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Closed-basin lakes are thought to be especially sen-
sitive to climate change due to the tight coupling be-
tween water level and chemistry, forced by changes in 
temperature and effective precipitation (Fritz, 1996; Bat-
tarbee, 2000). However, the time period covered by the 
freeze core at SS1371 was too short to include the ef-
fect of the lake level lowering inferred for the area from 
c. 1000 cal. year BP. Nevertheless, the presence of fossil 

shorelines around the lake indicate that this site has in-
deed been subject to lake-level lowering and solute con-
centration as well as expansion of purple sulfur bacteria 
around 1000 cal. year BP as observed in other lakes (e.g. 
SS4) in the region (McGowan et al., 2008).

An unquantified but possibly important component 
of changing m-flux in the Kangerlussuaq area is the in-
creased regional deposition of loess that accompanied 

Figure 6. Conceptual interpretation of the relative importance of energy (E) and mass (m) in controlling lake response (summa-
rized by PCA-axis 1 and BSi) to environmental change according to Leavitt et al. (2009). While direct influx of m through precip-
itation is inferred to exert a strong control on all lakes before c. 1000 cal year BP (a), direct influx of E is inferred to have a greater 
influence in closed-basin systems (SS1371 and SS86 after c. 1000 cal year BP)(b). SS49 has not been included in the plot due to no 
change in the main controlling factor during the investigated time period. Supplementary paleolimnological proxies have been in-
cluded for comparison; the temperature reconstruction from the Greenland GRIP and Dye-3 ice cores (Dahl-Jensen et al., 1998), re-
gional lake-levels (Aebly & Fritz, 2009), and diatom-inferred conductivity from SS4 (McGowan et al., 2003).
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increased aeolian activity during the neoglacial cool-
ing (Willemse et al., 2003). The area between SS1371 and 
the present ice sheet margin (Figure 1) is subject to con-
siderable aeolian input, sufficient to dilute the organic 
content of lake sediments particularly during the Lit-
tle Ice Age (Anderson et al., 2012). The ecological effects 
of dust loading on remote lakes are well known due to 
their high nutrient content (Field et al., 2010). The input 
of loess in the Kangerlussuaq area has been shown to 
have had considerable impact on the biological commu-
nities of these lakes (Perren et al., 2012).

Mass flux: Nutrient influx

The coastal and dilute lake (SS49) showed few changes 
in algal community composition prior to c.  1900 AD 
(50 cal. year BP) when pigment concentration increased 
(Figure  4). Primary production in oligotrophic arctic 
lakes is dominated by relatively stable benthic commu-
nities, which can contribute substantially (80–98%) to 
the primary production (Vadeboncoeur et al., 2003). The 
inference of a substantial benthic community at SS49 is 
supported by the stratigraphic record with high concen-
trations of both chromophyte-algal pigments and BSi 
(the latter an order of magnitude higher than the other 
lakes, Figure  4), indicating the importance of diatoms. 
Pigment indicators of green algae, higher plants and 
cyanobacteria also most likely originate from a benthic 
community, based on contemporary regional lake sur-
veys. Michelutti et al. (2005) reported increased produc-
tion in a number of arctic lakes, which they attributed 
primarily to recent warming although increased nutri-
ent availability is implicit. Oligotrophic lakes are sensi-
tive to even small increases in nutrient input due to the 
very low initial content (Leavitt et al., 2009) and there is 
now increasing evidence of the ecological effects of N-
deposition at remote arctic and alpine lakes (Galloway 
et al., 2008; Holtgrieve et al., 2011). Deposition rates of 
NOx are not well prescribed for western Greenland, but 
are low (<0.5 kg N ha year−1) although loadings are pre-
sumably greater in coastal regions where precipitation 
is higher (Hasholt & Søgaard, 1978).

