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Abstract

Continuous, high-resolution d18O records from cored sediments of Pyramid Lake, Nevada, indicate that oscillations in the
hydrologic balance occurred, on average, about every 150 years (yr) during the past 7630 calendar years (cal yr). The records are not
stationary; during the past 2740 yr, drought durations ranged from 20 to 100 yr and intervals between droughts ranged from 80 to

230 yr. Comparison of tree-ring-based reconstructions of climate change for the past 1200 yr from the Sierra Nevada and the El
Malpais region of northwest New Mexico indicates that severe droughts associated with Anasazi withdrawal from Chaco Canyon at
820 cal yr BP (calendar years before present) and final abandonment of Chaco Canyon, Mesa Verde, and the Kayenta area at

650 cal yr BP may have impacted much of the western United States.During the middle Holocene (informally defined in this paper as
extending from 8000 to 3000 cal yr BP), magnetic susceptibility values of sediments deposited in Pyramid Lake’s deep basin were
much larger than late–Holocene (3000–0 cal yr BP) values, indicating the presence of a shallow lake. In addition, the mean d18O
value of CaCO3 precipitated between 6500 and 3430 cal yr BP was 1.6m less than the mean value of CaCO3 precipitated after
2740 cal yr BP. Numerical calculations indicate that the shift in the d18O baseline probably resulted from a transition to a wetter
(>30%) and cooler (3–51C) climate. The existence of a relatively dry and warm middle-Holocene climate in the Truckee River–
Pyramid Lake system is generally consistent with archeological, sedimentological, chemical, physical, and biological records from

various sites within the Great Basin of the western United States. Two high-resolution Holocene-climate records are now available
from the Pyramid and Owens lake basins which suggest that the Holocene was characterized by five climatic intervals. TIC and d18O
records from Owens Lake indicate that the first interval in the early Holocene (11,600–10,000 cal yr BP) was characterized by a

drying trend that was interrupted by a brief (200 yr) wet oscillation centered at 10,300 cal yr BP. This was followed by a second early-
Holocene interval (10,000–8000 cal yr BP) during which relatively wet conditions prevailed. During the early part of the middle
Holocene (8000–6500 cal yr BP), high-amplitude oscillations in TIC in Owens Lake and d18O in Pyramid Lake indicate the presence

of shallow lakes in both basins. During the latter part of the middle Holocene (6500–3800 cal yr BP), drought conditions dominated,
Owens Lake desiccated, and Lake Tahoe ceased spilling to the Truckee River, causing Pyramid Lake to decline. At the beginning of
the late Holocene (B3000 cal yr BP), Lake Tahoe rose to its sill level and Pyramid Lake increased in volume. r 2002 Elsevier
Science Ltd. All rights reserved.

1. Introduction

From the perspective of the Greenland ice-core
records, the onset of the Holocene occurred
B11,600 cal yr BP with the termination of the Younger
Dryas cold interval (Alley, 2000). Within North
America, the Holocene has generally been assigned a
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tripartite structure with the middle Holocene being
generally warmer or drier than the early and late
Holocene. Because climate does not evolve synchro-
nously throughout North America, the boundaries
between the three intervals differ from region to region.
For the purposes of this paper, the middle Holocene is
considered to have occurred within the Great Basin
between approximately 8000 and 3000 cal yr BP.
In this paper we use the word drought in a variety of

ways. For the historical period (the last 100 yr), drought
indicates times when water shortage adversely affected
human populations. For the late Holocene (the last
3000 yr), drought in the Truckee River–Pyramid Lake
surface–water system indicates times of persistent lake-
size decline. And for the middle Holocene, drought
signifies times when Lake Tahoe did not overflow.
During the 1930s, severe drought impacted the

western and mid-continental United States (Hecht,
1983; Woodhouse and Overpeck, 1998), generating
great concern regarding the frequency and duration of
such events. In the Sierra Nevada and the Great Basin of
the arid West, climate records were extended by dating
stumps of submerged trees that had taken root during
drier times (Harding, 1935; Lawrence and Lawrence,
1961; Harding, 1965) and by using tree-ring widths to
reconstruct records of prehistoric river discharge (Hard-
man and Reil, 1936). Droughts have reoccurred since
the late 1930s but it was not until the late 1980s and
early 1990s that prolonged drought once again affected
the Sierra Nevada, as evidenced by hydrologic closure of
Lake Tahoe and persistent below-average discharge of
the Truckee River (Fig. 1).
Seven years of drought within an 8-yr period (1987–

1994) (Fig. 1) spawned renewed interest in the history

and prehistory of such events. Recent tree-ring recon-
structions, employing sophisticated statistical calibra-
tions, have extended Sierra Nevada and Great Basin
precipitation and discharge records back more than a
1000 yr (Graumlich, 1993; Hughes and Funkhouser,
1998; Meko et al., 1999) and AMS 14C studies of stumps
from Sierran lakes have highlighted severe droughts that
terminated about 840 and 600 cal yr BP (Stine 1990,
1994).
During the 1930s drought, Harding observed 11

rooted stumps which had been exposed by receding
water along the south shore of Lake Tahoe. Harding
(1965) later reported 14C ages of two of these stumps
rooted at elevations B9 cm below that of the natural sill
of Lake Tahoe (1896.8m). One stump yielded dates of
42507200 and 47907200 14C yrBP, and the other
stump yielded a date of 44607250 14C yrBP. Harding
(1965) was not able to determine if the submerged
stumps were the result of drier climate or tectonics,
stating that ‘‘ythe age of these stumps is sufficiently
long to include time enough for climate changes and
orographic movement’’. In a later section of this paper
we show that d18O and magnetic susceptibility data
from Pyramid Lake sediments indicate that Lake Tahoe
remained below its overflow level during much of the
middle Holocene.
Between 1989 and 1992, Lindstr .oom (1990) located 20

more stumps along the south side of Lake Tahoe. Some
of the stumps reach depths as much as 4m below sill
level, and 14C ages from 14 of the stumps range from
5510790 to 42407200 14C yrBP (6290–4840 cal yr BP)
(Fig. 2).
There are additional indicators of climate change that

point toward a relatively dry middle Holocene in the
Great Basin. Thompson (1992) showed that between
7660 and 5450 cal yr BP sedimentation rates in the Ruby
Marshes of western Nevada decreased by a factor of
three, relative to the late Holocene, indicating either a
lowered deposition rate or sediment deflation. In either
case, the data suggest a drier middle-Holocene. More
recently, Grayson (2000), using a well-dated small
mammal sequence from Homestead Cave, Utah, has
shown that faunas underwent a decrease in species
richness in the middle Holocene in response to more
xeric conditions. For example, the decreasing abun-
dance of harvest mice between 9200 and B3500 ca-
l yr BP indicates a much drier climate than during the
early and late Holocene (Grayson, 2000). Farther south
in the Great Basin, black mats, formed by spring
discharge to wet meadows and shallow ponds, are
absent from 7250 to 2500 cal yr BP, also indicating a
period of relative aridity (Quade et al., 1998).
Data from lakes fed by Sierran streams also provide

evidence of middle-Holocene dryness. The onset of a
generally drier climate in the Owens Lake basin,
characterized by abrupt oscillations in TIC and d18O,

Fig. 1. Annual discharge of the Truckee River at Farad, California,

and monthly elevation of Lake Tahoe at Tahoe City, California, since

1900. Only minor consumptive losses of Truckee River water occur

upstream of the Farad gage (Fig. 5). Solid areas in top panel indicate

times that Lake Tahoe did not overflow to the Truckee River. Solid

areas in lower panel indicate times when flow of the Truckee was less

than the historical mean-annual rate of 0.70 km3 yr�1. Note that most

minima in lake level correspond to minima in discharge rates.
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began at 7700 cal yr BP and ended B3200 cal yr BP
(Fig. 3). A sediment hiatus between 6480 and 3930 cal
yr BP suggests that that the lake had desiccated or was
below the elevation of the core site during this time
(Benson et al., 1997, 2001). It is possible that deflation
removed sediment from the lakebed after the lake
desiccated, implying that the age of the sediment on
the bottom of the hiatus represents a maximum
estimation of the beginning of the desiccation. On the
other hand, it is also possible that a thick salt formed
over the lakebed in this part of the basin as it has in the
historical period, preventing sediment deflation. Data
from a sediment core taken from Walker Lake, Nevada,
indicate that it desiccated at or before 5030 cal yr BP
(assuming a 300-yr reservoir effect, Benson et al., 1991).
A warmer middle Holocene has also been inferred

from various climate indicators. In the Sheep Mountain
area located on the east slope of the White Mountains of
California, tree-line elevations were relatively high
between >5700 and 4100 cal yr BP. The tree line fell
100m between 4100 and 3500 cal yr BP, implying a 11C
decrease in warm-season temperatures (La Marche,
1973). Tree line fell another 70m B900 cal yr BP,
indicating an additional 0.71C decrease in air tempera-
ture. Grayson (1993) has shown that pikas, which
cannot bear the heat of desert environments, disap-
peared from low-elevation sites throughout the Great
Basin B7850 cal yr BP. Montane species of plants are

common in middens from the eastern Great Basin
before B7400 cal yr BP, whereas younger assemblages
are dominated by plant species that point to a rise in
summer temperatures, perhaps coupled with an increase
in summer rainfall (Thompson, 1990).
Middle-Holocene aridity also appears to have affected

indigenous populations. Textile dates from archeologi-
cal sites located in the western Great Basin suggest that
few people inhabited rock shelters between 10,000 and
2500 cal yr BP (Fig. 4). Distributions of this type, with a
characteristically low middle-Holocene site occupation,
are common in the Great Basin (Grayson, 1993, 2000).
The various climate indicators show that Great Basin

middle-Holocene climate was characterized by warmer
summers and aridity. However, the timing of the
middle-Holocene warm/dry period appears to vary with
site location and with the type of climate indicator, a
subject we will return to later. We also hasten to point
out that the middle Holocene was not always dry. There
is evidence for wet periods during the middle Holocene
from the Lahontan basin, the Mono Lake basin, and
from Diamond Pond. Kramer Cave is part of the Falcon
Hill archeologic site located at the northwestern edge of
the Winnemucca Lake basin. Ten radiocarbon
dates ranging from 39007100 to 3620730 14C yr BP

Fig. 2. Age–depth relationships of radiocarbon-dated tree stumps

located at or below the natural (sediment) sill level of Lake Tahoe,

California. Most of the data were taken from Lindstr .oom (1990). Three

samples from Baldwin Beach (42507200 14C yrBP, 1896.41m, Beta

56632), and Trout Creek delta (4480760 14C yrBP, 1895.82m, Beta

90208; 4590760 14C yrBP, 1895.52m, Beta 90207) were previously

unpublished. Note that the death of a stump as indicated by the 14C

age of its outer rings pinpoints the timing of a rise in Lake Tahoe; e.g.,

a rising lake at B6290 cal yrBP killed the oldest stump.

