2003

SHORT REPORT: IN VIVO SENSITIVITY OF PLASMODIUM FALCIPARUM TO HALOFANTRINE IN SOUTHERN CENTRAL VIETNAM

Doan Hanh Nhan
Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam

Walter J. Taylor
World Health Organization/TDR/PRD

Nguyen Dieu Thuong
Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam

Tran Thi Uyen
Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam

David J. Fryauff
U.S. Naval Medical Research Unit No. 2

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/publichealthresources

Nhan, Doan Hanh; Taylor, Walter J.; Thuong, Nguyen Dieu; Uyen, Tran Thi; Fryauff, David J.; Susanti, Ika; Gomez-Saladin, Eduardo; Cong, Le Dinh; and Baird, J. Kevin, 'SHORT REPORT: IN VIVO SENSITIVITY OF PLASMODIUM FALCIPARUM TO HALOFANTRINE IN SOUTHERN CENTRAL VIETNAM' (2003). Public Health Resources. Paper 387.
http://digitalcommons.unl.edu/publichealthresources/387

This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
SHORT REPORT:
IN VIVO SENSITIVITY OF PLASMODIUM FALCIPARUM TO HALOFANTRINE IN SOUTHERN CENTRAL VIETNAM

DOAN HANH NHAN, WALTER R. J. TAYLOR, NGUYEN DIEU THUONG, TRAN THI UYEN, DAVID J. FRYAUFS, IKA SUSANTI, EDUARDO GOMEZ-SALADIN, LE DINH CONG, AND J. KEVIN BAIRD
U. S. Naval Medical Research Unit No. 2, Jakarta, Indonesia; Department of Tropical Medicine, Tulane University School of Public Health, New Orleans, Louisiana; Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam

In Vietnam, Plasmodium falciparum is resistant to commonly used antimalarial drugs. In 1995, we investigated the sensitivity of halofantrine by conducting a 28-day in vivo test in two villages in Khanh Hoa province, 40 miles west of the coastal town of Nha Trang in southern central Vietnam. Malaria incidence rates in this area are 1.9 per person-year for Plasmodium falciparum, 1.1/person-year for P. vivax, and 0.03/person-year for P. malariae (Nhan DH, unpublished data). Written, informed consent was obtained from all participating patients or their parents/guardians. The study was conducted according to the Vietnamese Ministry of Health and the United States Navy regulations governing the protection of human subjects in medical research. Entry criteria and study conduct have been reported in detail elsewhere. Three doses of halofantrine (Glaxo SmithKline, London, United Kingdom), 8 mg/kg every six hours, was administered in the hospital on an empty stomach (at least one hour before or two hours after a meal) to patients with no clinical signs of cardiac disease and a normal QTc interval. Thick and thin film blood smears (days 1, 2, 4, 7, 11, 14, 18, 21, and 28) were stained with Giemsa, read, and the results were reported as parasites/microliter. Data were analyzed using Epi-Info version 6.04 (Centers for Disease Control and Prevention, Atlanta, GA).

There were 37 treated patients in the study: 32 with P. falciparum monoinfection and 5 with mixed P. falciparum/P. vivax malaria. Enrollment characteristics are shown in Table 1. On day 0, all patients were either symptomatic or febrile (oral temperature > 37°C). By day 28, four patients were lost to follow-up, and two patients with P. falciparum malaria developed recurrent P. falciparum parasitemia: a 17-year-old man on day 14 (day 0 parasitemia = 2,120/µL, recurrent parasitemia = 240/µL) and an eight-year-old girl on day 21 (day 0 parasitemia = 18,040/µL, recurrent parasitemia = 280/µL). Using a previously published method, we amplified the small subunit ribosomal RNA of P. falciparum by a polymerase chain reaction (PCR) to perform the microscopic diagnosis of P. falciparum of the day 0/day recurrent (days0/∞) slides. However, technical difficulties unfortunately precluded the genotyping the days0/∞ slides with merozoite surface protein-2 primers. When the four patients lost to follow-up were excluded, the 28-day cure rate was 31 (93.9%) of 33 (95% confidence interval = 79.8–99.2%). The P. falciparum parasite clearance rates were 16.2% by day 1, 73.0% by day 2, 91.4% by day 4, and 100% by day 7.

This study demonstrates the sensitivity of P. falciparum to halofantrine in one small area of southern central Vietnam. Recurrent parasitemia (n = 2) occurred on days 14 and 21, consistent with new infections, RI resistance, or treatment failures due to poor absorption of halofantrine. The expected number of new P. falciparum infections in our cohort of 33 who completed the four week follow-up is ≈ 5 (1.9 infections/person-year × 33 persons × 4 weeks × 1/52 years). These epidemiologic data favor new infections as the cause of our two cases of recurrent parasitemia. However, we cannot exclude drug resistance because of the failure of our PCR genotyping.

Mefloquine, but not halofantrine, was available in local shops when the study was conducted. Mefloquine is cross-resistant to halofantrine; thus, its use would be a factor in the generation of halofantrine resistance. Our study used the original World Health Organization (WHO) parasitologic in vivo test to assess halofantrine sensitivity. There is now a new WHO in vivo test for areas of intense and low/moderate malaria transmission that should be adopted as the standard test for defining drug resistance. Accordingly, our two cases of recurrent parasitemia would have been classified as either late parasitologic or clinical treatment failures, depending on whether they were febrile (axillary temperature ≥ 37.5°C) at the time of their recurrent parasitemia.

