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We present here results that strongly support the use of MERIS-based NIR-red algorithms as standard tools
for estimating chlorophyll-a (chl-a) concentration in turbid productive waters. The study was carried out
as one of the steps in testing the potential of the universal applicability of previously developed NIR-red al-
gorithms, which were earlier calibrated using a limited set of MERIS imagery and in situ data from the Azov
Sea and the Taganrog Bay, Russia, and data that were synthetically generated using a radiative transfer model.
We used an extensive set of MERIS imagery and in situ data collected over a period of three years in the Azov
Sea and the Taganrog Bay for this validation task. We found that the two-band and three-band NIR-red algo-
rithms gave consistently highly accurate estimates of chl-a concentration, with a mean absolute error of
4.32 mg m−3 and 4.71 mg m−3, respectively, and a root mean square error as low as 5.92 mg m−3, for
data with chl-a concentrations ranging from 1.09 mg m−3 to 107.82 mg m−3. This obviates the need for
case-specific reparameterization of the algorithms, as long as the specific absorption coefficient of phyto-
plankton in the water does not change drastically, and presents a strong case for the use of NIR-red algo-
rithms as standard algorithms that can be routinely applied for near-real-time quantitative monitoring of
chl-a concentration in the Azov Sea and the Taganrog Bay, and potentially elsewhere, which will be a real
boon to ecologists, natural resource managers and environmental decision-makers.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The dire environmental importance of regularly monitoring the
biophysical status of estuarine and coastal waters is well established
(e.g., Carmichael, 1997; Revenga & Kura, 2003). The concentration of
chlorophyll-a (chl-a) – a photosynthetically active pigment in phyto-
plankton – in water is a key indicator of the biophysical status of a
water body (e.g., Falkowski & Raven, 1997; Falkowski et al., 2000;
Honeywill et al., 2002; Schalles et al., 1998). Compared to open
ocean waters, most estuarine and coastal waters are optically com-
plex due to the high concentrations of suspended sediments and col-
ored dissolved organic matter (CDOM) in addition to phytoplankton
(Morel & Prieur, 1977), which complicates the estimation of chl-a
concentration (e.g., Carder et al., 2004; Dall'Olmo et al., 2005;
Darecki & Stramski, 2004; Gitelson, 1992; Gons, 1999). Nevertheless,
several algorithms that use reflectances in the red and near infrared
(NIR) regions have been developed and shown to yield accurate esti-
mates of chl-a concentration in turbid productive estuarine and

coastal waters (e.g., Dall'Olmo & Gitelson, 2005; Dekker, 1993;
Gitelson, 1992; Gitelson & Kondratyev, 1991; Gitelson et al., 2011a;
Gons, 1999; Gower et al., 1999; Gurlin et al., 2011; Han &
Rundquist, 1997; Le et al., 2009; Moses et al., 2009a, 2009b;
Ruddick et al., 2001; Stumpf & Tyler, 1988; Vasilkov & Kopelevich,
1982; Yang et al., 2010). The parameters of most of these algorithms
were empirically set by comparing remotely sensed data with in situ
measured data from a particular geographical and/or seasonal regime
and their validity is often confined to that geographical and/or sea-
sonal regime. This often entails reparameterization of the algorithms
for different water bodies. The need for reparameterization is a mea-
sure of the ability or the lack thereof of the algorithms to handle var-
iations in the biophysical characteristics of turbid productive waters
across various geographical and/or seasonal regimes. In addition, for
applications involving airborne or spaceborne remotely sensed data,
the lack of a robust atmospheric correction program that performs
consistently well will also contribute to the need for reparameteriza-
tion. However, for effective near-real-time quantitative remote mon-
itoring of chl-a concentration, it is necessary that the algorithms be
fully operational without the need for reparameterization.