Fig. 3. TIC and d18O records from Owens Lake core OL84B since

11,600 cal yrBP and d18O and magnetic susceptibility records from

Pyramid Lake since 7630 cal yr BP. Data used in the construction of

the Owens Lake records were taken from Benson et al. (2001). The

data sets indicate that the Holocene of the western Great Basin can be

divided into five distinct climatic intervals.

L. Benson et al. / Quaternary Science Reviews 21 (2002) 659–682 661



(B4320–3920 cal yr BP) were obtained on artifacts
recovered from the deposits (Long and Rippeteau,
1974). Included within the deposits were fish vertebrae
(cui-ui and cutthroat trout) and the remains of western
pond turtles, indicating that the Winnemucca Lake
basin held water at this time (Hattori, 1982). Spikes in
cattail pollen found in Hidden Cave between 3800 and
3600 14C yrBP (4160–3880 cal yr BP) (Wigand and
Mehringer, 1985) may attest to the presence of nearby
marshes and deepening of lakes in the Lahontan Basin’s
Carson Sink at this time (Grayson, 1993). There is also
an increase in the number of archeological textiles
between 4500 and 3500 cal yr BP in the western Great
Basin, suggesting an increase in indigenous populations
(Fig. 4). Evidence for an extremely wet period in the
Mono Lake basin also occurs at this time (the
Dechambeau Ranch highstand, B3770 cal yr BP) (Stine,
1990a, b). In addition, Diamond Pond in southeastern
Oregon experienced a sharp increase in aquatic plant
seeds between 3720 and 3480 14C yrBP (4010 and
3700 cal yr BP) (Wigand, 1987).

2. The Truckee River–Pyramid Lake system

In this paper we discuss a 7630-yr record of climate
change from Pyramid Lake Nevada. Pyramid Lake was
selected as a study site for several reasons:

2.1. Pyramid Lake is part of a relatively simple
hydrologic system

The Truckee River (watershed area=7050 km2) re-
presents the principal input of water to Pyramid Lake
(Fig. 5). Cold-season precipitation falling in the Sierra
Nevada is released to the Truckee River surface–water
system as snowmelt in the spring and early summer.
Approximately 32% of Truckee River flow reaching the
Farad gage in eastern California emanates from Lake
Tahoe and 38% of Truckee River flow reaching the
Farad gage passes through small-capacity reservoirs.
The remaining 30% of the flow enters the river as
overland flow (Benson, 1994a, b). Above Farad the
Truckee River is largely unaffected by diversion and
downstream contributions of water are small. Ground-
water input to Pyramid Lake is negligible and prior to
1918 overflow to Winnemucca Lake occurred fre-
quently.
In 1906, Derby Dam located 53 km upstream of

Pyramid Lake was completed. Since that time an
average of 54% of Truckee River flow has been diverted

Fig. 4. Histogram of dates on archaeological textiles from the western

Great Basin (from data base compiled by Susan McCabe and Eugene

Hattori). Multiple dates on samples from a single time horizon have

been eliminated.

Fig. 5. Location map of the Lake Tahoe and Truckee River–Pyramid

Lake surface–water system. Greater than 90% of the Truckee River

input to Pyramid Lake occurs above the Farad, California, gage. Since

1906, diversion of B54% of the flow of the Truckee River has

occurred via the Derby Dam.

L. Benson et al. / Quaternary Science Reviews 21 (2002) 659–682662



from the Truckee River basin causing the level of
Pyramid Lake to rapidly decline (Fig. 6). Because of the
drop in lake level Pyramid Lake has not overflowed to
the Winnemucca Lake basin since 1917; it has remained
hydrologically closed for the past 83 yr. Hydrologic
modeling of the Truckee River–Pyramid Lake surface–
water system indicates, however, that Pyramid Lake
would not have fallen more than 3.5m below its spill
elevation (1177m) during the past 100 yr if water had
not been diverted from the Truckee River system
(Fig. 7).

2.2. Information on change in the hydrologic balance of
Pyramid Lake is transferable to rivers that drain both
flanks of the northern Sierra Nevada

Annual discharges of rivers that head in the Sierra
Nevada correlate because they derive their water from
the same snow pack (Table 1) (Fig. 8). This correlation
weakens, however, as the north–south distance between
rivers increases, indicating the presence of a climatic
gradient. This gradient is due to two processes: the cold-
season precipitation regime (winter cyclones) exhibits a
seasonal southward progression whose latitudinal extent
differs from year to year (Pyke, 1972), and precipitation
during ENSO years exerts a stronger and more
consistent influence on the southern Sierra Nevada
(Redmond and Koch, 1991; Cayan et al., 1999; McCabe
and Dettinger, 1999).

If changes in Truckee River discharge can be
estimated for the Holocene, such changes can be linked
to discharges of rivers that drain both the east and west
slopes of the northern Sierra Nevada. A study of
variation in the size of Pyramid Lake is pertinent
because volume fluctuations of Pyramid Lake are
related to Truckee River discharge (Fig. 9).

Fig. 6. Elevation of Pyramid and Winnemucca lakes since 1844.

Diversions from the Truckee River began about 1860 and were

accelerated after the completion of the Derby Dam and Truckee Canal

in 1906. As a result of the diversions, Winnemucca Lake, which

frequently received spill from Pyramid Lake, desiccated in B1938.

Pyramid has not overflowed since 1917.

Fig. 7. Reconstruction of the pristine elevation of Pyramid Lake since

1910. Annual values of Truckee River discharge for the Farad,

California, gage (Fig. 5), together with an evaporation rate of 1.20m

and on-lake precipitation rate of 0.18m, were used in the reconstruc-

tion.

Table 1

Correlation statistics for annual discharges of rivers that head in the

Sierra Nevada (Fig. 8). Correlations have been made between

individual rivers and the Yuba River. Discharge data were taken from

rivers having upstream sites with minimal diversion. Truckee River

discharges at the Farad site were corrected for reservoir storage and

evaporation; discharges from Tahoe City were subtracted from the

corrected discharges. The coefficient of determination (R2) and

residual mean square of the correlation between the Yuba and

uncorrected Truckee River discharges are 0.60 and 0.54

River pair Coefficient of

determination

Residual

mean square

Western flank of Sierra Nevada

Yuba :Yuba 1.00 0.00

Yuba :American 0.91 0.13

Yuba : Stanislaus 0.91 0.11

Yuba : Tuolomne 0.86 0.21

Yuba :Merced 0.86 0.21

Yuba :Kern 0.67 0.49

Eastern flank of Sierra Nevada

Yuba : Truckee 0.87 0.18

Yuba : Carson 0.91 0.09

Yuba :Walker 0.87 0.13

L. Benson et al. / Quaternary Science Reviews 21 (2002) 659–682 663



Three processes comprise the hydrologic balance of
Pyramid Lake: Truckee River discharge, evaporation,
and on-lake precipitation. Annual values of evaporation
(mean=1.21myr�1) do not exhibit much variability in
the Pyramid Lake area (s ¼ 0:11m, Table 2) because the
evaporation season is characterized by a near absence of
cloud cover. The variability of on-lake precipitation, in
absolute terms, is even smaller (s ¼ 0:07m, Table 2).
When compared to discharge variability (s ¼ 0:55m),
evaporation and precipitation variability contribute
only B15% and B10% of the total variance, demon-
strating why fluctuations in the size of Pyramid Lake
strongly reflect river discharge. Thus a record of change
in the volume of Pyramid Lake should be useful in
estimating changes in wetness that affect regions located
on both sides of the Sierra Nevada.

2.3. Pyramid Lake is the deepest lake in the Great Basin
and sediments accumulate at a rapid rate

Today (January 2001), Pyramid Lake has a depth of
109m and it would be 14m deeper if it were not for
irrigation demands. Most Great Basin lakes are
shallower than Pyramid Lake (Table 3), making them

more susceptible to desiccation and deflation during
severe drought. Because of their shallow nature, many
of these lakes experience reworking of material from
shallow- to deep-water sites.

In order to resolve changes in the hydrologic balance
at a sub-decadal scale, sediments must accumulate
rapidly. As discussed in a later section of this paper,
the sedimentation rate of deep-water Pyramid Lake
sediments has ranged from B0.12 to B0.23 cm yr�1

Fig. 8. Surface drainage of streams emanating from the Sierra

Nevada, California and Nevada. Streams flowing east terminate in

Great Basin lakes and sinks; streams flowing west become part of

either the Sacramento or San Joaquin River systems which terminate

in San Francisco Bay, California. The crest of the Sierra Nevada is

shown as a dashed–dotted line. In the spring and early summer, winter

snows, which accumulate along the Sierran crest, melt, feeding rivers

located on both flanks of the Sierras.

Fig. 9. Comparison of the volume of Pyramid Lake (mostly monthly

values) with annual values of discharge of the Truckee River measured

at the Nixon, Nevada, gage (Fig. 5). Note that increases in discharge

result in abrupt decreases in the volume of Pyramid Lake.

Table 2

Hydrologic-balance statistics for Pyramid Lake, Nevada. Pyramid

Lake evaporation was calculated using measured or estimated values

of discharge at Nixon, measured values of precipitation, and the

measured surface areas of Pyramid Lake at the beginning and end of

the water year. Evaporation from a class-A pan from a site 50 km east

of Pyramid Lake (Fallon, Nevada) is given to better assess evaporation

variability. On-lake precipitation was estimated using measured data

from Nixon, Sutcliffe, Wadsworth, and Reno, Nevada. Truckee River

discharge for the Nixon site was estimated for the period 1916–1957

from correlations of annual discharge between the Nixon gage and a

gage located below the Derby Dam (Fig. 5) for the period 1958–1996

(US Geological Survey, 1960, 1961–1997, 1963). The coefficient of

determination (R2) of the correlation is 0.998 and the residual mean

square is 0.00066. The depth of discharge to Pyramid Lake was

determined by dividing its the mean annual value of uncorrected

discharge at the Farad gage (0.70 km3) by the surface area at the

overflow elevation (680 km2)

Parameter Period of

record

Statistics

(myr�1)

Pyramid Lake evaporation 1932–1966 1.2170.11

Pan evaporation (Fallon, Nevada) 1957–1992 0.8970.08

On-lake precipitation 1900–1997 0.1870.07

Truckee River discharge 1916–1996 1.0470.55

L. Benson et al. / Quaternary Science Reviews 21 (2002) 659–682664



during the past 7630 cal yr, permitting a sampling
integration of 1–8 yr.

