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A 9400-yr-old record from Crevice Lake, a semi-closed alkaline lake in northern Yellowstone National Park,
was analyzed for pollen, charcoal, geochemistry, mineralogy, diatoms, and stable isotopes to develop a nu-
anced understanding of Holocene environmental history in a region of northern Rocky Mountains that re-
ceives both summer and winter precipitation. The limited surface area, conical bathymetry, and deep
water (>31 m) of Crevice Lake create oxygen-deficient conditions in the hypolimnion and preserve annually
laminated sediment (varves) for much of the record. Pollen data indicate that the watershed supported a
closed Pinus-dominated forest and low fire frequency prior to 8200 cal yr BP, followed by open parkland
until 2600 cal yr BP, and open mixed-conifer forest thereafter. Fire activity shifted from infrequent stand-
replacing fires initially to frequent surface fires in the middle Holocene and stand-replacing events in recent
centuries. Low values of δ18O suggest high winter precipitation in the early Holocene, followed by steadily
drier conditions after 8500 cal yr BP. Carbonate-rich sediments before 5000 cal yr BP imply warmer summer
conditions than after 5000 cal yr BP. High values of molybdenum (Mo), uranium (U), and sulfur (S) indicate
anoxic bottom-waters before 8000 cal yr BP, between 4400 and 3900 cal yr BP, and after 2400 cal yr BP. The
diatom record indicates extensive water-column mixing in spring and early summer through much of the
Holocene, but a period between 2200 and 800 cal yr BP had strong summer stratification, phosphate limita-
tion, and oxygen-deficient bottom waters. Together, the proxy data suggest wet winters, protracted springs,
and warm effectively wet summers in the early Holocene and less snowpack, cool springs, warm dry sum-
mers in the middle Holocene. In the late Holocene, the region and lake experienced extreme changes in win-
ter, spring, and summer conditions, with particularly short springs and dry summers and winters during the
Roman Warm Period (~2000 cal yr BP) and Medieval Climate Anomaly (1200–800 cal yr BP). Long springs
and mild summers occurred during the Little Ice Age, and these conditions persist to the present. Although
the proxy data indicate effectively wet summer conditions in the early Holocene and drier conditions in
the middle and late Holocene, none point specifically to changes in summer precipitation as the cause. In-
stead, summer conditions were governed by multi-seasonal controls on effective moisture that operated
over multiple time scales.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The present climate of the northern Rocky Mountains previously
has been broadly divided into two precipitation regimes, one that
is strongly influenced by the northeast Pacific subtropical high-

pressure system in summer, and one with substantially more summer
precipitation as a result of monsoonal circulation coming from the
Gulf of Mexico and the subtropical Pacific (Mock, 1996). These re-
gimes have been referred to as summer-dry and summer-wet, recog-
nizing that winter and spring seasons contribute most of the annual
precipitation received in the region (Whitlock and Bartlein, 1993).
The geographic pattern of these precipitation regimes is clear at a
continental scale, but spatial heterogeneity of current and past cli-
mate variations in mountainous regions is striking. Whitlock and
Bartlein (1993) postulated that the location of so-called summer-
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wet and summer-dry regimes in the northern Rocky Mountains is and
has been constrained by topography. They argue that the regimes
were both intensified in the early Holocene as a result of the amplifi-
cation of the seasonal cycle of insolation then. In summer-dry regions,
increased summer insolation strengthened the northeastern Pacific
subtropical high-pressure system, suppressing summer precipitation,
whereas summer-wet regions became wetter than today as a result of
stronger monsoonal circulation in the early Holocene. Thus, summer-
wet regions were wetter in the early Holocene than at present and
summer-dry regions were drier than at present, but Whitlock and
Bartlein (1993) suggest their relative geographic location (unlike
their intensity) has not changed substantially.