Moses et al. (2009b), using a limited dataset, demonstrated that
two-band and three-band NIR-red algorithms can yield accurate esti-
mates of chl-a concentration in the Azov Sea and the Taganrog Bay
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using remotely sensed reflectance data from MERIS (MEdium Resolu-
tion Imaging Spectrometer). They showed that the parameters of the
algorithms set based on the limited MERIS dataset from the Azov Sea
and the Taganrog Bay closely matched the parameters of the NIR-red
algorithms developed based on an extensive dataset collected using
field spectrometers in several turbid productive lakes in Nebraska,
USA (Gitelson et al., 2009, 2011a; Gurlin et al., 2011). Moses (2009)
found that the NIR-red algorithms did not need to be reparameterized
for limited datasets from the Chesapeake Bay and Lake Kinneret, Isra-
el. Yacobi et al. (2011) also reached a similar conclusion when using
the NIR-red algorithms for estimating chl-a concentration in Lake
Kinneret. Gilerson et al. (2010) showed that the NIR-red algorithms
based on the limited dataset from the Azov Sea and the Taganrog
Bay gave accurate estimates of chl-a concentration when applied to
a large number of synthetically generated reflectance spectra, and de-
veloped advanced versions of the NIR-red algorithms. Gilerson et al.
(2010) also showed that the slope parameter of the NIR-red algo-
rithms is affected by the specific absorption coefficient of phytoplank-
ton (aph*). These results form the basis for our continued attempts to
test the limits of the potential of NIR-red algorithms to be routinely
applied in an operational manner to estimate chl-a concentrations
from near-real-time satellite data from turbid productive waters
from around the globe without the need for case-specific reparame-
terization of the algorithms.

In this study, we have applied NIR-red algorithms calibrated pre-
viously using a limited set of satellite data from the Azov Sea and
the Taganrog Bay (Moses et al., 2009b), and also advanced versions
of NIR-red algorithms developed using synthetically generated data
(Gilerson et al., 2010), to an extensive dataset collected from the
Azov Sea and Taganrog Bay over a period of three years. It is notewor-
thy that these NIR-red algorithms are based on the spectral channels
of MERIS. We have compared the estimation accuracy of the NIR-red
algorithms with that of the standard MERIS chl-a product for Case II
waters. The accuracy yielded by the MERIS-based algorithms was fur-
ther evaluated by comparison with data from a single image from the
spaceborne hyperspectral sensor, HICO (Hyperspectral Imager for the
Coastal Ocean). If the MERIS-based NIR-red algorithms are found to
yield consistently highly accurate estimates of chl-a concentration
for this extensive dataset, a strong case can be made for using these
algorithms in tandem with MERIS data in an operational manner for
quantitative near-real-time monitoring of the Azov Sea and the Ta-
ganrog Bay, which will be a valuable asset to ecologists, natural re-
source managers and environmental decision-makers of this region.
Such an outcome will provide impetus for similar studies on other
turbid productive water bodies around the world, which will involve
observing the variations in aph* among water bodies and analyzing
the sensitivity of the NIR-red algorithms to variations in aph*.

2. Data and methods

The Azov Sea is a shallow inland sea adjoined by Ukraine on the
west and Russia on the east (Fig. 1). The Taganrog Bay is on the north-
eastern part of the Azov Sea. The Azov Sea is connected to the Black
Sea through the Kerch Strait. However, the Azov Sea gets most of its
water input from the runoff from the Don River, the Kuban River,
and several smaller rivers. The sea is very shallow, with a maximum
depth of only 9 m (Borysova et al., 2005). The fresh water inflow
from fluvial runoff comprises more than 10% of the volume of water
in the sea (Matishov, 2005). Thus, the water quality of the Azov Sea
is heavily influenced by the fluvial runoff. The watershed area of the
Azov Sea basin has undergone tremendous industrialization in the
last couple of decades, and consequently, the fluvial runoff into the
Azov Sea is replete with industrial effluents (Matishov, 2005). The in-
creased influx of terrigenous nutrients has produced significant eu-
trophication in the Azov Sea. This has contributed to drastic changes
in the ecosystem, resulting in tremendous loss of fish population,

which has hurt the local economy (Leppäkoski et al., 2009). Efforts
have been undertaken in recent years to implement an integrated
watershed management plan to monitor and regulate the water qual-
ity in the Azov Sea.