3. Coring and age control

To obtain a multi-millennial record of drought
frequency for the northern Sierra Nevada and bordering
regions, a 5.35-m piston core (PLC97-1) was taken from
the deep basin of Pyramid Lake in 1997 (Fig. 10).
Because sediments in the trigger core (PCL97-1T) were
disturbed during shipping, a 0.59-m box core (PLB98-2)
was taken from the deepest part (107m) of Pyramid
Lake in 1998. A 6.34m piston core (PLC98-4) was also
taken from the deep basin in order to recover older
Holocene-age sediments. In 1999, surface sediments
were sampled at 13 sites located along a transect
between the deep basin and the western shore of
Pyramid Lake (Fig. 10).
Age control for PLB98-2 was provided using mea-

sured profiles of 137Cs and Hg. The onset of measurable
137Cs was used to associate a depth of 16.0 cm with 1952
AD (Fig. 11) and the first peak in 137Cs was used to
associate a depth of 22.2 cm with 1964 AD. In the same
manner, Hg analyses of digested sediment samples were
used to associate a sharp rise in Hg concentration at
42.5 cm with B1860 AD (Alan Heyvaert, personal
communication). Mining in the Comstock/Virginia City
area began in 1859AD and was well underway by 1860
AD with both smelting and Hg amalgamation processes
established in the Washoe Lake area that drains to the
Truckee River (Smith, 1998). Four depth-age associa-
tions were used to establish an age model for PLB98-2
sediments (Fig. 12).
Age control for PLC97-1 was established by compar-

ing its paleomagnetic secular variation (PSV) record
with a well-dated western United States archeomagnetic
record (Lund, 1996). We consider the PLC97-1 age
model (Fig. 13) (Table 4) accurate to within 50–100 yr.
Modern materials from Pyramid Lake have been found
to exhibit a 600-yr reservoir effect (Broecker and

Walton, 1959). Radiocarbon ages on the total organic
carbon (TOC) fraction of six samples from PLC97-1
were also found to be about 600 yr older than their PSV-
based 14C ages (Fig. 14) (Table 5), suggesting that the
600-yr reservoir effect may have persisted throughout
the Holocene.
Radiocarbon determinations were performed on the

TOC fraction of 30 samples from PLC98-4 (Table 6).
The data, plotted as a function of depth, exhibit a great
deal of scatter (Fig. 15). We assume that scatter off the
line drawn in Fig. 15 indicates reworking and transport
of organic carbon from older sediments that border the
sides of Pyramid Lake basin. This is consistent with the
enhanced reworking of older shoreline sediments to the
center of a shallow early middle-Holocene lake (see
below). We do not know the value of the reservoir effect
in Pyramid Lake during the middle Holocene; therefore,

Table 3

Depths (historical ranges) of some lakes in the Great Basin. The

deepest values generally indicate depths measured on or about 1900

before substantial river diversions occurred

Lake Depth (m)

Pyramid Lake 99–123

Walker Lake 30–75

Mono Lake 37–51

Winnemucca Lake 0–26

Great Salt Lake 6–13

Owens Lake 0–7

Abert Lake 0–6

Ruby Lake 0–5

Summer Lake 0–2

Fig. 10. Coring sites, Pyramid Lake, Nevada. Water depths are

>100m at the sites of the piston and box cores (PLC97-1, PLC98-4,

PLB98-2). PLS samples are sediment-water interface samples taken

along a transect starting in the deep basin of Pyramid Lake and ending

at Pelican Point. The inner dashed line indicates the area that Pyramid

Lake achieved during overflow to the Winnemucca Lake basin.
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for the PLC98-4 age model we have assumed it to be
identical to the late Holocene value. After subtracting a
reservoir value of 600 yr and converting the 14C data to
calendar years, we fit a polynomial to four samples that
we assume to have suffered the least amount of organic
carbon contamination (Fig. 16).

4. Reworking and bioturbation of sediments

Although the data are few in number, 14C ages of
sediments that form the sides of the Pyramid Lake basin

Fig. 11. 137Cs values for boxcore PLB98-2 (data were obtained by

Jack Dibb, University of New Hampshire).

Fig. 12. Calendar-year depth model for PLB98-2.

Fig. 13. Calendar-year depth model for PLC97-1. Individual inclina-

tion and declination features in paleomagnetic secular variation (PSV)

record for PLC97-1 were correlated with similar features from a well-

dated composite archeomagnetic (ARCMAG) PSV record from the

western USA. PSV feature calendar-year ages from the ARCMAG

record were assigned to the same features in PLC97-1.

Table 4

PSV-based calendar ages and their 14C age equivalents for PLC97-1.

Conversion from calendar to 14C ages done using Table 1 in Stuiver

et al. (1998)

Depth (m) PSV age

(103 yrBP)

PSV error

(103 yrBP)

14C age

(103 BP)

0.10 0.230 0.020 0.105

0.60 0.600 0.025 0.600

0.65 0.625 0.025 0.613

0.80 0.750 0.025 0.862

0.95 0.875 0.025 0.897

1.20 0.900 0.025 0.933

1.60 1.075 0.025 1.186

1.90 1.150 0.025 1.205

2.10 1.275 0.050 1.324

2.70 1.550 0.050 1.666

2.75 1.600 0.075 1.698

3.25 1.850 0.050 1.888

3.80 2.142 0.100 2.140

3.95 2.158 0.100 2.190

4.80 2.426 0.125 2.400

5.10 2.741 0.125 2.570
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tend to decrease with depth (Fig. 17). Modern sediments
that remain uncontaminated with older materials have
not been commonly encountered at elevations above
B1075m (B20m above the base of the deep basin).
Erosion and reworking/resuspension of older sediments
from the sides of the basin is thus thought responsible
for the depth–age distribution of surface sediments. In a

Fig. 14. Radiocarbon ages of TOC samples (solid line), pollen samples

(dotted line), and PSV features (dashed line) versus depth in PLC97-1.

Calendar ages of PSV features were converted to 14C ages using Table

1 in Stuiver et al. (1998).

Table 5

Radiocarbon ages of TOC and pollen fractions from core PLC97-1.

Approximately 10,000 grains of pollen (primarily pine) were extracted

from each sample (Mensing and Southon, 1999)

Cams # Sample type Depth

(m)

14C age

(103 BP)

14C age error

(103 BP)

38464 TOC 0.10 0.92 0.05

38550 TOC 1.37 1.57 0.05

39750 TOC 2.46 2.14 0.05

39751 TOC 3.46 2.78 0.05

38465 TOC 4.39 2.81 0.04

39817 TOC 5.20 3.17 0.04

42276 Pollen 0.100 1.14 0.11

42288 Pollen 1.065 1.48 0.10

42279 Pollen 1.365 1.59 0.11

42282 Pollen 2.463 2.03 0.10

42291 Pollen 3.460 2.64 0.10

42294 Pollen 3.990 2.97 0.10

42297 Pollen 4.390 2.97 0.10

42300 Pollen 5.200 3.41 0.10

Table 6

Radiocarbon and calendar/calibrated ages for TOC fraction of

samples from PLC98-4. A reservoir correction of 600 yr was applied

to the 14C date before conversion to calendar years

Cams # Depth

(m)

14C Age

(103 BP)

14C age error

(103 BP)

Calendar age

good samples

Calendar age

best samples

55079 0.630 3.98 0.05 3.60 3.60

54967 0.770 4.18 0.04 3.85

54968 1.015 4.33 0.05 4.14

53001 1.070 4.39 0.04 4.16

53002 1.290 4.50 0.04 4.36

53003 1.540 4.85 0.04

53004 1.790 4.85 0.04 4.84

51321 1.940 4.90 0.04 4.86

53005 1.960 4.96 0.04 4.87

51322 2.170 5.04 0.04 4.89 4.89

51323 2.430 5.79 0.04

51006 2.470 5.87 0.05

51324 2.680 5.29 0.04 5.45

54963 2.940 5.66 0.05 5.78

54964 3.190 5.77 0.06 5.92

54965 3.420 5.88 0.05 6.08

54966 3.650 6.62 0.05

53007 3.960 6.27 0.05 6.43

53008 4.210 6.54 0.05

53009 4.530 6.29 0.04 6.48 6.48

53010 4.695 6.60 0.04 6.86

53011 5.025 7.23 0.05

51319 5.245 7.19 0.04

53012 5.275 7.45 0.04

53013 5.475 7.78 0.04

51320 5.495 8.19 0.04

53014 5.715 7.27 0.05

51360 5.755 7.27 0.04 7.57

51318 6.005 7.13 0.04 7.57

51315 6.260 7.68 0.05 7.46 7.46

Fig. 15. Radiocarbon ages of the TOC fraction of samples from

PLC98-4. The dashed line is assumed to represent samples that are not

contaminated by reworked organic carbon.
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study of Pyramid Lake surface sediments, Lebo et al.
(1993 ) showed that particulate carbon was concentrated
in the deepest areas of Pyramid Lake. In addition, Lebo

et al. (1993) showed that coarse particles (>24 mm) were
concentrated in shallow-water areas and fine particles
(o8 mm) were most abundant in deep waters. We
collected surface samples taken along a north–south
(deep-shallow) transect (Fig. 10) and found that both
the TOC and TIC fractions change with depth (Fig. 18).
The TOC percentage is small in water depthso80m but
in deeper waters its concentration increases sharply,
leveling off at depths >85m. We concur with Lebo et al.
(1993), that the concentration of particulate carbon and
TOC in deep-water sites is due to resuspension and
transport of fine sediments during winter/spring storm
events.
We found that the TIC percentage reached a

maximum at B65m depth (Fig. 18), suggesting that
reworking of detrital carbonates, partly derived from
tufa deposits that border the lake (Benson, 1994a), does
not contribute much material to deep-water sediments.
Grain size analyses of samples from 2.0 and 13.5 cm in

Fig. 16. Calendar-year depth model for PLC98-4 (solid line). A 600-yr

reservoir-effect value has been subtracted from the 14C ages prior to

conversion to calendar years. The four samples that were least

contaminated with organic carbon (indicated by large open circles)

were used to construct the age model discussed in the text. Samples

with minor amounts of contamination are indicated by small solid

dots.

