the last sample (claw tip), where $i = n$. The dispersal corridor Ω_i with the maximum value of n is the most likely route followed by the cougar.

Expected claw isotopic values along dispersal corridors

The method described earlier requires that for each cougar, we established expected claw δD and $\delta^{13}C$ values along each dispersal corridor. We used ArcGIS to overlay the dispersal corridors Ω_i created for the Gretna and Valentine cougars on the regional δD_{node} and $\delta^{13}C_{\text{node}}$ isoscapes, and the dispersal corridors for the Saskatoon and Chicago cougars on the large-scale $\delta D_{\text{collagen}}$ isoscape. Then we extracted isotopic values from these prey isoscapes at successive points of the raster along each route to match the distances represented by our samples of claw tissue.

To link cougar claw isotopic values to the extracted δD and $\delta^{13}C$ values from proximal samples consistent with our predictions (Figure 2). We found a declining trend in δD_{claw} values for the Saskatoon cougar (corresponding to northern movement) and increasing δD_{claw} values for the other three cougars. For the Chicago cougar, the very low δD_{claw} values (>19‰ difference with the closest measurement) observed in the tip and root samples were not expected based on known landscape variation of δD in cougar prey and were therefore ignored in further analyses. $\delta^{13}C_{\text{claw}}$ values declined for the Saskatoon and Valentine cougars towards their mortality location, whereas we observed an overall increasing pattern in $\delta^{13}C_{\text{claw}}$ values for the Gretna cougar (Figure 2). We did not perform $\delta^{13}C$ analyses for the Chicago cougar because of sample size restrictions.

DETERMINING RATES OF GROWTH

The Valentine cougar traveled about 250 km in ca. 75 days, which represented a mean speed of 3 km day$^{-1}$. The graphical combined analysis of δD and $\delta^{13}C$ results from this cougar showed that its dispersal trip was integrated in the last 20 mm or last 49% of the claw (Figure 2). Therefore, we estimated that 1% of claw represented 1.5 days, which means that a cougar claw integrated dietary information over approximately five months. More specifically, for the Valentine cougar, 1% of claw represented about 5 km. The Chicago cougar was killed in mid-April which means its claw represented winter months. Therefore, we used the sce-

ISOTOPIC VARIATION ALONG COUGAR CLAWS

Plotting δD_{claw} and $\delta^{13}C_{\text{claw}}$ values against the proportion of claw length showed that the isotopic patterns in the two claws from the Saskatoon cougar overlapped, indicating that the claws integrated dietary information over the same period of time (Figure S1). But, because the claws were different lengths, we decided to use proportion of claw length rather than section length, as the standard to compare between claws. We report our proportions from the tip ($i = 0$) to the root ($i = 1$) of the claw.

Each cougar claw showed continuous change in δD and $\delta^{13}C$ values from proximal samples consistent with our predictions (Figure 2). We found a declining trend in δD_{claw} values for the Saskatoon cougar (corresponding to northern movement) and increasing δD_{claw} values for the other three cougars. For the Valentine cougar, the very low δD_{claw} values (>19‰ difference with the closest measurement) observed in the tip and root samples were not expected based on known landscape variation of δD in cougar prey and were therefore ignored in further analyses. $\delta^{13}C_{\text{claw}}$ values declined for the Saskatoon and Valentine cougars towards their mortality location, whereas we observed an overall increasing pattern in $\delta^{13}C_{\text{claw}}$ values for the Gretna cougar (Figure 2). We did not perform $\delta^{13}C$ analyses for the Chicago cougar because of sample size restrictions.

RESULTS

SPATIAL VARIATION IN DEER TISSUE

Deer lymph nodes produced a southeast–northwest δD gradient consistent with our predictions ranging from -148.6% in western South Dakota (Black Hills) to -101.7% in southeast Nebraska (Figure 1). Values of $\delta D_{\text{collagen}}$ reflected the known north–south enrichment pattern expected for mean annual precipitation δD for North America (Bowen, Wassenaar, & Hobson 2005). The carbon isotopic gradient in deer revealed an east–west gradient of $\delta^{13}C$ in Nebraska (Figure 1) with high $\delta^{13}C$ values in eastern Nebraska (-14.9%) and at the border with Wyoming (-15.9%) and low $\delta^{13}C$ values in the Great Plains (-24.8%). We estimated a correlation coefficient $\rho_{D,\delta^{13}C} = 0.26$ between δD and $\delta^{13}C$ values from deer stations in Nebraska ($t_{10} = 0.85, n = 12, P = 0.41$).
nario assuming a mean speed of 3 km day$^{-1}$ to predict its most likely route of dispersal (Figure S2). For the Gretna and Saskatoon cougars, whose claws represented the summer months, we considered the scenario assuming a mean speed of 5 km day$^{-1}$ (which means that 1% of claw represented about 7.5 km; Figure S2).