In situ data were collected during 18 campaigns on the Azov Sea
and the Taganrog Bay between the months of March and October
over a period of three years, from 2008 to 2010, by the crew at the
Southern Scientific Center of the Russian Academy of Sciences,
Rostov-on-Don, Russia. Water samples collected at each station
were filtered throughWhatman GF/F glass filters. Chl-awas extracted
from the filters with hot ethanol and its concentration was quantified
spectrophotometrically based on the method described by Jeffrey and
Humphrey (1975).

Full resolution (260 m×290 m) level-2 MERIS images acquired on
the date of in situ data collection were available for most dates. In a
few cases when a MERIS image was not available for the date of in
situ data collection, images acquired up to two days before or after
the date of in situ data collection were used. The level-2 MERIS images
were already atmospherically corrected by the European Space Agen-
cy's automatic data processing system. The pixels corresponding to
the stations from the 18 campaigns were all identified as sediment-
loaded case 2 water pixels and subjected to the Bright Pixel Atmo-
spheric Correction procedure (Aiken & Moore, 2000; Moore et al.,
1999).

MERIS-based NIR-red algorithms that were previously calibrated
using a limited dataset from the Azov Sea and Taganrog Bay (Moses
et al., 2009b) were,

Two-band MERIS NIR-red algorithm:

Chl�a ¼ 61:324½R−1
665 � R708�−37:94 ð1Þ

Three-band MERIS NIR-red algorithm:

Chl�a ¼ 232:29 R−1
665−R−1

708

� �
� R753

h i
þ 23:174 ð2Þ

where Rx is the remote sensing reflectance in the spectral band centered
at x nm. These two-band and three-band algorithms are henceforth re-
ferred to as 2009NR02 and 2009NR03, respectively, in this paper.

Using reflectances generated synthetically by the radiative trans-
fer model, Hydrolight (Mobley, 1989, 1994; Mobley & Sundman,
2008), Gilerson et al. (2010) reformulated the two-band and three-
band NIR-red models in terms of the absorption and scattering coeffi-
cients of the constituents, namely, water, phytoplankton, non-algal
particles, and CDOM. They investigated the sensitivity of the NIR-
red models to variations in the absorption and scattering coefficients
of the constituents and concluded that, (i) the absorption coefficient

Taganrog Bay

Black Sea

N

Kilometers

0                          125 250

Fig. 1. Map of the Azov Sea and the surrounding region (modified from http://
commons.wikimedia.org).
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of water (aw) is the most influential factor, (ii) the chl-a specific ab-
sorption coefficient of phytoplankton (aph*) affects the slope of the
relationship between the model values and chl-a concentrations,
and (iii) the NIR-red models are not very sensitive to variations in
the absorption by CDOM and back-scattering by non-algal particles.
Using values taken from the literature for (aw) and determining aph*
from a large set of synthetic and actually measured data, Gilerson et
al. (2010) formulated advanced versions of the two-band and three-
band NIR-red algorithms as follows:

Advanced two-band MERIS NIR-red algorithm:

Chl�a ¼ 35:75� R−1
665 � R708

� �
−19:3

h i1:124 ð3Þ

Advanced three-band MERIS NIR-red algorithm:

Chl�a ¼ 113:36� R−1
665−R−1

708

� �
� R753

n o
þ 16:45

h i1:124 ð4Þ

These advanced two-band and three-band NIR-red algorithms are
henceforth referred to as AdvNR02 and AdvNR03, respectively, in this
paper.

3. Results and discussion

Atmospherically corrected remote sensing reflectances were
extracted from the MERIS images for all stations in the in situ dataset.
Out of all the stations where in situ data were collected, the stations
that met the following criteria (Moses et al., 2009b) were selected
for analysis.

(i) The station is at least at a two-pixel distance from the
shoreline.

(ii) The station is on a cloud/haze-free pixel in an image acquired
within two days before/after the date of in situ data collection.

(iii) The atmospheric correction procedure did not produce reflec-
tance spectrum with negative reflectances beyond 443 nm.

(iv) The reflectance spectrum is neither spurious nor inconsistent
in its spectral shape with the observed in situ data.