Fig. 17. Radiocarbon ages of sediments forming the surface of the

Pyramid Lake basin. The three highest elevation sites were above water

at the time of their sampling. These sites, as well as cores PLC930811-2

and PLC930524-1, contained reworked material on top of undisturbed

sediments. Radiocarbon ages were determined on the TOC fraction

from the top of the undisturbed sediments.

Fig. 18. TOC, d13C, d18O, TIC, and magnetic susceptibility data for

surface sediment samples taken along the transect depicted in Fig. 10.

Numbers refer to locations along the transect. Solid lines indicate data

from the top cm of the samples; dashed lines indicate data from the

second cm.
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PLB98-2 indicate that the fine sand and silt fractions in
the deep basin were much higher in 19617 than in
19927, indicating more reworking of coarser material
to the deep basin when the lake was shallower (Fig. 6).
Additional evidence for reworking of older material

and its transport to deeper water comes from 14C ages of
pollen (mainly pine) extracted from PLC97-1. The
pollen dates are offset B650750 14C yr from the PSV
age model (Fig. 14, Table 5), indicating a contribution
of older reworked pollen, probably derived from the
sides of the lake basin. Assuming that pollen ages are
similar to the ages of the sediment from which they were
derived (Fig. 17), we can gain some idea of the
magnitude of reworking by calculating the amount of
‘‘old’’ pollen that would have to be added to the modern
pollen rain to yield the 650-yr offset. Contributions of
8.5%, 9.0%, and 11.0% of, respectively, 20,000, 15,000,
and 10,000 14C-yr-old reworked pollen to the modern
pollen rain would account for the age offset. We
conclude, therefore, that B10% of the fine-sediment
fraction reaching the deep basin of Pyramid Lake during
the late Holocene was derived from reworking of older
sediments from the sides of the basin.
Smear slides taken from cores PLC97-1 and PLC98-4

provide information about fine-grained sediments at
thicknesses of less than a millimeter. Preliminary
examination of smear slides indicate a significant
component of shallow-water attached diatoms (Gom-
phonema, sp., Acanthes sp., and Amphora sp.) (Galat
et al., 1981) within all sediment, indicating transport of
sediment away from shoreline areas. The fraction of
attached diatoms increases in layers with higher detrital
grain content, particularly in the lower part of PLC98-4.
Near the base of PLC98-4, layers of muddy sand that
grade to sandy mud suggest intermittent turbidite
deposition. This association is consistent with the
existence of a small shallow lake in which coarse
sediment is being transported to the core site.
The only layering in most of PLC97-1 and the lower

part of the trigger core (PLC97-1T) consists of 5–20 cm
thick bands of sediment which are either light or dark in
color. The light-colored layers are richer in carbonate
than the dark layers. The absence of finer laminations is
probably due to disturbance by burrowing organisms.
Sinuous, cylindrical, sediment-filled features lined with
dark sulfides are interpreted as burrows (Smoot and
Benson, 1998). The cylinders have diameters ranging
from 1 to 8mm. The length of any cylinder rarely
exceeds 3 cm, but sediment from an overlying layer has
been found in cylinders as much as 8 cm below its
source.
In the upper, water-rich parts of cores, contacts

between layers are very diffuse. X-radiographs indicate
that the contacts are riddled with horizontally and
vertically oriented cylindrical features, suggesting that
the diffuse contacts result from bioturbation. Presum-

ably, any internal stratification within a band experi-
enced a similar scale of mixing. Lower in the core, where
the sediment has undergone compaction, the contacts
are sharper and the layers are easily distinguishable.
Compaction, accompanying water loss, has squeezed the
bioturbated layers. As a consequence, mostly vertically
oriented burrows remain visible. The net effect of the
bioturbation is not complete homogenization but a
smoothing of sediment properties over thickness, ran-
ging from one to several centimeters.

5. Methods

The top 20 cm of the 59-cm box core (PLB98-2) was
sampled every 0.5 cm. The bottom 39 cm of the box core
and the entire length of the piston cores (PLC97-1 and
PLC98-4) were sampled every cm, except for segment #4
from PLC98-4 which was sampled every 2 cm between
2.78 and 3.76m. Samples from PLB98-2 integrated 1.0
to 7.4 yr; samples from PLC97-1 integrated 4.4 to 8.0 yr,
and samples from PLC98-4 integrated from 5.7 to 8.4 yr,
except samples from segment #4 which integrated from
10.5 to 14.7 yr. Prior to TIC and d18O analyses, each
sample was combined with deionized water, shaken and
centrifuged for 15min at 20,000 rpm using a Sorval
Superspeed RC2B.1 After centrifugation, the conductiv-
ity of the supernatant was measured and the supernatant
discarded. This procedure was repeated until the
conductivity of the supernatant was o3 times the
conductivity of Boulder, Colorado, tap water. The
sample was then freeze dried and homogenized with a
mortar and pestle. Isotopic analyses (d18O and d13C)
were made on the TIC fraction using a Kiel device
connected to a Finnigan MAT 251 mass spectrometer.
The s value of d18O measurement (16 analyses of the
same sample made at different times) was 0.22m. When a
d18O analysis differed byX0.2m from adjacent analyses,
the sample was rerun. When it was noted that d18O
values for PLC98-4 were, on average, distinctly lower
than values for PLC97-1, a procedure was instigated
whereby two samples from PLC97-1 were incorporated
into each set of PLC98-4 analyses. The average
difference (0.34m) between the PLC97-1 d18O values
obtained in 1997 and 1998 was then subtracted from the
PLC98-4 data sets.
TIC and total carbon (TC) were run using a UIC

Model 5012 carbon dioxide coulometer. TOC was
determined by difference. X-ray diffraction scans be-
tween 251 and 301 2y were done using a Siemens
Kristalloflex 805 (CuKa radiation) on samples taken
from about every 25 cm in core PLC97-1 and from
about every 50 cm in PLC98-4. Hg analyses were done

1Use of trade, product, or company name within this paper does not

constitute an endorsement by the US Government.

L. Benson et al. / Quaternary Science Reviews 21 (2002) 659–682 669



on three samples from the upper 24 cm of PLC97-1 by
cold-vapor atomic fluorescence spectrometry. The Hg
detection limit was 0.4 ng Hg g�1. Radiocarbon deter-
minations were made at the Center for Applied Mass
Spectrometry at the Lawrence Livermore National
Laboratory.
Long-core magnetic susceptibility measurements (2-

cm interval) were made of all piston and trigger cores
the same day they were collected. Several weeks to
months later, the cores were split and paleomagnetic
samples cubes (2� 2� 2 cm) were recovered every
2.5 cm from piston core PLC97-1. The natural remanent
magnetizations (NRM) and magnetic susceptibilities of
all samples were measured and selected samples were
demagnetized at 10, 20, 30, 40, 60, and 80mT
alternating-magnetic field. A weak viscous overprint
was routinely removed before 20mT demagnetization in
all samples and the remaining NRMs demagnetized
simply toward the origin. A paleomagnetic record of
field variability was estimated for PLC97-1 using the
NRMs of all samples demagnetized at 20mT. The
declinations were rotated by their average value so that
the average core declination was 01. The final paleo-
magnetic results were then compared with other well-
dated paleomagnetic records from the western United
States (Lund, 1996; unpublished data) and selected
paleomagnetic inclination and declination features were
correlated to them. Surface sediments (PLS series),
which had been previously freeze dried, were placed in
sample cubes and their sediment weights determined.
Magnetic susceptibility measurements were made and
normalized to sediment weight in order to facilitate
comparison.

6. Overlap of cores PLB98-2 and PLC97-1

In order to derive consistent age models for PLB98-2
and PLC97-1, their TC, d13C and d18O profiles were
examined. Two choices were evident: the top of PLC97-
1 could be placed at either 18 or 42 cm below the top of
PLB98-2 (Fig. 19). On the basis of the shapes of the TC
and d18O profiles, the 42-cm placement was preferred. In
order to test this choice, three samples from 3.5, 15.5,
and 23.5 cm below the top of PLC97-1 were freeze dried,
digested in a solution of aqua regia and HF acid, and
analyzed for Hg. The analyses yielded 11, 12, and 3 ng
Hg g�1 for the samples. The low values of Hg confirmed
the placement of the top of PLC97-1 at 42 cm in PLB98-
2. Placement higher in PLB98-2 would demand values of
Hg approaching 1.0 mg g�1; sediments deposited in the
higher interval should have occurred when Hg-amalga-
mated gold was being retorted in the Virginia City area
(see coring and age control section). The age of the top
of PLC97-1 was determined from its correlation with

PLB98-2. This date was then used in the PLC97-1 age
model (Fig. 13).

7. Hydrologic indicators

7.1. d18O

For a closed-basin lake at hydrologic steady state,

d18Olake ¼ d18Oin �18 aH2O ðlÞ2H2O ðvÞ;

where d18Olake is the steady-state d18O value of lake
water, d18Oin is the volume-weighted d18O value of
discharge and on-lake precipitation, and
18aH2O ðlÞ2H2O ðvÞ; is the fractionation factor between the
lake surface and water vapor. For the historical Truckee
River–Pyramid Lake system, the d18O values of
discharge and on-lake precipitation average B�11m
and the fractionation factor isB�13m (Benson, 1994b);
ground-water inputs are small. Therefore, at hydrologic
and isotopic steady states, d18Olake=B2m.
The value of d18Oin has not remained constant with

time. There are two principal sources of d18Oin to
Pyramid Lake: Sierran snowmelt and Lake Tahoe
overflow. The d18O value of Sierran snow is a function
of condensation air temperature. Dansgaard (1964) has
shown that, on a global basis, d18O in precipitation is
related to ground-level air temperature by B0.7m 1C�1.
During the past 70 yr, average winter air temperatures in
the Lake Tahoe area have increased by B21C (Western
Regional Climate Center historical summaries, http://
www.wrcc.dri.edu/). Such changes on longer time scales
occurred during the past 8000 cal yr (see discussion
below), causing variability in the d18O value of Sierran
snows.
Water in Lake Tahoe has a long residence time

(B235 yr). Evaporation from Lake Tahoe has resulted
in a d18O value (�5.6m) much larger than that of
snowmelt (�14.6m). Thus, during droughts when Lake