PREDICTIONS OF DISPERSAL ROUTES

Least-cost dispersal paths, as predicted by habitat models and additional dispersal corridors, are shown in Figure 1 for the Valentine and Gretna cougars, and Figure 3 for the Chicago and Saskatoon cougars. In each figure, the solid part of each dispersal corridor Ω represents the distance considered to be integrated in the claw.

Based on the regional δD$_{\text{node}}$ and δ^{13}C$_{\text{node}}$ isoscapes, we obtained a standard deviation $\sigma_{\delta D} = 6.23\%$ and $\sigma_{\delta^{13}C} = 1.36\%$ for the Valentine cougar and $\sigma_{\delta D} = 4.59\%$ and $\sigma_{\delta^{13}C} = 1.87\%$ for the Gretna cougar. We found $\Delta \delta D_{\text{claw-prey}} = 48.8\%$ and $\Delta \delta^{13}C = 0.22\%$ for the Valentine cougar and $\Delta \delta D = 38.5\%$ and $\Delta \delta^{13}C = -3.9\%$ for the Gretna cougar. We took advantage of the information provided by the stable hydrogen and carbon isoscapes and used the two-isotope likelihood-based assignment approach to predict the most likely route of dispersal and origin of these two cougars. For the Valentine cougar, we conducted a first analysis considering $\Omega_{\text{WY}}, \Omega_{\text{CO}},$ and Ω_{OK}, the only three routes covered completely by the two isoscapes; Ω_{SD} was not considered because of the absence of coverage of this path by the carbon isoscape in South Dakota (Figure 1). Among these three routes, our model predicted Ω_{CO} as the most probable route, with a probability of origin $\pi_{\text{CO}} = 1.0$ (at $i = 0.55$; Figure 4a). We performed a second analysis where we compared all routes using the regional δD$_{\text{node}}$ isoscape only; the number of routes (Ω) covered by the isoscape (and thus considered in this analysis) decreased as we went back to old samples (i.e. towards claw tip). This second analysis predicted Ω_{CO} as the most probable route (among the routes considered) within 350–400 km of the death place, but predicted that the cougar likely travelled along Ω_{SD} earlier ($\pi_{\text{SD}} = 0.8$ and $\pi_{\text{CO}} = 0.2$ at $i = 0.3$; Figure 4b). This pattern confirms the known origin of the Valentine cougar and suggests that it likely travelled south from its origin in the Black Hills, SD, and then north-east along Ω_{CO} before it was killed near Valentine, NE. For the Gretna cougar, to discriminate among $\Omega_{\text{ND}}, \Omega_{\text{SD}},$ and Ω_{WY} (Figure 1), we used the two-isotope assignment approach for samples between 100% and 70% of the claw (i.e. proximal part; Figure 2) and continued the analysis with δD_{claw} measurements for samples between 70% and 47% of the claw, using predictions at $i = 0.70$ from the dual-isotope approach as priors. Going backward from its place of mortality (i.e., claw root – $i = 1.0$) to its source (i.e., claw tip), our model predicted similar probabilities for the three routes within ~150 km of the
Tracking large carnivore dispersal using isotopic clues in claws

Figure 2. Stable hydrogen (δD) and carbon (δ13C) isotope values along the cougar claws. We used proportion of claw length as the standard to compare between claws and reported isotopic values from the tip (0%) to the root (100%) of the claw. We were not able to obtain δ13C values for the Chicago cougar due to small tissue sample sizes.