Pixels with negative reflectances beyond 443 nm were less com-
mon compared to those with positive reflectances and seemed to
occur mostly on images with significant cloud cover. Pixels with spu-
rious reflectances were also almost always associated with images
with significant cloud cover or cloudy neighboring pixels. An individ-
ual reflectance spectrum was deemed inconsistent in its spectral
shape (in the red and NIR regions) with the observed in situ data
only after comparison with several reflectance spectra from stations
having similar constituent concentrations. An example of such an in-
consistent spectrum has been previously illustrated (see Fig. 1 in
Moses et al., 2009b). Such inconsistent spectra could be due to (i)
an actual change in the chl-a concentration in water between the
time of in situ data collection and satellite data acquisition, (ii) high
spatial heterogeneity of the water, which results in the point in situ
measurement being not representative of the area covered by the sat-
ellite pixel around the station, or (iii) inaccurate atmospheric correc-
tion. In any case, such inconsistent spectra are difficult and virtually
impossible to identify without the aid of actual field data or reliable
knowledge of the field conditions, and thus they pose inherent hur-
dles to calibrating and validating satellite-based algorithms than can
be applied operationally without the aid of field data. Nevertheless,
such inconsistent spectra comprised only about 10% of the whole
dataset.

113 stations met the aforementioned criteria. The minimum,
maximum, median, and mean values of in situ measured chl-a
concentration for these 113 stations were, 1.09, 107.82, 22.39, and
31.74 mg m−3, respectively.

3.1. Estimation of chl-a concentration

The NIR-red algorithms, 2009NR02 (Eq. 1), 2009NR03 (Eq. 2),
AdvNR02 (Eq. 3), and AdvNR03 (Eq. 4) were applied to remote sens-
ing reflectances from the 113 stations, and the estimated chl-a con-
centrations were compared with the chl-a concentrations measured
in situ. All four algorithms yielded remarkably accurate estimates of
chl-a concentration (Figs. 2 and 3), with very low magnitudes of
the root mean square error (RMSE) and the mean absolute error
(MAE). AdvNR02 had the lowest MAE of 4.32 mg m−3. AdvNR03
had a slightly higher MAE. AdvNR02 and AdvNR03 had virtually the
same RMSE. 2009NR02 and 2009NR03 had slightly higher RMSEs
and MAEs compared with AdvNR02 and AdvNR03 but were still
quite low.

The NIR-red algorithms performed much better than the standard
neural-network-based algorithm, algal_2 (Doerffer & Schiller, 2007;
Schiller & Doerffer, 1999), used for estimating chl-a concentration in
case II waters from MERIS data (Fig. 4). The chl-a concentrations re-
trieved from algal_2 were severely underestimated, especially at
chl-a concentrations above 50 mg m−3, which is not surprising con-
sidering the fact that the neural network was trained for only chl-a
concentrations below 50 mg m−3 (Doerffer & Schiller, 2007; Schiller
& Doerffer, 1999).

As demonstrated by Gilerson et al. (2010), the slope of the rela-
tionship between the NIR-red model values and chl-a concentrations
is affected by aph*. The remarkable consistency of the NIR-red algo-
rithms across data collected over a period of three years with a
wide range of chl-a concentrations suggests that aph* had not chan-
ged significantly in the Azov Sea and Taganrog Bay during this
three-year period, and it further demonstrates the potential of these
algorithms to be used as tools for near-real-time quantitative moni-
toring of chl-a concentration in the Azov Sea and Taganrog Bay.
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Fig. 2. Comparisons of chl-a concentrations measured in situ with chl-a concentrations
estimated by (a) the two-band NIR-red algorithm, 2009NR02 (Eq. 1) and (b) the three-
band NIR-red algorithm, 2009NR03 (Eq. 2), which were previously calibrated using a
limited dataset from the Azov Sea and the Taganrog Bay (Moses et al., 2009b).
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Fig. 5 contains chl-a maps produced using the 2009NR02 algo-
rithm for the Azov Sea and Taganrog Bay for 03 Sep 2008 and 02
Oct 2008. The spatial variation of chl-a concentration within the

area for each date and the temporal variation between the two
dates are captured well by the algorithm. As expected, the chl-a con-
centration is significantly lower on 02 Oct 2008 than on 03 Sep 2008,
especially in the Taganrog Bay region, due to the lower water temper-
ature caused by the approaching winter.