Fig. 19. Plot of TOC, d13C and d18O data from PLB98-2 (solid lines)

and the top of PLC97-1 (dashed lines) indicating overlap of cores.
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Tahoe ceases spilling, the d18O value of Truckee River
discharge decreases from B�11m to B�14.6m. The
input of �14.6m water to Pyramid lake causes its d18O
value to first increase as its volume decreases; however,
its steady-state value (�1.6m) is much smaller than when
the lake receives spill from Lake Tahoe.
Another factor affecting the d18O record is the

temperature of CaCO3 precipitation. For every 11C
increase in water temperature there is a corresponding
0.21m decrease in the d18O value of precipitated
aragonite (O’Neil et al., 1969).
The fractionation factor between lake water and

water vapor (18aH2OðlÞ2H2OðvÞ;) is a complicated function
of air temperature, water temperature, humidity over
the lake, wind speed, and the d18O value and humidity
of advected air that passes over the lake (Benson and
White, 1994). During the warm season when evapora-
tion rates are high, a closed-basin desert lake may be
assumed to create its own local climate; i.e., it generates
the humidity and d18O values in the air mass overlying
the lake surface. Under such conditions, variability in
the fractionation factor is mostly due to changes in
water temperature and amounts toB0.1m 1C�1 (Benson
and White, 1994).
In what follows, we tend to stress the response of d18O

to abrupt changes in the hydrologic balance of Pyramid
Lake. However, this is not the only process governing
the value of d18Olake; therefore, we will also present
calculations that seek to elucidate the effects of
temperature variability on the value of d18Oin and on
the fractionation factor between d18Olake and the
aragonite that precipitates from lake water.
Because climate changes on all time scales, hydrologic

and isotopic steady states are never fully achieved.
During a wet period, input of isotopically light river
water exceeds loss of isotopically-light evaporated
water. As the volume of a closed-basin lake increases,
d18Olake decreases; the faster the volume increase, the
greater the decrease in d18Olake. During a dry period,
d18Olake increases as the lake shrinks, reflecting the
dominance of evaporation on the hydrologic and
isotopic balances. When a lake overflows, the d18O
value of the overflowing lake water, at hydrologic
steady state, is proportional to the ratio of the spill
(Vspill) rate relative to lake volume(Vlake). This is
because the residence time of water in the spilling
lake decreases with increased rate of spill, lessening
the effect of evaporation on the 18O/16O ratio of the
spilling lake. The relationship between d18O and lake
volume cannot, therefore, be expressed as an equation
of state; i.e., a simple constant relationship between
lake volume and d18Olake does not exist. For example,
input of a unit volume of isotopically depleted river
water will cause a greater negative shift in d18Olake when
lake volumes are small rather than when lake volumes
are large.

In the Pyramid Lake basin, four processes can reduce
the amplitude of the recorded oscillations in d18O. When
Pyramid Lake overflows, part of the d18O-depleted
Truckee River discharge may flow directly into the
Winnemucca Lake basin instead of first mixing in the
epilimnion of Pyramid Lake. This will reduce the
magnitude of the decrease in d18O that occurs during
wet periods. In addition, natural driftwood rafts,
common along the Truckee during spring high-flow
periods, may in the past have blocked the Truckee
River, diverting part of its flow to Winnemucca Lake
(De Quille, 1889). During dry periods, when Pyramid
Lake is small, sediment focusing of older isotopically
depleted carbonates from shallow-water high-energy
environments into deep-water sites may shift sediment
d18O to more negative values. Also, bioturbation of
sediment can smooth the d18O record. All four processes
blunt the effectiveness of d18O as an indicator of the
absolute intensities of dry and wet periods but they do
not detract from its usefulness in determining durations
of climatic oscillations.

7.2. TIC

X-ray diffraction indicates that the TIC fraction is
predominantly composed of aragonite. TIC is a some-
what ‘‘fuzzy’’ indicator of lake-size changes; however,
TIC has been shown to reflect the transition from closed
to open conditions and can be useful in assessing abrupt
changes in the hydrologic balance of a lake (Benson
et al., 1996a,1997). Dissolved Ca2+ input to Pyramid
Lake via the Truckee River has a short residence time
within the lake, precipitating as aragonite (CaCO3). The
concentration of Ca2+ in the Truckee River is relatively
constant at all but its lowest discharges (Fig. 20),
indicating that the mass of Ca2+ input to Pyramid
Lake is a linear function of discharge. However, the
mass of siliciclastic material (suspended load) input to
Pyramid Lake by the Truckee River is most likely an
exponential function of discharge. Thus, the fraction of
TIC deposited in Pyramid Lake sediments should
decrease with increasing discharge (increasing lake size).
When Pyramid Lake overflows, a further reduction in
the fraction of TIC occurs because of the lowered
residence time of water in the Pyramid Lake basin. This
is because the saturation state of the lake (with respect
to CaCO3) decreases in proportion to the Vspill :Vlake

ratio, but clastics transported to Pyramid Lake will be
trapped within the lake basin.
The simple conceptual model of a decrease in TIC

with increasing wetness will not generally apply if the
distance between a core site and its sediment source
varies greatly over time. During a persistent lowstand,
greater amounts of clastic sediment carried by the
Truckee River will reach the Pyramid Lake deep-water
site, diluting the carbonate component. Persistent
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decreases in lake size will also lead to reworking and
transport of old (12,000–20,000 yr), TIC-poor (o0.7%),
basin-edge sediment to the deep-water site. We do,
however, expect TIC to parallel abrupt changes in d18O
brought about by rapid changes in lake size because
these changes occur at an ‘‘instant’’ in time and are
unaffected by persistent long-term changes in lake size.
During such instantaneous changes, the distance be-
tween sediment sources and the deep-water site remain
essentially the same.

7.3. Magnetic susceptibility

Magnetic susceptibility of surface sediment samples
decreases almost linearly with depth in Pyramid Lake,
leveling off at about 85m (Fig. 18). Visual observation
of the surface sediment indicates that most coarse-
grained sediment is trapped in shallow water (o70m
water depth) deposits and that only the finest-grained
silts and clays reach the deep basin. We assume that
most of the magnetic susceptibility resides in ferromag-
netic magnetite (the detrital magnetic mineral carrying
the NRM). Magnetic susceptibility of magnetite is quite
insensitive to changes in grain size, so that the
diminished susceptibility values in the deep basin must
be due to changes in detrital sediment composition with
increasing depth. Most magnetite, being denser than
average sediment, is preferentially retained in shallow-
water environments, whereas relatively non-magnetic
clays are preferentially focused into deep-water sites.
When lake-size decreases, distance between the shore

and the deep basin decreases and a greater proportion of
magnetite-rich sediment reaches the deep basin.

8. Numerical simulations of the effects of changes in

hydrologic balance on Pyramid Lake d18O

In order to assess the response of Pyramid Lake d18O
to changes in climate, a hydrologic-balance isotope
model was created. Variable inputs to the model consist
of the following: initial depth and d18O of Pyramid
Lake, annual Truckee River discharge volumes, the
d18O values and annual amounts of precipitation
received by Pyramid Lake, annual rates of evaporation
from Pyramid Lake, the d18O value of runoff (snowmelt)
in the Truckee River watershed, and the d18O value of
Lake Tahoe. Fixed inputs necessary for calculation of
the fractionation of 18O during evaporation include
monthly values of relative humidity, air temperature,
water temperature, and the d18O value and fraction of
advected air in the boundary layer over Pyramid Lake
(Benson and White, 1994). Measured values of wind
speed were used to set the value of the isotopic kinetic
fractionation factor used in the isotope model.
When Lake Tahoe was allowed to spill in model runs,

the d18O value of Truckee River discharge was
calculated by combining one part Lake Tahoe water
(having a d18O of –5.5m) with two parts of snowmelt
runoff (having a d18O of –14.5m). When Lake Tahoe
ceased overflowing, a d18O of –14.5m was used for
Truckee River discharge. The d18O value of monthly on-
lake precipitation was set to –10.0m and the initial d18O
value of Pyramid Lake water was set to 0.0m The model
was run with a monthly time step; mean monthly values
of the input data were distributed over the annual cycle
using historic data sets as guides. The depth of the
epilimnion was changed every month, consistent with
measured historical values. Mass and isotopic balances
were made over the fully mixed volume of the
epilimnion each month, and the lake was completely
mixed in January of each year.
After the inputs are read, the program (Benson and

Paillet, 2002) performs the following sequence of
calculations: For the first month,

1. Initial lake volume and surface area are calculated
from the initial depth.

2. Kinetic and equilibrium fractionation factors are
read in or computed.

3. Discharge and on-lake precipitation are added to the
lake.

4. Volume-weighted d18O values of discharge and
precipitation are combined with the volume-weighted
d18O value of the mixed layer.

Fig. 20. Dissolved Ca2+ in the Truckee River plotted as function of

mean daily discharge at the Farad, California, gage (Fig. 5). Note that

except for the lowest discharge rates, the concentration of Ca2+

remains constant.
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5. The new volume is compared with the overflow
volume. If the new volume is greater than the
overflow volume, the excess volume is subtracted.

6. Evaporation is subtracted from the lake.
7. The volume-weighted d18O value of the vapor phase

is calculated and then subtracted from the volume-
weighted d18O value of the mixed layer.

8. The base of the mixed layer is moved to the next
month’s depth, and if the base penetrates the
hypolimnion volume, the volume-weighted d18O
value of the entrained hypolimnion volume is mixed
with the volume-weighted d18O value of the mixed
layer.