mortality location, but predicted ΩND as the most likely route of dispersal when the cougar was within ~400 km to ~150 km distant from Gretna, NE (πND = 1.0 at i = 0.5; Figure 4c). Although we cannot infer precisely the source of this cougar (probably from populations breeding in ND, or in the Black Hills, SD; Figure 1), these results suggest that the Gretna cougar likely approached Gretna via north-eastern Nebraska; the riparian areas along the Missouri and/or Elkhorn rivers may provide important movement corridors (Dickson, Jenness, & Beier 2005). To evaluate the accuracy of the dual-isotope approach, we conducted the same analysis using each regional isoscape independently. In both cases, the model predicted ΩND as the most likely route of dispersal (Figure 4d); however, predictions within ~150 km of the place of mortality are slightly different: the cougar was predicted to have approached Gretna following the ΩND path with the δDnode isospace, whereas the ΩWY or ΩSD paths were more likely with the δ13Cnode isospace.

Using the North American δDcollagen isospace, we obtained a standard deviation σδD of 7.02‰ for the Saskatoon cougar and 7.18‰ for the Chicago cougars. We estimated a δDclaw-prey discrimination factor of -3.8‰ for the Saskatoon cougar and -19.3‰ for the Chicago cougar, by subtracting the mean δDcollagen value around the mortality location from the δDclaw value in the proximal part of the claw. We used these discrimination values to predict the expected δDclaw values along the hypothesized Ω for the Saskatoon and Chicago cougars, respectively. We were not able to predict the source of these cougars because wear at the tip of the claw resulted in the loss of dietary information from their natal place. Of the five routes (ND, SD, WY, MT and AB) considered for the Saskatoon cougar (collared in SD), our model clearly identified that this cougar originated from southern territories and not from western areas (represented by ΩMT or ΩSD) and indicated that it likely traveled between ΩSD and ΩND (πND = πSD = 0.4, πWY = 0.1 at i = 0.05), within ~750 km of the location of death (Figure 4e). Our approach predicted that the Chicago cougar travelled through the Midwest likely between ΩND and ΩSD (πND = 0.5, πSD = 0.3, πWI = 0.2 at i = 0.1), and traveled north to ΩWI before going south towards Chicago (πWI = 0.6 at i = 0.7; Figure 4f).

Discussion

Our analysis included three cougars known to originate from the Black Hills because they were radio-collared in
this area before dispersal (Valentine and Saskatoon cougars) or from genetic analyses (Chicago cougar). Our model confirmed the origin of the Valentine cougar; however, all potential routes could not be fully considered (Figure 2b) because of limitations associated with the resolution and coverage of the regional isoscapes. Our approach correctly identified the cardinal direction of the Saskatoon and Chicago cougars’ origin; we were not able to confirm the exact source of these two long-distance dispersers because isotopic information from their natal place was not conserved in their claw. Nevertheless, our method successfully predicted the changes in direction and travels of the Chicago cougar in Wisconsin, where it was observed three months before being killed. In addition, our approach provided important information about the most probable route of recent dispersal (within five months preceding death) of the four cougars (as indicated by arrows in Figure 1 and 3), highlighting the potential to learn about the preferred routes of dispersal of short- and long-distance dispersing cougars through isotopic analyses of sequential samples along the claw axis.

This sort of forensic investigation into carnivore movements requires appropriate isoscapes to be established from more sedentary prey animals such as white-tailed or mule deer or another common prey species. We created actual regional δD_{node} and $\delta^{13}C_{\text{node}}$ isoscapes for Nebraska and the Black Hills, SD, based on analyses of deer lymph node tissues. In Nebraska, we found a southeast-northwest δD gradient in deer and cougar tissues, which matched the groundwater pattern derived for this region (Harvey 2005). Measurements of $\delta^{13}C$ in deer tissues showed an east–west pattern within Nebraska which reflected the sources of agricultural corn (C_4 plant) in an otherwise largely C_3 environment (Weckerly & Nelson 1990). Our approach has thus the potential to provide high-resolution spatially explicit basemaps for any stable isotopes or trace elements of interest providing they are geographically structured. At larger scales, the data set from Bowen, Wassenaar, & Hobson (2005) provided a useable and predictable precipitation δD isoscape that was then linked to deer collagen and cougar claws using the relationship derived by Cormie, Schwarcz, & Gray (1994). However, this approach is susceptible to shorter-term deviations in precipitation δD patterns from the long-term (primarily GNIP, Global Network of Isotopes in Precipitation) mean average values used for the large-scale isoscape resulting in biases in model predictions (e.g. Brewster 2009). In future, year-specific tissue isoscapes can be constructed from models that can correct for these changes (Brewster 2009) or on web-based tools currently being developed (i.e. IsoMAP; G. Bowen, pers...
comm.). Also, managers throughout the U.S. and Canada sample deer tissues for chronic wasting disease monitoring; these samples provide the opportunity to broaden our tissue isotope base maps to wider geographical areas and for specific years of interest.