In Vietnam, Plasmodium falciparum is resistant to commonly used antimalarial drugs. In 1995, we investigated the sensitivity of halofantrine by conducting a 28-day in vivo test in two villages in Khanh Hoa province, 40 miles west of the coastal town of Nha Trang in southern central Vietnam. Malaria incidence rates in this area are 1.9 per person-year for Plasmodium falciparum, 1.1/person-year for P. vivax, and 0.03/person-year for P. malariae (Nhan DH, unpublished data). Written, informed consent was obtained from all participating patients or their parents/guardians. The study was conducted according to the Vietnamese Ministry of Health and the United States Navy regulations governing the protection of human subjects in medical research. Entry criteria and study conduct have been reported in detail elsewhere. Three doses of halofantrine (Glaxo SmithKline, London, United Kingdom), 8 mg/kg every six hours, was administered in the hospital on an empty stomach (at least one hour before or two hours after a meal) to patients with no clinical signs of cardiac disease and a normal QTc interval. Thick and thin film blood smears (days 1, 2, 4, 7, 11, 14, 18, 21, and 28) were stained with Giemsa, read, and the results were reported as parasites/microliter. Data were analyzed using Epi-Info version 6.04 (Centers for Disease Control and Prevention, Atlanta, GA).

There were 37 treated patients in the study: 32 with P. falciparum monoinfection and 5 with mixed P. falciparum/P. vivax malaria. Enrollment characteristics are shown in Table 1. On day 0, all patients were either symptomatic or febrile (oral temperature > 37°C). By day 28, four patients were lost to follow-up, and two patients with P. falciparum malaria developed recurrent P. falciparum parasitemia: a 17-year-old man on day 14 (day 0 parasitemia = 2,120/µL, recurrent parasitemia = 240/µL) and an eight-year-old girl on day 21 (day 0 parasitemia = 18,040/µL, recurrent parasitemia = 280/µL). Using a previously published method, we amplified the small subunit ribosomal RNA of P. falciparum by a polymerase chain reaction (PCR) to perform the microscopic diagnosis of P. falciparum of the day 0/day recurrent (days0/∞) slides. However, technical difficulties unfortunately precluded the genotyping the days0/∞ slides with merozoite surface protein-2 primers. When the four patients lost to follow-up were excluded, the 28-day cure rate was 31 (93.9%) of 33 (95% confidence interval = 79.8–99.2%). The P. falciparum parasite clearance rates were 16.2% by day 1, 73.0% by day 2, 91.4% by day 4, and 100% by day 7.

This study demonstrates the sensitivity of P. falciparum to halofantrine in one small area of southern central Vietnam. Recurrent parasitemia (n = 2) occurred on days 14 and 21, consistent with new infections, RI resistance, or treatment failures due to poor absorption of halofantrine. The expected number of new P. falciparum infections in our cohort of 33 who completed the four week follow-up is ≈ 5 (1.9 infections/person-year × 33 persons × 4 weeks × 1/52 years). These epidemiologic data favor new infections as the cause of our two cases of recurrent parasitemia. However, we cannot exclude drug resistance because of the failure of our PCR genotyping.

Mefloquine, but not halofantrine, was available in local shops when the study was conducted. Mefloquine is cross-resistant to halofantrine; thus, its use would be a factor in the generation of halofantrine resistance. Our study used the original World Health Organization (WHO) parasitologic in vivo test to assess halofantrine sensitivity. There is now a new WHO in vivo test for areas of intense and low/moderate malaria transmission that should be adopted as the standard test for defining drug resistance. Accordingly, our two cases of recurrent parasitemia would have been classified as either late parasitologic or clinical treatment failures, depending on whether they were febrile (axillary temperature ≥ 37.5°C) at the time of their recurrent parasitemia.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollment characteristics of Vietnamese patients with Plasmodium falciparum (n = 32) or mixed P. falciparum/P. vivax (n = 5) malaria in a 28-day in vivo test assessing halofantrine sensitivity</td>
</tr>
<tr>
<td>Halofantrine group</td>
</tr>
<tr>
<td>No. (%) of males</td>
</tr>
<tr>
<td>Median (range) age in years</td>
</tr>
<tr>
<td>Prestudy antimalarial drug use</td>
</tr>
<tr>
<td>No. (%) symptomatic</td>
</tr>
<tr>
<td>No. (%) febrile</td>
</tr>
<tr>
<td>Median (range) day 0 temperature, °C</td>
</tr>
<tr>
<td>No. (%) with splenomegaly</td>
</tr>
<tr>
<td>Median range (µg/L) P. falciparum parasitemia</td>
</tr>
</tbody>
</table>

* Number (%) consuming any antimalarial drug within one month of enrollment. |
† Defined as fever, chills, headache, myalgia, or anorexia. |
‡ Defined as oral temperature > 37°C.
Halofantrine has potentially serious cardiotoxicity that restricts its use to specific clinical indications, e.g., drug-resistant *P. falciparum* malaria in patients with normal electrocardiographic findings who have not recently consumed drugs that prolong the QTc interval. These prerequisites make halofantrine unsuitable for widespread use in primary health settings of malaria-endemic countries.

Received September 17, 2002. Accepted for publication April 26, 2003.

Acknowledgments: We are grateful to Drs. Luc Nguyen Tuyen (Khanh Hoa Provincial Antimalaria Office, Nha Trang, Vietnam), Le Minh Duo and Ta Thi Tinh (Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam) for assistance with field execution; Pak Suradi (U.S. Naval Medical Research Unit No. 2) for assistance with data management; and Pak Purnomo and Pak Masbar for slide quality control.

Financial support: This study was supported by the U.S. Naval Medical Research and Development Command (Work Unit Number 63002A810.00101.HFX.1433).

Disclaimer: The views expressed in this article are those of the authors and do not in any way represent those of the U.S. Navy or the Vietnamese Ministry of Health.

REFERENCES