Output consists of a listing of input variable values,
lake depth and lake volume and 10th-month d18Olake

and d18OArag values.
The ability of the model to simulate the hydrologic

balance was tested using mean-annual historic (since
1916) values of Truckee River discharge measured at the
Nixon, Nevada, gage (Fig. 5), a mean evaporation rate
of 1.20myr�1, and a mean-annual on-lake precipitation
rate of 0.18m yr�1. The results of the simulation
compared very well with the measured data, capturing
all measured changes in lake volume (Fig. 21).
Several simulations were done to illustrate the

effect of hydrologic closure and overflow of Pyramid
Lake on its d18O value (Fig. 22) and the effect of
hydrologic closure and overflow of Lake Tahoe on
Pyramid Lake d18O (Fig. 23). In the numerical simula-
tions, the d18O response to a step-function change in

hydrologic balance consists of an initial transient lasting
o100 yr followed by an exponential (200–300 yr)
approach to the steady state. The magnitude, shape,
and duration of the transient is proportional to the
magnitude and direction of the perturbation imposed on
the hydrologic system.
Simulations of the response of Pyramid Lake d18O to

overflow into the Winnemucca Lake basin indicate that
increasing discharge to Pyramid Lake (and increasing
overflow to the Winnemucca Lake basin) results in
decreasing values of d18O when hydrologic and isotopic
steady states are achieved (Fig. 22). For these simula-
tions, initial lake depth was set to 100m and the initial
d18O of lake water was set to 0.0m. Use of the historical
mean-annual discharge of 0.70 km3 yr�1 (and on-lake
precipitation of 0.20m yr�1) results in a steady-state
d18O value of �0.1m (red solid line, Fig. 22). A 15%
increase in Truckee River discharge (0.80 km3 yr�1)
shifts the d18O value of lake water an additional
�0.9m (blue solid line, Fig. 22). Pyramid Lake ceases
to spill when total input (Vin) of water is
p0.58 km3 yr�1. Model runs using discharges of 0.30
and 0.40 km3 yr�1 (dotted black and blue lines, Fig. 22)
result in the same steady-state d18O value (2.2m), but the
smaller the discharge the greater the amplitude of the
transient response.

Fig. 21. Comparison of modeled Pyramid Lake volume since 1916

(solid line) and measured values (solid points). This model was used in

the calculation of pristine Pyramid Lake elevations (Fig. 7).

Fig. 22. Simulated d18O values for Pyramid Lake as a function of

variable Truckee River discharge (DTR). The historical mean discharge

of the Truckee River (measured at the Farad gage) is 0.70 km3 yr�1.

The total input to the lake (Vin) equals discharge plus surface-area

weighted on-lake precipitation. Note that when Pyramid Lake

overflows to Winnemucca Lake basin (Vin ¼ 0:58 km3 yr�1), increasing

discharge results in smaller values of d18O. When Pyramid Lake is

closed, the steady-state d18O value is always the same, despite the size

of the lake.
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When discharge of the Truckee River is
o0.28 km3 yr�1, both Lake Tahoe and Pyramid Lake
exist as hydrologically closed systems. We have simu-
lated the response of Pyramid Lake d18O to a loss of
Lake Tahoe overflow, setting Pyramid Lake’s initial
depth to 122m and setting the discharge of the Truckee
River to 0.25 km3 yr�1 (dashed orange line, Fig. 23).
Under these circumstances, Pyramid Lake first experi-
ences a large positive transient in d18O before attaining a
steady-state value of �0.7m. This represents a negative
0.6m shift in Pyramid Lake d18O relative to the steady-
state value achieved using pristine mean-historical
discharge (solid red line, Fig. 23), and it represents a
negative 1.3m shift in d18O relative to the value achieved
when discharge of the Truckee River is 0.65 km3 yr�1

(solid green line, Fig. 23). These results demonstrate that
a loss of input of isotopically heavy Lake Tahoe water
to the Truckee River decreases the d18O value of
Pyramid Lake water during a severe and prolonged
drought.

In order to determine the response of Pyramid Lake
d18O to transition from a prolonged and severe drought
to a condition of increased wetness sufficient to cause
Lake Tahoe to spill, the depth of Pyramid Lake was set
to 40m and Truckee River discharge was set to its
pristine mean-historical value of 0.70 km3 yr�1. The
results of this simulation indicate that Pyramid Lake
d18O initially experiences a negative 4.2m transient
before achieving a steady-state d18O value of 0.1m (blue
solid line, Fig. 23).
We can generalize these results in the following

manner. In situations in which climate suddenly
switches to a drier state, d18O values first increase,
reflecting the initial dominance of evaporation over
discharge on the hydrologic and isotopic balances. This
is true even when the drier climate is characterized by a
lighter d18O value of input water. Only at steady state,
will the effects of the lighter discharge value be apparent.
In situations in which climate switches to a wetter state,
d18O values first decrease, reflecting the initial dom-
inance of discharge over evaporation on the hydrologic
and isotopic balances. The ultimate steady-state d18O
value will reflect whether the lake remains closed or
overflows. If it remains closed, it will achieve the same
steady-state d18O value no matter the amount of input
(all other factors remaining constant). If the lake spills,
its d18O value will be proportional to Vspill=Vlake:
Because climate tends to change on all time scales, the

hydrologic balance will often change before the steady-
state d18O value is achieved and often prior to the end of
the transient response. This implies that the d18O record
in a sediment core represents a collection of the initial
phases of transient responses to high- and middle-
frequency climate perturbations superimposed on a low-
frequency background of climate change.

9. Results

Cores PLC97-1 and PLC98-4 fail to overlap in time; a
gap exists in the sediment record between 3430 and
2740 cal yr BP. The records indicate that a 1.6m shift in
the mean value of d18O occurred within the 690-yr gap
and that d18O experienced its highest-amplitude oscilla-
tions between 7630 and 6600 cal yr BP (Fig. 24). The
magnetic susceptibility and TIC records, however, do
not indicate an abrupt shift in values between 3430 and
2740 cal yr BP Records of d18O, TIC, and magnetic
susceptibility from the three Pyramid Lake cores show
that d18O reached its largest values and TIC experienced
its largest oscillations during the past 95 yr (Fig. 24). In
addition, the rise in magnetic susceptibility that
occurred during the past 95 yr was the largest of the
past millennium. The striking changes in these para-
meters result from changes in lake size caused by
diversion of the Truckee River. In the next section, we

Fig. 23. Simulated responses of Pyramid Lake d18O values to onset of

and recovery from severe drought involving hydrologic closure of both

Lake Tahoe and Pyramid Lake. Onset of drought sufficient to close

Lake Tahoe causes a high-amplitude positive transient response of

Pyramid Lake d18O (dashed orange line) followed by an exponential

decrease in d18O to a value 0.6m smaller than that achieved using the

pristine mean-historical discharge (0.70 km3 yr�1) (solid blue and red

lines). The d18O value resulting from Tahoe closure is 1.3m less than

the value obtained when Truckee River discharge is decreased 7%

relative to its mean historical value (green line). Onset of a wet climate

(similar to the historic) after an extended drought which caused

Pyramid Lake to fall to a depth of 40m, results in a high-amplitude

negative transient in d18O (solid blue line).
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will discuss the last 100 yr of record, showing that the
proxy records of hydrologic change can be related to
recorded historical variability in the size of Pyramid
Lake.

9.1. 1900–2000 AD (core PLB98-2)

Historical data sets indicate that abrupt changes in
TIC and d18O tend to correlate with abrupt changes in
lake volume (Fig. 25), demonstrating that d18O and TIC
respond similarly to abrupt high-frequency changes in
volume. However, the overall trends in TIC and d18O
are dissimilar to the overall shape of the lake-volume
record, reinforcing the conclusion that neither TIC nor
d18O can be related to lake size by an equation of state.
Magnetic susceptibility reached its highest values

between B1940 and B1980 AD when the lake was at
low levels, suggesting that larger amounts of magnetite-
rich siliciclastic sediments from the sides of the basin
and/or the delta region were reaching the deep basin.
The transport of silicate-rich, carbonate-poor sediments
may, in part, explain the decreasing trend in TIC;
siliciclastic sediments diluted the TIC fraction when the
lake was shallow. Values of d13C decrease over time,
reflecting oxidation of isotopically light plant material
(sawdust and soil carbon) (Benson et al., 1996b)

introduced to the lake during the historical (1863–
19307) deforestation of the Truckee River watershed
(Townley, 1980; Wilson, 1992).

9.2. 2740–110 cal yr BP

A cubic spline was fit to the raw d18O and TIC records
for PLC97-1; data were extracted every 10 yr; and a 40-
yr running average taken to smooth the data (Fig. 26). A
comparison of the smoothed d18O and TIC records
indicates that they possess many troughs and peaks in
common, indicating their common response to abrupt
changes in lake size. The overall shape of the magnetic
susceptibility records mirrors the shape of the TIC
record between 2740 and 1600 cal yr BP; increases in
magnetic susceptibility parallel decreases in TIC. Be-
tween 2500 and 2000 cal yr BP, when magnetic suscept-
ibility reaches its highest values, peaks in susceptibility
often correspond to minima in d18O and TIC. Covar-
iance of the shapes of the d18O and TIC records between
2740 and 1600 cal yr BP suggests dilution of the carbo-
nate fraction with magnetite-bearing siliciclastic sedi-
ments. This implies that Pyramid Lake was relatively
shallow during this period. The fact that some negative

Fig. 24. Magnetic susceptibility, TIC, and d18O records from

cores PLB98-2 (122 to �45 cal yrBP, red lines), PLC97-1 (2743–

111 cal yr BP, blue lines) and PLC98-4 (7640–3430 cal yrBP, black

lines). Fig. 25. Magnetic susceptibility, d13C, TIC, and d18O records from

PLB98-2 plotted against Pyramid Lake volume since 1900. Dashed

lines connect nearly simultaneous excursions in the TIC and d18O
records associated with abrupt changes in the size of Pyramid Lake.
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d18O oscillations occurred at nearly the same times as
peaks in magnetic susceptibility suggests that increased
wetness may have resulted in greater delivery of
magnetite-bearing sediments to Pyramid Lake or that
erosion, resuspension, and transport of magnetite-
bearing materials from shallow-water sediments at the
margin of Pyramid Lake to deep water sites occurred
during abrupt lake-level rises.
The d18O record between 2740 and 110 BP exhibits

oscillations on both decadal and centennial scales
(Fig. 24). The smoothing procedure accentuates the
existence of 18 oscillations (Figs. 26 and 27a). Noting
that the d18O value of aragonite that precipitates from
Pyramid Lake is a function of both the d18O value of
lake water and the temperature of precipitation, we
consider that the oscillations mainly reflect changes in
hydrologic balance. If, e.g., the oscillations were solely a
function of water temperature, the 1.5m change in d18O
recorded in oscillation #1 (Fig. 26) would imply a 71C
change in temperature, a value we believe to be
improbably large.
When drought occurs in the Sierra Nevada, the flow

of the Truckee River is reduced and Pyramid Lake falls
or the amount of overflow to Winnemucca Lake basin
decreases. This results in increasing d18O values of lake
water. For the purposes of this paper, we define
‘‘hydrologic droughts’’ as periods during which
Dd18O=Dt tends to be positive; that is, times when lake

volume (or spill rate) decreases. To determine the timing
and duration of droughts, we calculated Dd18O=Dt using
the spline-fit data (Dt ¼ 10 yr). The derivative record
was then normalized (Z-score) and a 40-yr running
average taken (Fig. 27b). This procedure demonstrated
that droughts occur, on average, once every 150 yr;
however, the record is not stationary with intervals
between droughts ranging from 80 to 230 yr. Some
droughts persisted for >100 yr, e.g., droughts 1, 6, and
12. During the last 900 yr, intervals between droughts
appear to have decreased. We stress that the intensities
of dry or wet periods cannot be extracted using the
derivative-based procedure because the amplitude of the
d18O oscillations and their derivatives (Figs. 27a and b)
cannot be uniquely related to lake volume.
To test Dd18O=Dt as an indicator of change in the

hydrologic balance, we compared the lake-based
drought time series with a tree-ring-based reconstruction
of river discharge from the western flank of the northern
Sierra Nevada and with ages of stumps of trees that had

Fig. 26. Smoothed magnetic susceptibility, TIC, and d18O records for

PLC97-1. Chemical and magnetic data were smoothed by fitting a

cubic spline to data shown in Fig. 24. Data values for all these records

were taken at 10-yr intervals from the cubic spline fit and a 4-point (40-

yr) running average made. Dashed lines indicate times when minima in

TIC and d18O coincide. Minima in d18O indicate the termination of a

wet period. Wet–dry oscillations have been numbered 1–18.