The δ15N data at SS49 represent a significant change 
in the N biogeochemistry of the lake initiated at the be-
ginning of the 20th Century (Figure  5). The trend to-
wards more depleted δ15N values is comparable with 
those observed in other arctic and northern hemisphere 
mountain lakes (e.g. Wolfe, Edwards & Aravena, 1999; 
Wolfe et al., 2003; Holtgrieve et al., 2011) and is con-
sistent with increased inputs of anthropogenic N aris-
ing from fossil fuel combustion. Such anthropogenic 
sources are generally isotopically depleted in 15N, and 

ice-core records from Greenland document a progres-
sive change from preindustrial δ15N values of c.  11‰ 
to ca. −1‰ in NO3

− concomitant with a doubling in ni-
trate concentration in deposition during the 20th Cen-
tury (Hastings et al., 2009; Figure 5). The agreement be-
tween δ15N, pigment PCA-1 and the increasing organic 
C content since c. 1880 is strongly supportive of a lin-
ear change in productivity in response to increased nu-
trient input.

Both the interpretation of δ15N and PCA-1 of the pig-
ments can be affected by diagenesis (Leavitt, 1993; Tal-
bot, 2001; Galman, Rydberg & Bigler, 2009). However, 
at SS49 the sediment data are inconsistent with a diage-
netic effect as the observed changes occurred over lon-
ger time frames (several decades) than expected with 
diagenesis. In general, pigments in the top 1–3  cm of 
lake sediments are interpreted as being affected by post-
depositional degradation (Leavitt, 1993). Moreover, the 
anticipated isotopic effect of such processes would lead 
to an enrichment trend in δ15N (Galman et al., 2009), the 
converse of that observed. Climate change in recent de-
cades in combination with its effects on changes in the 
catchment could be posited as a cause for the observed 
δ15N record. However, following statistical analysis of 
the meteorological data (Simpson, unpublished; Figure 
5), no trend in 20th Century monthly mean temperature 
(at Nuuk) was observed, a local pattern that is consis-
tent with temperature trends throughout SW Greenland 
(Box, 2002). Furthermore, the timing of recent Arctic 
warming is inconsistent with the observed change in 
δ15N at this site.

Nitrogen accrual is an important process in arc-
tic ecosystems largely associated with terrestrial veg-
etation succession and the role of N-fixation by Dryas 
spp. and Alnus sp. (Engstrom et al., 2000). However, 
changes of the in-lake N pool can also result from N-
fixation by cyanobacteria, which form extensive litto-
ral mats in oligotrophic arctic lakes. The soil microbial 
and hydrological processes that can result in N trans-
fer from land to water are complex and highly sea-
sonal due to the relationships between N-mineraliza-
tion, snow melt and plant uptake (Hobbie, Nadelhoffer 
& Hogberg, 2002). Moreover, these processes are hy-
pothesized to change with warming of the Arctic, but 
presumably this is not important in the Kangerlussuaq 
area given the relatively steady temperatures recorded 
for much of the 20th Century (Figure  5). The SS49 
catchment is sparsely vegetated with thin soils, in con-
trast to inland catchments with more extensive shrub 
tundra and thicker soils. The greater precipitation at 
the coast, coupled with thin soils suggests that the sed-
iment δ15N profile of SS49 is reflecting direct deposi-
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tion of NOx on to the lake. Interestingly, δ15N profiles 
from sediment cores from inland lakes do not show the 
characteristic depletion observed in many arctic lakes 
(Simpson, unpublished).