3.2. Comparison with hyperspectral data

HICO is a spaceborne hyperspectral sensor designed specially for
studying the coastal systems (Korwan et al., 2010; Lucke et al.,
2011). The sensor operates within the spectral range of 350–
1080 nm, with contiguous spectral channels at 5.73 nm spectral reso-
lution (Lucke et al., 2011). Gitelson et al. (2011b) used data from a
HICO image acquired on 13 July 2010 to estimate chl-a concentrations
in eight stations in the Azov Sea and Taganrog Bay where in situ data
were collected during 13–15 July 2010. They took advantage of the
fine-resolution hyperspectral data to spectrally tune the NIR-red al-
gorithms and determined that the optimal spectral bands for the
three-band model were located at λ1=684 nm, λ2=700 nm, and
λ3=720 nm. The NIR-red model with these optimal spectral bands
was able to explain more than 85% of the variation in chl-a concentra-
tion at the eight stations (Gitelson et al., 2011b). Of these eight sta-
tions, valid MERIS reflectances were available for four stations. For
these four stations, the MERIS-based NIR-red models had as close a
relationship with chl-a concentration as did the optimized HICO-
based NIR-red model (Fig. 6). The HICO-based two-band NIR-red
model values were derived using HICO bands that were closest to
the MERIS bands. The determination coefficient for linear regression
was 0.98 for the MERIS-based two-band and three-band models com-
pared with 0.91 and 0.92, respectively, for the HICO-based two-band
and three-band NIR-red models. The differences between the slopes
of the linear regression for the MERIS-based and HICO-based NIR-
red models is a function of various factors, chief of which is the differ-
ence in the retrieval of at-surface reflectances. MERIS data were at-
mospherically corrected using the Bright Pixel Atmospheric
Correction, whereas HICO data were atmospherically corrected
using ATREM (ATmospheric REMoval; Gao & Davis, 1997).

Though a dataset with just four stations is too limited to permit a
comprehensive conclusion, the excellent performance of the MERIS-
based NIR-red models on a par with the HICO-based NIR-red models
still demonstrates the sufficiency of MERIS-based NIR-red models for
reliably and accurately estimating chl-a concentration in turbid pro-
ductive waters. MERIS spectral channels centered at 665 nm,
708 nm, and 753 nm, with spectral resolutions of 10 nm, 10 nm, and
7.5 nm, respectively, seem adequate for reliable quantitative estima-
tion of chl-a concentration in turbid productive waters.

Even though finer spectral resolution might be desirable for more
optically complex waters, narrower spectral bands come at the cost of
low signal-to-noise ratio (SNR) because each detector would receive
fewer photons due to the narrower width of the spectral band.
Lower SNR produces a significant detrimental effect on the accuracy
of chl-a retrieval (e.g. Moses et al., 2012). Levin et al. (2005) found
that when noise issues are considered, a sensor with 28 channels
yields a retrieval accuracy that is similar to or even slightly better
than that of a 54-channel sensor with half the spectral resolution.

4. Conclusion

The results present a strong case for using the MERIS-based NIR-
red algorithms as standard tools for estimating chl-a concentration
in the Azov Sea and the Taganrog Bay region, without the need for
reparameterization of the algorithms. This will be a great asset for
near-real-time remote monitoring of this ecologically sensitive
region.