Fig. 27. Comparison of Pyramid Lake d18O record (panel A) and its

derivative with respect to time (panel B) with a northern Sierra Nevada

tree-ring record (panel C) and ages of tree stumps killed by rising lake

waters (panel D). (A) 40-yr running average of d18O record from

PLC97-1. Oscillations in d18O are numbered 1–18. (B) Smoothed

derivative of normalized d18O record shown in panel A; positive values

of the derivative, shown as solid areas below the zero line, indicate

times when the lake was falling. Hydrologic droughts have been

numbered 1 through 18. MCA refers to the time interval occupied by

the Medieval Climatic Anomaly (1150–600 cal yr BP). C. Northern

Sierra Nevada tree-ring record (Meko et al., 1999); solid areas indicate

drought periods. D. Ages of tree stumps killed by rising lake waters

(Lawrence and Lawrence, 1961, Stine 1990, 1994). Data for tree

stumps at Rubicon Point (1240740 14C yrBP, Beta 133581) and Fallen

Leaf Lake (850740 14C yrBP, Beta 133580) are part of this study.

Solid blue dots indicate best estimates of drought termination.

Horizontal black lines reflect uncertainty in the calendar-age estimates

of drought termination. Solid orange lines indicate possible correlation

between core-based and tree-ring-based drought records. Dashed red

lines indicate tree-ring-based timing of drought terminations.
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been drowned by rising lakes (Figs. 27c and d).
Reconstruction accuracy for the tree-ring series (as
measured by R2) varies from 0.36 for the earliest sub-
period model (1250–1084 cal yr BP, 3 sites) to 0.80 for
the most recent model (250–45 cal yr BP, 51 sites) and
exceeded 0.60 for all models after 1084 cal yr BP. The
correlation between the first two records is reasonably
satisfactory with lake-based estimates of most droughts
falling within 50 yr of the tree-ring-based estimates.
Although the 14C-to-cal yr conversion of the ages of the
tree stumps yields fairly large age estimates, the stump
data are in general agreement with the tree-ring record
indicating drought terminations at B 1120, B860,
B760, B640, B540, and B280 cal yr BP. Drought
terminations in the tree-ring record are also apparent
at B460 and B360 cal yr BP.
In the west, the period between 1150 and 600 cal yr BP

was generally warm, but neither consistently warm
nor consistently dry (Hughes and Diaz, 1994). In the
Sierra Nevada and White Mountains of California,
this period, which has been termed the ‘‘Medieval
Climatic Anomaly’’ (MCA), was found to contain
two intervals of intense drought separated by an
intervening wet interval (Leavitt, 1994; Stine, 1994). In
the Pyramid Lake record, the MCA interval is
punctuated by three droughts separated by two wet
periods (Fig. 27a). The two youngest droughts (#12 and
#13) are equivalent to the intense droughts identified by
Stine (1994). The very low value of d18O achieved at
920 cal yr BP probably resulted from a substantial input
of isotopically light water to a lake that had shrunk
during drought #13.
We next addressed the issue of the spatial scales of

droughts documented in the tree-ring and lake-
based studies by comparing the northern Sierra Nevada
tree-ring record with tree-ring reconstructions of
precipitation from the southern Sierra Nevada
(Graumlich, 1993) and the El Malpais region of
northwest New Mexico (Grissino-Mayer, 1996). The
1200-yr tree-ring records indicate that droughts
centered at B800, B660, B490, and B360 cal yr BP
impacted all three sites to a some degree (Fig. 28).
The 800 and 660 yr BP droughts have also been
documented in the Great Basin of southern Nevada
(Hughes and Funkhouser, 1998). These two droughts
are of general interest because they are associated with
sharp reductions in Anasazi population at Chaco
Canyon, New Mexico, at 820 cal yr BP (Cordell and
Gumerman, 1989) and final abandonment of Chaco
Canyon and the Kayenta and Mesa Verde regions of
Arizona and Colorado at 650 cal yr BP (Dean, 1996).
The tree-ring records suggest that winter precipitation
decreased over much of the arid Great Basin and
Southwest during these droughts. Thus most indigenous
populations could not escape the effect of these droughts
by relocation.

9.3. 7630–3430 cal yr BP

A cubic spline was fit to the d18O and TIC records for
PLC98-4; data were extracted every 10 yr; and a 40-yr
running average was taken (Fig. 29). Approximately, 29
oscillations occur in the 4210-cal-yr d18O record or, on
average, one every 145 yr, a periodicity similar to that
found for PLC97-1. A comparison of the smoothed
d18O and TIC data sets indicates they possess many
troughs and peaks in common, suggesting that both
records reflect abrupt high-frequency changes in lake
size. The long-term trend in TIC mirrors the long-term
trend in magnetic susceptibility between 7630 and
3430 cal yr BP, indicating dilution of the TIC fraction.
The large magnetic susceptibility values between 7630
and 5600 cal yr BP indicate that dilution of the TIC
fraction with silicate-rich sediments occurred more
frequently during this period, implying a period of
intense aridity (a time when Pyramid Lake was small
and higher concentrations of basin-edge clastics reached
the deep-water site). The largest excursions in d18O
occurred prior to 6400 cal yr BP.
The d18O excursion between 7000 and 6400 cal yr BP

may have been related to one or a combination of
hydrologic oscillations occurring during a transition
from a very dry to a relatively wet climate. The results of
our numerical simulations (blue solid line, Fig. 23)

Fig. 28. Comparison of the timing of severe droughts that impacted

the northern Sierra Nevada, the southern Sierra Nevada, and

northwest New Mexico; 40-yr running averages of the data have been

taken. Solid areas indicate times when it was drier than average.

Vertical dashed lines indicate droughts that impacted more than one

region. Northern Sierra discharge reconstruction from Meko et al.

(1998); southern Sierra precipitation reconstruction from Graumlich

(1993); and northwestern New Mexico precipitation reconstruction

from Grissino-Mayer (1996).
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illustrate such a negative excursion in d18O. In this
simulation, the depth of Pyramid Lake was set to
40m, implying that Lake Tahoe and Pyramid Lake were
hydrologically closed and that Pyramid Lake
was receiving only B0.30 km3 yr�1 of freshwater
input. Increasing the discharge to its mean-historical
value (0.70 km3 yr�1) resulted in a negative 4.1m
transient response that lasted 300 yr. Alternatively a
191C oscillation in temperature between 7000 and
6400 cal yr BP could have caused the 4.0m excursion in
d18O; however, this amount of temperature change
seems absurdly large.
Magnetic susceptibility and d18O increase synchro-

nously at 6900 cal yr BP. As was the case for the older
part of PLC97-1, we believe that the increase in
magnetic susceptibility was due to increased input of
reworked magnetite-rich basin-edge sediments to the
deep-lake site during a rise in lake level. Therefore, we
suggest that a very shallow, hydrologically closed
Pyramid Lake experienced a large influx of water
between 7000 and 6800 cal yr BP, causing its d18O value
to decrease by 3.8m.

d18O increases in a more-or-less step-like manner
across the 700-yr gap between the top of PLC98-4 and
the bottom of PLC97-1 (Fig. 24). The mean value of
d18O between 6500 and 3430 cal yr BP is 1.6m less than
its mean value between 2740 and 110 cal yr BP. The
smaller mean middle-Holocene value of d18O could be
due to one or more of several phenomena, including the

following: (1) colder winter air temperatures during the
middle Holocene, (2) warmer autumn air and water
temperatures during the middle Holocene (which lower
d18O values of the aragonite precipitate), (3) increased
rate of overflow of Pyramid Lake during the middle
Holocene, or (4) cessation of overflow from Lake Tahoe
during the middle Holocene.
On a worldwide basis, the temperature dependence of

d18O in precipitation is B0.7m 1C�1 (Dansgaard, 1964).
Assuming this value is applicable to the Sierra Nevada,
a 2.21C decrease in winter air temperature during the
middle Holocene would account for the observed 1.6m
shift in d18O. A study of the hydrogen isotope
composition of tree rings from dendrochronologically
dated bristlecone pines from the White Mountains of
California demonstrated that moisture taken up by the
trees had larger values of dD during the middle
Holocene (Feng and Epstein, 1994). This implies a
corresponding positive shift in the mean d18O value of
precipitation, indicating that middle-Holocene winter
temperatures were actually warmer rather than colder.
To bring about the observed 1.6m decrease in

Pyramid Lake middle-Holocene d18O values, autumn
water temperatures would have to have been B7.51C
higher, implying that increases in air temperature would
also have been about the same magnitude. Several
studies attest to a warmer middle Holocene (La Marche,
1973; Thompson, 1990; Grayson, 1993) but only La
Marche (1973) attempted a calibration of his data,
finding that warm-season temperatures increased by
1.01C between 4100 and 3500 cal yr BP and by 0.71C at
B900 cal yr BP in the White Mountains of California
The increase in middle-Holocene warm-season tempera-
tures suggested by this study is in the right direction, but
it is much less than that implied by the shift in Pyramid
Lake d18O.
If we assume that late-Holocene climate was similar to

the climate of the past 100 yr, a wetter middle Holocene
could account for the negative shift in d18O; e.g., a
17.3% increase in wetness (from 0.81 to 0.95 km3 yr�1)
would lower the d18O value of Pyramid Lake water by
1.6m (Fig. 22). However, a wetter middle Holocene is
inconsistent with numerous studies that attest to a drier
middle Holocene (Harding, 1965; Lindstrm, 1990;
Benson et al., 1991; Thompson, 1992; Benson, 1994a;
Benson et al., 1997; Quade et al., 1998; Grayson, 2000).
In fact, ages of tree stumps submerged in Lake Tahoe
(Fig. 2) suggest that Lake Tahoe may not have over-
flowed during part of the middle Holocene. If Lake
Tahoe ceases spilling during an extended drought, the
flow of the Truckee River is reduced to o0.28 km3 yr�1.
As a result of the decreased input, Pyramid Lake suffers
closure. Ignoring for the time being the possible effect of
increased water temperatures on the d18O value of the
carbonate precipitate, shutting off isotopically heavy
(B�5.5m) Lake Tahoe input to the Truckee River

Fig. 29. Smoothed magnetic susceptibility, TIC, and d18O records for

PLC98-4. Chemical and magnetic data were smoothed by fitting a

cubic spline to data shown in Fig. 24. Data values were taken from the

spline fit at 10-yr intervals and a 4-point (40-yr) running average made.

