Economically Relevant Traits and Selection Indices

Matt Spangler

University of Nebraska - Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/rangebeefcowsymp

http://digitalcommons.unl.edu/rangebeefcowsymp/363
ECONOMICALLY RELEVANT TRAITS AND SELECTION INDICES

Matt Spangler
University of Nebraska-Lincoln

*P=G+E
*Phenotype = Mean + BV + Environment
*There is more than one trait that impacts the profitability of your herd!

How To Begin?

What are my breeding/marketing goals?
What traits directly impact the profitability of my enterprise?
Are there environmental constraints?

Value Discovery of Added Information

Many ERTs are not currently evaluated nor collected routinely in the seedstock sector
However, they drive value downstream
Reproduction phenotypes (longevity)
Disease (pulps, treatments, mortality)
“Routine” carcass data
Plant value—primal yield, dark cutters, blood splash, etc.

Indicators Traits

Traits that are genetically correlated to an ERT
Why use indicator traits?
Measured earlier in life
Cheaper/easier to measure
Measured on both sexes
Coheritability > heritability of ERT
Breeding table factor (A_i) to add to the EPD for bull of breed i:

$$M_i = \text{USMARC}(i)/b + [\text{EPD}(i)_{YY} - \text{EPD}(\text{Angus})_{YY}]$$

$A_i = (M_i - M_{\text{Angus}}) - (\text{EPD}(i)_{YY} - \text{EPD(\text{Angus})}_{YY})$

USMARC(i) is solution for effects of sire breed i from analysis of USMARC data

EPD(i)$_{YY}$ is the average within-breed 2012 EPD for breed i for animals born in the base year YY (which is two years before the update)

$\text{EPD}(i)_\text{USMARC}$ is the weighted average of 2012 EPD of bulls of breed i having descendants with records at USMARC

b is the pooled coefficient of regression of progeny performance at USMARC on EPD sire

i denotes sire breed i

Adapted from Kuehn et al., 2015.
*Tandem Selection

*Independent Culling Levels

*Selection Indices

*Methods of Multiple Trait Selection

INDEPENDENT CULLING LEVELS

CED = 2.1 WW = 43 MM = 18 SC = 0.9 IMF = 0.04

<table>
<thead>
<tr>
<th>CED</th>
<th>WW</th>
<th>MM</th>
<th>SC</th>
<th>IMF</th>
<th>SBMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>55</td>
<td>20</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>50</td>
<td>25</td>
<td>1.2</td>
<td>-0.10</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>45</td>
<td>20</td>
<td>1.0</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>1.6</td>
<td>62</td>
<td>19</td>
<td>1.0</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Moser, 2005

* [Dam Weight*Lean Value of Dam + No. Progeny*Progeny Weight*Lean Value of Progeny] - [Dam Feed*Value of Feed for Dam + No. Progeny*Progeny Feed*Value of Feed for Progeny].

By simply increasing number of progeny per dam through either selection, heterosis from crossing, or better management, we will increase efficiency of production.

Economic Index

I = a₁ x EPD₁ + a₂ x EPD₂ + aₙ x EPDₙ

Where a = index weight and n = number of traits

*Economic values from simulation

Simulation Framework

*Stochastic Model

*Allows for random variation in multiple traits

*Variation based on fluctuation in historical data

*Simulated base herd

*Multiple iterations

Terminal or Maternal?

Terminal

• SB, $F, $G (Angus)
• TI (Simmental)
• CHB$ (Hereford)
• MTI (Limousin)
• EPI and FPI (Gelbvieh)
• Charolais
• GridMaster (Red Angus)

Maternal

• $W, $EN (Angus)
• API (Simmental)
• BM$, BI$, CEZ$ (Hereford)
• HerdBuilder (Red Angus)
• $Cow (Gelbvieh)
*Profitability per exposure
*HerdBuilder
*Bull A 134
*Bull B 110
*30 cows/yr. over 4 yrs. = 120 exposures
*120 exposures X (134-110) =
*$2,880 profit difference
*If you follow the assumptions of the index!

*Example

*Improvement in current indices can be made by increasing the number of ERT that have EPD
*Input traits
*Fertility
*Enterprise level profitability should move closer to industry level profitability
*Example: What is the direct economic benefit for a producer to improve tenderness?

*Establish production goals
*Use economic indices that fit your desired breeding objectives
*Do not make sire selection more cumbersome than it needs to be

*Summary

*Know your costs
*Select on PROFIT not just revenue
*Multiple trait selection is critical and could become more cumbersome
*Economic indexes help alleviate this
*Use index values that meet your breeding objective

*Summary

*http://beef.unl.edu
*www.beefefficiency.org
*www.nbcec.org
*www.eBEEF.org

*Helpful Resources