The spectral locations and resolutions of the NIR and red channels
of MERIS seem adequate enough to capture the spectral variations in
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Fig. 3. Comparisons of chl-a concentrations measured in situ with chl-a concentrations
estimated by advanced versions (Gilerson et al., 2010) of (a) the two-band NIR-red al-
gorithm, AdvNR02 (Eq. 3) and (b) the three-band NIR-red algorithm, AdvNR03 (Eq. 4).
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Fig. 4. Comparison of chl-a concentrations measured in situ with chl-a concentrations
estimated by the standard MERIS chl-a algorithm (algal_2) (a) for the whole range of
chl-a concentrations and (b) for chl-a below 50 mg m−3.
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reflectance from optically complex turbid productive waters due to
changes in chl-a concentration. At least for the range of chl-a concen-
trations encountered herein, having hyperspectral fine-resolution
data does not lead to any noticeable improvement of the accuracy
of chl-a estimation. This is not to imply that hyperspectral data do
not provide any advantage over multispectral data for remotely
studying the inland, estuarine, and coastal waters. Kutser (2004),
for example, used a bio-optical modeling approach with hyperspec-
tral Hyperion data to successfully map the chl-a concentrations in
the Gulf of Finland, and illustrated the benefits of using hyperspectral
data with high spatial and spectral resolutions. However, algorithms,
such as the NIR-red algorithms, which operate on two or three select
wavelengths, are not inherently designed to take advantage of the
hyperspectral fine-resolution data. For such algorithms, data from
sensors such as MERIS with well-positioned spectral channels of rea-
sonably good spectral resolution prove quite sufficient. Hyperspectral
optimal estimation approaches that make use of reflectances in the
entire 400–750 nm range for estimating constituent concentrations
are best suited to take full advantage of the fine-resolution hyper-
spectral data. It is conceivable that hyperspectral-based optimal esti-
mation approaches can yield similar or perhaps even better

accuracies of chl-a estimation in optically complex waters compared
to the accuracy provided by the MERIS-based NIR-red algorithms.
However, such optimal estimation algorithms are still under develop-
ment and are not fully operational yet.

Meanwhile, MERIS-based two-band and three-band NIR-red
algorithms have proven highly reliable for estimating chl-a concen-
tration in turbid productive waters. However, as noted in previous
publications (e.g. Moses et al., 2009a, 2009b), challenges in satellite-
based remote estimation of chl-a concentration still remain, chief of
which are the within-pixel spatial heterogeneity of water, the effects
of atmospheric contribution to the radiance recorded at the sensor,
and data quality issues that are inherent to the sensor. It is essential
that spurious data resulting from factors such as those mentioned
above, especially the residual effects of imperfect atmospheric correc-
tion, which can be significant and can cause misleading results, be
removed prior to applying the NIR-red algorithms. Nevertheless, the
algorithms have so far yielded consistently accurate estimates of
chl-a concentration when applied to an extensive set of MERIS data
from the Azov Sea and the Taganrog Bay, field spectrometer data
from the Chesapeake Bay, Lake Kinneret, and several lakes in
Nebraska, and a large dataset of synthetically generated reflectance

NNN

(a)

NNN

(b)

Fig. 5. Chl-a maps generated using the two-band MERIS NIR-red algorithm, 2009NR02 (Eq. 1), for the Azov Sea and Taganrog Bay for (a) 03 Sep 2008 and (b) 02 Oct 2008. In ad-
dition to the spatial variation of chl-a concentration on each date, the maps also illustrate the temporal variations.
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data, without the need for reparameterization (Gilerson et al., 2010;
Gitelson et al., 2011a; Gurlin et al., 2011; Yacobi et al., 2011).

It has to be emphasized that the consistent performance of the
NIR-red algorithms is dependent on a lack of drastic change in aph*.
Moreover, the NIR-red algorithms are inherently meant for turbid
productive waters with chl-a concentrations generally above
5 mg m−3. As such, they cannot be expected to perform with similar-
ly consistent accuracies for waters with low chl-a concentrations, say
b5 mg m−3, where the change in aph* may be drastic (Gilerson et al.,
2010).

Nevertheless, the results presented here strongly support the use
of MERIS-based two-band and three-band NIR-red algorithms in a
routinely operational manner for estimating chl-a concentration in
turbid productive waters where aph* does not vary drastically. More
extensive work needs to be done on waters from various geographic
locations to analyze the variation of aph* and the sensitivity of the
NIR-red algorithms to the variations in aph* in order to fully under-
stand and quantify the limits of the potential universal applicability
of the NIR-red algorithms.
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Fig. 6. Comparison between the MERIS-based and the HICO-based NIR-red models for
estimating chl-a concentration using the (a) two-band and (b) three-band NIR-red
models.
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