Economically Relevant Traits and Selection Indices

Matt Spangler
University of Nebraska-Lincoln, mspangler2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/rangebeefcowsymp

Part of the Meat Science Commons

https://digitalcommons.unl.edu/rangebeefcowsymp/363

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Range Beef Cow Symposium by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Economically Relevant Traits and Selection Indices

Fundamentals

- $P = G + E$
- Phenotype = Mean + BV + Environment
- There is more than one trait that impacts the profitability of your herd!

How To Begin?

- What are my breeding/marketing goals?
- What traits directly impact the profitability of my enterprise?
- Are there environmental constraints?

Value Discovery of Added Information

- Many ERTs are not currently evaluated nor collected routinely in the seedstock sector
- However, they drive value downstream
- Reproduction phenotypes (longevity)
- Disease (pulls, treatments, mortality)
- "Routine" carcass data
- Plant value—primal yield, dark cutters, blood splash, etc.

Indicator Traits

- Traits that are genetically correlated to an ERT
- Why use indicator traits?
 - Measured earlier in life
 - Cheaper/easier to measure
 - Measured on both sexes
 - Coheritability > heritability of ERT

Economically Relevant Traits

- Traits that are directly associated with a revenue stream or a cost
- Examples
 - BWT vs CE
 - REA vs YG
 - YWT vs CWT
 - MWT vs DMI
 - RFI vs FI

2015 Range Beef Cow Symposium, Loveland, Colo.
Breed table factor \(A_i \) to add to the EPD for bull of breed \(i \):

\[
A_i = \frac{M_i - M_{Ang}}{b} - \left[\text{EPD}(i)_{\text{USMARC}} - \text{EPD}(Angus)_{\text{YY}} \right]
\]

\(M_i \) is the weighted average of 2012 EPD of bulls of breed \(i \) having descendants with records at USMARC

\(A_i \) is the coefficient of regression of progeny performance at USMARC on EPD sire

\(b \) is the pooled coefficient of regression of progeny performance at USMARC on EPD sire

\(i \) denotes sire breed

Adapted from Kuehn et al., 2015.

TABLE 1: ADJUSTMENT FACTORS TO ADD TO EPD OF EIGHTEEN DIFFERENT BREEDS TO ESTIMATE AVOID BREED 90%

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>+3.6</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60.0</td>
<td>-4.8</td>
<td>50.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td>-9.5</td>
<td>63.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.0</td>
<td>+3.6</td>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{USMARC}(i) \) is solution for effects of sire breed \(i \) from analysis of USMARC data

\(\text{EPD}(i)_{\text{YY}} \) is the average within-breed 2012 EPD for breed \(i \) for animals born in the base year YY (which is two years before the update)

\(\text{EPD}(i)_{\text{USMARC}} \) is the weighted average of 2012 EPD of bulls of breed \(i \) having descendants with records at USMARC

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Angus</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hereford</td>
<td>1.1</td>
<td>+3.6</td>
<td>-4.8</td>
<td>-9.5</td>
</tr>
<tr>
<td>Red Angus</td>
<td>-21.6</td>
<td>-4.7</td>
<td>-9.5</td>
<td>+3.6</td>
</tr>
<tr>
<td>Black</td>
<td>-26.7</td>
<td>-4.6</td>
<td>-8.9</td>
<td>+4.6</td>
</tr>
<tr>
<td>South Devon</td>
<td>-21.0</td>
<td>-4.5</td>
<td>-8.9</td>
<td>+4.6</td>
</tr>
<tr>
<td>Jersey</td>
<td>-23.4</td>
<td>-4.4</td>
<td>-7.7</td>
<td>+3.4</td>
</tr>
<tr>
<td>Simmental</td>
<td>-25.0</td>
<td>-4.8</td>
<td>-10.8</td>
<td>-3.8</td>
</tr>
<tr>
<td>Simmental</td>
<td>-26.2</td>
<td>-5.0</td>
<td>-12.5</td>
<td>-2.5</td>
</tr>
<tr>
<td>Simmental</td>
<td>-27.3</td>
<td>-5.2</td>
<td>-12.9</td>
<td>-0.9</td>
</tr>
<tr>
<td>Simmental</td>
<td>-27.7</td>
<td>-5.0</td>
<td>-12.7</td>
<td>-1.1</td>
</tr>
<tr>
<td>Simmental</td>
<td>-28.0</td>
<td>-5.0</td>
<td>-12.3</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.3</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.5</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.6</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.8</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.0</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.1</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.3</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.5</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.7</td>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>

Problem...

- Correctly accommodating the differences in models used by various beef breed associations
- For CE All breeds use a multi-trait model fitting BWT but some use a linear-linear and some use a threshold-linear
- Some breeds combine categories
- Mean incidence of difficulty (e.g. 50%, 80%, etc.)

Example

- Calf survival
- Male fertility
- Disease susceptibility
- Calving ease direct
- Growth rate
- Feed efficiency
- Carcass quality/composition

Terminal Sires—Traits of Importance

- Female fertility
- Maternal calving ease
- Maintenance requirements
- Longevity
- Maternal weaning weight (Milk)
- Disease susceptibility
- Adaptation
- Temperament

Maternal Traits of Importance
*Tandem Selection
*Independent Culling Levels
*Selection Indices

*Methods of Multiple Trait Selection

—I = a₁ x EPD₁ + a₂ x EPD₂ + aₙ x EPDₙ
*Where a = index weight and n = number of traits

*Economic Index

—*[Dam Weight*Lean Value of Dam + No. Progeny*Progeny Weight*Lean Value of Progeny] - [Dam Feed*Value of Feed for Dam + No. Progeny*Progeny Feed*Value of Feed for Progeny].

*By simply increasing number of progeny per dam through either selection, heterosis from crossing, or better management, we will increase efficiency of production.

*Simulation Framework
*Stochastic Model
*Allows for random variation in multiple traits
*Variation based on fluctuation in historical data
*Simulated base herd
*Multiple iterations

—Economic values from simulation

*Terminal or Maternal?

Terminal
• B, S, SG (Angus)
• TI (Simmental)
• CHBS (Hereford)
• MTL (Limousin)
• EPI and FPI (Gelbvieh)
• Charolais
• GridMaster (Red Angus)

Maternal
• W, EN (Angus)
• API (Simmental)
• BMS, BIS, CEZS (Hereford)
• HerdBuilder (Red Angus)
• Cow (Gelbvieh)
*Profitability per exposure
*HerdBuilder
*Bull A 134
*Bull B 110
*30 cows/yr. over 4 yrs. = 120 exposures
*120 exposures X (134-110) =
*$2,880 profit difference
*If you follow the assumptions of the index!

*Improvement in current indices can be made by increasing the number of ERT that have EPD
*Input traits
*Fertility
*Enterprise level profitability should move closer to industry level profitability
*Example: What is the direct economic benefit for a producer to improve tenderness?

*Establish production goals
*Use economic indices that fit your desired breeding objectives
*Do not make sire selection more cumbersome than it needs to be

*Know your costs
*Select on PROFIT not just revenue
*Multiple trait selection is critical and could become more cumbersome
*Economic indexes help alleviate this
*Use index values that meet your breeding objective

*http://beef.unl.edu
*www.beefefficiency.org
*www.nbcec.org
*www.eBEEF.org

*Helpful Resources