All claws provided a continuous gradient of δD and δ13C values demonstrating that changes in isotopic signatures of local diets are detectable in claw tissue. Large differences in δD\textsubscript{claw} values in the root and tip samples of the claw of the Chicago cougar were not expected based on known landscape variation of δD in cougar prey. The non-exchangeable hydrogen portion of a tissue is controlled by both diet and drinking water (Hobson, Atwell, & Wassenaar 1999). The sudden enrichment in deuterium (i.e. less negative δD value) in the middle of the claw of the Chicago cougar (Figure 2) was followed by a gradual return to the previous level, suggesting a sudden change in δD of diet and/or drinking water followed by a slower recovery to previous conditions. The claw of this cougar (killed in mid-April) represented its winter diet. Snow typically exhibits depleted δD values compared to rain at a given location (Cat 1996; Oberhansli, Weise, & Stanichny 2009). This variation may be further altered by spatial variability and vegetation conditions (Koeniger et al. 2008). Therefore, a transition in winter-spring diet or the short-term use of isotopically enriched drinking water (potentially derived from north-flowing rivers) may have caused the marked variation in δD values in the middle of the claw of the Chicago cougar. Given that isotopic patterns in an individual’s claws integrate dietary information over the same period of time (e.g., Saskatoon cougar; Figure S1), analyzing several claws may help to deal with potential outlier isotopic measurements.

Matching the observed isotopic values in claw with the isoscapes is a critical step in our forensic approach. We corrected the isotopic prey basemaps using the proximal portion of the claw assuming that this correction factor could be applied to all other regions where the cougar was prior to its death. We note that for the Valentine cougar, we found a discrimination factor ΔD\textsubscript{claw-prey} = 54.0% at its origin (based on mean δD\textsubscript{claw} within the distal half of the claw and mean δD\textsubscript{node} in the Black Hills, SD) versus 48.8% at its mortality location, indicating that isotopic discrimination may slightly change over time because of seasonal changes in prey distribution and diet or source of drinking water. Analyzing divergences from baseline isotopic values in claws of resident cougars would clarify the extent to which seasonal changes in diet or climatic conditions may alter isotopic basemaps. Such analyses would provide an estimate of uncertainty in discrimination factor that could be incorporated in further analyses. Further variations because of the change in daily dispersal distance over time (e.g., Stoner et al. 2008) were minimized by considering a mean dispersal speed adjusted to the season during which the cougar dispersed over the five months preceding its death. Our work shows the value of using local isotope information to provide more localized and year-specific isoscapes than those that are averaged over larger temporal and spatial scales (e.g. Bowen, Wassenaar, & Hobson 2005). The intelligent use of both local (ground-truthed) and large-scale (predicted) isoscapes is likely to yield the most benefit in future forensic studies of this nature.

We believe ours is an innovative approach to reconstruct the most likely dispersal route (and, if possible, origin) of individual carnivores with unknown history. However, we have no information about changes in dispersal speed and direction, or variations in diet of studied individuals, although constant isotopic measurements in the claw would suggest the use of a consistent home range (Beier 1995). Many of the dispersal corridors considered in our analyses are the shortest least-cost routes of dispersal across the Midwest considering habitat factors and ecological requirements for cougars (LaRue & Nielsen 2008). However, a previous satellite tracking of a female cougar showed several changes in directions during dispersal (Stoner et al. 2008). Our approach also showed that the studied cougars did not follow the shortest least-cost path between their known origin and mortality locations. In the case of long-distance dispersers, combining our approach with genetic analyses may permit identification of the source of origin and narrow the set of potential routes. Furthermore, considering additional routes to suitable patches within hundreds of km of the mortality location (e.g., Ω\textsubscript{W1} for the Chicago cougar) may help identify dispersal corridors in habitats apparently unsuitable for cougars and provide basic information on their dispersal strategies. Moreover, by integrating information from the two isoscapes, the dual-isotope approach may enhance the delineation of the most likely dispersal route around the location of mortality (Figures 4c and d; e.g., Royle & Rubenstein 2004). We stress that modeling cumulative probabilities of traveling along each path is expected to reduce the impact of unknown movements.