Energy flux

SS1371 showed considerable short-term variability 
but little directional changes in phototrophic commu-
nity composition over time (Figure 4). The pigment re-
cord indicates input from higher plants and green al-
gae, probably including input from the extensive Chara 
beds in the littoral zone, as well as chromophytes and 
the dominant phototrophic sulfur bacterial communi-
ties. The continuous dominance of phototrophic pur-
ple sulfur bacterial pigments suggests that the lake was 
meromictic or had prolonged periods of anoxic bottom 
water throughout the approximately 600-year period 
covered by the core. Indicators of phototrophic sulfur 
bacteria often are observed in both saline and fresh-
water lakes where light penetrates to anoxic waters 
and have previously been used to infer major shifts in 
lake status (Leavitt, Carpenter & Kitchell, 1989; Vine-
brooke et al., 1998; Pienitz et al., 2000; Squier, Hodgson 
& Keely, 2002; McGowan et al., 2008). The inference of 
meromictic conditions in the modern lake is supported 
by temperature thermistors deployed over 5  years at 
SS1371 (Anderson, unpublished). Strong stratification 
and good light transparency could promote the high-
frequency variability in community structure, due 
to tight coupling between stratification and the pho-
totrophic community (e.g. Pfennig, 1989; Vila et al., 
1998). While the continued negative precipitation bal-
ance and resulting decreasing lake level inferred from 
fossil shorelines (Aebly & Fritz, 2009) over the last 
c. 1000 years is the primary cause of the establishment 
of closed-basin systems in the area, it cannot explain 
the observed variability of the phototrophic commu-
nity. On the other hand, considerable change in tem-
perature has been inferred from the ice cores during 
this period (Dahl-Jensen et al., 1998) and direct E-flux 
is therefore inferred as the primary controlling mecha-
nism of the lake response (Figure 6).

At the nunatak lake (SS86), dominance of green sul-
fur bacterial pigments in the upper half of the sedi-
ment core (Figure  4) also indicate chemical stratifica-
tion and light penetration into an anoxic hypolimnion 
(Pfennig, 1989). The observed changes in the photo-
trophic community and geochemical markers sug-
gest a transition from a dilute, oligotrophic lake to one 
with stronger seasonal chemical stratification, hypo-
limnic anoxia, and substantial phototrophic bacterial 

production over the last c. 1000 years. A change in the 
main controlling mechanism of this lake from direct 
mass (precipitation) to energy (Figure 6) is inferred in 
accordance with interpretations of trends at the other 
lakes in this study.

Synthesis

Changes in the phototrophic community in the south-
west Greenland lakes are driven by a combination of 
factors, including direct and indirect E and m forcing 
(e.g. radiative forcing, temperature, effective precipi-
tation, ice-free period), mediated by location, catch-
ment/lake ratios, and in-lake processes (e.g. stratifi-
cation). Although precipitation levels are low in much 
of the Arctic, with associated reduced hydrological 
fluxes from land to lake, catchment processes are still 
important and will mediate m-flux to the lake. For ex-
ample, Anderson et al. (2008) found significant effects 
on biological structure associated with the arrival of 
Betula nana in SW Greenland through sequestration of 
nutrients. Any assessment of ‘drivers’ of limnological 
change in the Arctic should include a terrestrial/veg-
etation component (Wookey et al., 2009) but concep-
tual models that have been developed to account for 
recent biological change at high latitudes have tended 
to downplay alternative hypotheses such as catchment 
processes (Smol & Douglas, 2007). Moreover, as well 
as changing E and m-fluxes, in-lake processes (altered 
trophic interactions, benthic-pelagic coupling) and 
other ontogenetic processes (long-term accumulation 
of salts, dissolved organic carbon) may have consid-
erable influence on biological structure independent 
of climate (Anderson et al., 2004), therefore making it 
difficult to infer climate unambiguously from biolog-
ical remains in lake sediments (Lotter & Birks, 2003). 
The contrasting responses of the three lakes in this 
study to global environmental change processes over 
the last c.  1600  years highlights the need to consider 
greater regional variability as we attempt to disentan-
gle the ecological response of arctic lakes to multiple 
stressors. This is true even in a relatively small area 
(<150  km) such as the Kangerlussuaq lake district, 
which is reasonably homogenous in terms of geology 
and vegetation. As highlighted by Kaufman (2012), 
recognizing the spatial complexity of lake responses 
to regional climate forcing and the associated non-cli-
matic filters is critical if lake sediment records are to 
be used to reconstruct past-climate variability in the 
Arctic. There is clearly a need for greater replication at 
the regional scale to help identify signals of environ-
mental change.
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