Dashed lines indicate times when minima in TIC and d18O coincide.

Minima in d18O indicate the termination of a wet period. Wet–dry

oscillations have been numbered 1–29.
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decreases the steady-state d18O value of Pyramid Lake
water by B0.6m (orange dashed line, Fig. 23) relative to
the steady-state value associated with mean-historical
discharge (blue solid line, Fig. 23). Thus, closure of Lake
Tahoe causes Pyramid Lake d18O values to decrease in
the right direction but not enough in magnitude to
duplicate the observed difference between middle- and
late-Holocene baseline d18O values.
If we assume that fluid inputs to Pyramid Lake were

similar during both the late Holocene and the historic
period, warmer middle-Holocene autumn temperatures
of B51C are sufficient to explain the 1.0m decrease in
middle-Holocene Pyramid Lake d18O values not ac-
counted for by closure of Lake Tahoe. If, however, the
late-Holocene period was, on average, somewhat drier
than the historical period, then closure of Lake Tahoe
would lead to a larger negative shift in d18O. For
example, if Vin in the late Holocene was 0.76 km3 then
the difference in baseline d18O values of the middle and
late Holocene would be 1.3m (Fig. 23) and middle-
Holocene autumn temperatures need only have been
B31C warmer than late-Holocene temperatures. In any
case, the shift of Pyramid Lake d18O to heavier values
during the onset of the late Holocene together with a
decrease in Pyramid Lake sediment magnetic suscept-
ibility values indicates that Lake Tahoe was usually
closed during the middle Holocene and that drought not
tectonic activity was responsible for the trees found
submerged beneath the present-day lake.

10. The magnitude of the middle-Holocene drought

How dry does it have to become to cause Lake Tahoe
to fall below its spill point? The mean-historical volume
of water input to Lake Tahoe can be calculated from

Vin ¼ Vspill þ Vevap;

where Vin is the volume of water input to Lake Tahoe
(surface runoff and on-lake precipitation), Vspill is the
amount of overflow from Lake Tahoe measured at the
Tahoe City gage (Fig. 5), and Vevap is the volume
evaporated from the surface of Lake Tahoe.
Historical (1901–1990) measurements of Truckee

River discharge at Tahoe City yield a mean value of
0.23 km3 yr�1. The surface area of Lake Tahoe is
499 km2 at its spill point. The annual evaporation rate
has been estimated from pan data to be B0.82myr�1

(McGauhey et al., 1963) and from an energy-balance
procedure to be B1.1m yr�1 (Myrup et al., 1979). The
calculated values for Vevap thus range from 0.41 to
0.55 km3 yr�1. In the first case, Vin ¼ 0:64 km3 yr�1 and
in the second case Vin ¼ 0:78 km3 yr�1. Therefore, when
Lake Tahoe does not spill, input to the lake is estimated
to be at least 30–36% less than during the historical

period, depending on the value of evaporation used in
the calculation.

11. Timing of Holocene climate change in the Great

Basin

What follows is not intended as a formal subdivision
of the Great Basin Holocene; instead, our intention is to
draw attention to certain distinct climatic intervals. In
the introduction we discussed several studies that
indicated the presence of a warm and dry middle
Holocene. The various climate indicators that have
been used to argue for such an interval do not yield a
consistent estimate of its onset (Fig. 30). Some records
suggest that the middle Holocene may have begun as
early as 9200 cal yr BP, but most records suggest that it
began 80007300 and ended 30007500 cal yr BP. Two
factors may account for the apparent difference in the
onset and termination of the warm dry middle
Holocene: climate change may not have occurred
synchronously across the Great Basin, and each
indicator is an imperfect recorder of climate change,
possessing its own response to climate variability. In
addition, most of the records used to define the middle
Holocene are discontinuous and of low resolution
(Fig. 30).

Fig. 30. Middle-Holocene indicators of dry and warm climates. See

introduction section for discussion of these sites. Desiccation of Owens

Lake indicated by heavy black line. Dashed lines with arrows indicate

continuation of warm or dry climate.
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Two high-resolution Holocene-climate records are
now available from the Pyramid and Owens lake basins
(Fig. 3). These western Great Basin lake records suggest
that the Holocene was characterized by five climatic
intervals. TIC and d18O records from Owens Lake
indicate that the first interval in the early Holocene
(11,600–10,000 cal yr BP) was characterized by a drying
trend that was interrupted by a brief (200 yr) wet
oscillation centered at 10,300 cal yr BP. This was fol-
lowed by a second early-Holocene interval (10,000 –
8000 cal yr BP) during which relatively wet conditions
prevailed. During the early part of the middle Holocene
(interval #3, 8000–6500 cal yr BP), high-amplitude oscil-
lations in TIC in Owens Lake and d18O in Pyramid Lake
indicate the presence of shallow lakes that underwent
relatively strong oscillations in hydrologic balance. The
shallow nature of the Owens lake is further attested to
by the presence of shallow-water oolite deposits and the
shallow nature of Pyramid Lake is confirmed by high
magnetic susceptibility values (Fig. 3).
During the latter part of the middle Holocene

(interval #4, 6500–3800 cal yr BP), drought conditions
dominated and Owens Lake desiccated. Pyramid Lake
d18O values indicate that Lake Tahoe was not spilling to
the Truckee River and the existence of trees that grew
below the sill level of Lake Tahoe during middle-
Holocene interval #4 supports the existence of a
relatively dry period during this time (Fig. 2). Owens
Lake reformed B3800 cal yr BP and the d18O record
from Pyramid Lake indicates that Lake Tahoe rose to its
sill level B31007200 cal yr BP, marking the beginning
of the late Holocene (interval #5). Both Owens and
Pyramid lake records are consistent with the estimate of
the onset of the late Holocene at B3000 cal yr BP; i.e.,
the shift in d18O and leveling of the TIC and magnetic
susceptibility records occur at B31007200 cal yr BP.

12. Summary and discussion

Three lake-size indicators (magnetic susceptibility,
TIC, and d18O) have been applied to sediment cores
from Pyramid Lake, Nevada. The decreasing trend in
magnetic susceptibility and increasing trend in TIC with
time have been used to argue that decreased transport of
basin-edge siliciclastic sediments to the center of the lake
basin began about 6700 cal yr BP, reflecting an increase
in lake depth.
About 3100 cal yr BP, Pyramid Lake d18O experienced

a 1.6m shift to more positive values. Model-based
explanations for the shift in d18O values suggest a
transition to a colder and wetter climate at this time.
Other chemical, biological, archeological, and sedimen-
tological records support this explanation; however,
most of these records have not been calibrated to
climate parameters and we have not been able to use

them to accurately estimate middle- or late-Holocene
temperatures. Numerical calculations using a stable-
isotope hydrologic-balance model suggest that Lake
Tahoe did not overflow during much of the middle
Holocene, implying that runoff to Lake Tahoe was
reduced by at least 30%. Calculations using the
temperature-dependent d18O fractionation factor for
aragonite-water further suggest that middle-Holocene
autumns may have been B3–51C warmer than late-
Holocene autumns.
The earliest part of the PLC98-4 record exhibits the

highest-amplitude oscillations in magnetic susceptibility
and d18O, suggesting that the Pyramid Lake basin was
relatively shallow between 7630 and 6500 cal yr BP, and
that large and abrupt changes in the hydrologic balance
occurred during this interval. Oscillations in d18O exist
throughout the 7630-cal-yr Pyramid Lake record,
averaging one about every 150 yr. For the PLC97-1
record, we evaluated the derivative of d18O with respect
to time, using normalized and smoothed values of this
record to show that many droughts were multi-decadal
in duration and that intervals between droughts ranged
from 80 to 230 yr.
Unfortunately, our indicators of change in the

hydrologic balance are insufficient to determine the
amplitude of its oscillations (intensities of the dry and
wet periods). In the Mono Lake basin, Stine (1990a) has
shown that droughts reduced the surface area of Mono
Lake by 16–32% of its reconstructed historical (1937–
1979) value during the past 2000 yr. If we assume the
same relative change in Pyramid Lake surface areas, the
most severe drought would have reduced the surface
area of Pyramid Lake to 400 km2 and its depth to 88m.
The least severe drought would have resulted in a
500 km2 surface area and a depth of 113m.
A comparison of lake-surface elevations resulting

from these drought scenarios with historical elevations
of Pyramid Lake is instructive. As a result of water
diversion from the Truckee River, Pyramid Lake fell to
a depth of 98.5m in the mid-1960s (Fig. 6). If human-
induced diversion of the Truckee River continues at the
same rate, Pyramid Lake will eventually reach a steady-
state depth of 64m. This illustrates that human-imposed
‘‘drought’’ will have a greater effect on the size of
Pyramid Lake than some of the multidecadal droughts
of the past 2000 yr.
Urban and agricultural areas in western Nevada and

Northern California are dependent on a water supply
that originates as winter precipitation in the Sierra
Nevada. Historical droughts have lasted less than a
decade; however, the drought record presented in this
paper indicates the occurrence of droughts that lasted
several decades during the past 2740 cal yr. In addition,
multicentennial droughts prior to 3430 cal yr may have
been so severe as to cause the closure of Lake Tahoe. If
and when such droughts reoccur, they will have severe
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consequences for communities in California and Nevada
that are dependent on Sierran runoff.
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