World-wide, accelerating human development and spread over the landscape lead to the degradation and fragmentation of habitat and dispersal corridors of large carnivores with, as consequences, increased human-caused mortality and poor dispersal success (Schwartz & Franzmann 1992; Smith 1993; Wydeven et al. 1998; Sweanor, Logan, & Hornocker 2000). Identifying and protecting habitat corridors between favorable patches is essential to improve dispersal success and increase connectivity among subpopulations. Our method could be applied to investigations of dispersal paths of other large carnivores, and we encourage managers to consider the use of stable isotope techniques to develop integrated, adaptive conservation strategies for carnivores. Because the claw tissue is metabolically inert after synthesis, claws collected several years ago from road-killed or hunted large carnivores are still useful for isotopic analyses, and have the potential to determine the origin of short-distance dispersers and delimit preferred dispersal routes of any reported dead individual. We believe our approach is applicable to other metabolically inert, continuously growing, keratinous tissues (e.g., hair, horn, baleen) of other species of interest, providing that individuals move across known isotopically structured landscapes. Insights about the most likely migration corridors may help identify critical geographical areas for monitoring and guide future conservation efforts. We recommend
wildlife biologists develop large-scale isocapes based on sedentary prey species and primary consumed tissues such as muscle, as these prove to be valuable tools in isotopic tracking of long-distance migration for large carnivores. In addition, the small-scale precision of our regional isotopic basemaps offers a significant opportunity in wildlife forensics to investigate the source of illegally taken game. Finally, the investigation of tissues of captive animals raised on known isotopic diets will assist with refining the diet-tissue isotopic discrimination values so valuable to these sorts of movement reconstructions.

Acknowledgments — We thank Patricia Freeman, Thomas Labeled, Sam Wilson, the Nebraska State Museum, and Cook County (IL) Animal Control for providing the cougar claws. Cody Adams, David Otis, and the Nebraska Game and Parks Commission provided deer lymph nodes from Nebraska, Steve Griffin and South Dakota Game, Fish and Parks provided deer lymph nodes from the Black Hills, South Dakota. Blanca Mora Alvarez and Mitch Reineke assisted with preparation of samples for isotope analyses. Steve Van Wilgenburg obtained samples from the Saskatoon cougar and Len Wassenaar performed δ3δ measurements at the National Water Research Institute in Saskatoon, Canada. δ13C measurements were performed by Myles Stocki at the Department of Soil Science Laboratory, University of Saskatchewan, Canada. This research was supported by Hatch Act funds through the University of Nebraska Agricultural Research Division, Lincoln, Nebraska.

References

Wisconsin Department of Natural Resources, April 29, 2008. Milton Cougar was the same as Chicago Cougar; accessed May 2010 from http://dnr.wi.gov/org/land/er/mammals/cougar/milton_cougar_timeline.htm.

Supporting Information

Figure S1. Stable hydrogen (δD) and carbon (δ^{13}C) isotopic values along two claws of the Saskatoon cougar – 41 mm long (white) and 49 mm long (black).
Figure S2. Stable hydrogen and carbon isotopic values measured in claw samples and expected along each dispersal corridor. For each cougar, we determined the expected stable isotopic values along each corridor Ω_i (lines) by adding the cougar-specific discrimination factor to isotopic values extracted from the regional δD and δ¹³C isoscapes (for the Gretna and Valentine cougars) or large-scale δD isoscape (for the Chicago and Saskatoon cougars). We considered a mean speed of 3 km/day (which corresponds to a mean distance of 5 km integrated per 1% of claw) for the Valentine and Chicago cougars, and 5 km/day (7.5 km/% of claw) for the Gretna and Saskatoon cougars. For each cougar, δD_{claw} at i = 1.0 corresponds to the mean δD_{claw} in samples i ≥ 0.85 (proximal part of the claw). The unexpectedly low measurements in the tip and the root samples of the Chicago cougar were not considered in the analysis and are not shown on this graph (see text for details). Note variations in y-axis values among graphs.