Evaluation of the summer-wet/summer-dry hypotheses has rested
primarily on pollen and charcoal data. Here, we provide further
examination of the hypothesis by comparing a suite of climatic and
environmental proxy measurements from a varved-sediment core
from Crevice Lake in northern Yellowstone National Park (YNP)
(45.000 N, 110.578 W, elev. 1684 m). These measurements include
proxies sensitive to winter snowpack and period of ice melt (stable

isotopes of endogenic carbonate); spring water-column stratification
and oxygen deficiency (diatoms and redox sensitive elements); or-
ganic productivity (diatoms, organic carbon, biogenic silica); terres-
trial changes (pollen, charcoal, detrital influx); and hydroclimatic
variability (stable oxygen isotopes). Our objective was to describe
the various datasets collected at Crevice Lake and provide mutually
consistent interpretations of the multiple indicators, recognizing that
individual datasets may have alternative explanations. The Crevice
Lake reconstruction is compared with other records from YNP and
the northern Rocky Mountains to better understand regional environ-
mental change during the Holocene.

2. Site description

Crevice Lake is a closed, groundwater-fed lake on the floor of the
Black Canyon of the Yellowstone River in northern YNP (Fig. 1), locat-
ed inside the limits of the late Pleistocene Greater Yellowstone glacial
system and more than 65 km up-valley from the Pinedale terminal
moraines (Pierce, 1979). Surrounding bouldery deposits with sandy

Fig. 1. Location of Crevice Lake. (A) Map showing present-day July/January precipitation ratios for 1971–2000 (PRISM Group, Oregon State University, http://www.prismclimate.
org); (B) Location of sites discussed in the text; (c) Location of Crevice Lake in the Yellowstone River drainage; and (D) Cross section of the surface geology along a NW-SE transect
through Crevice Lake.
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matrix are attributed to glacial outburst floods during ice recession
(Pierce, 1973). The base level of this flooding at 1750 m is shown in
Fig. 1D. Deposits associated with these floods, 16 km down valley,
are dated at 13.4±1.2 10Be ka (Pierce, 1979; Licciardi and Pierce,
2008), which is likely a maximum age for Crevice Lake as well. The
lake resides in a buried channel of the Yellowstone River (of unknown
age), and the steep-sided conical depression that holds Crevice Lake
formed either from a late-glacial flood vortex (whirlpool) at a change
in direction of the Black Canyon or from a residual block of ice (kettle)
that escaped flood activity. Presently, the lake is separated from the
Yellowstone River by permeable flood gravels that extend more
than 30 m above the river and probably extend well below the river
(Fig. 1D).

GPS surveys indicate that the Yellowstone River and Crevice Lake
are at about the same elevation of 1684 m (C. Jaworowski, NPS
Yellowstone, personal communication, 2010). The similarity in surface
elevation suggests direct ground water exchange (Stevens and Dean,
2008) (Fig. 1). Jones et al. (1977) reported very little seasonal fluctua-
tion of water level (b26 cm) in Crevice Lake; specific conductance
(620 μS) and alkalinity (240 mg/L) were high compared with other
lakes in YNP. These factors and the intervening permeable flood sedi-
ment suggest a ground-water connection between the Yellowstone
River and Crevice Lake that affects water level and chemistry.

The limited surface area (7.76 ha), conical bathymetry, and deep
water (>31 m) of Crevice Lake create oxygen-deficient conditions
in the hypolimnion that restrict bioturbation and preserve annually
laminated sediment (varves) (Stevens and Dean, 2008; Whitlock
et al., 2008). At present, Crevice Lake is a sodium-magnesium-
bicarbonate lake (National Park Service, 1994), and the top of the
thermocline during summer months is at a depth of approximately
5–6 m. Water-column profiles taken in July and August 2008 show
that dissolved oxygen (DO) decreased from 11.3 mg/L at the surface
to 2.4 mg/L below 15 m water depth. The presence of some oxygen
(b2 mg/L) in the hypolimnion suggests that the lake turns over
seasonally and that preservation of varves is related to the creation
of an anoxic hypolimnion during the late summer. However, the
hypolimnion may have been permanently anoxic (monimolimnion
of the meromictic lake) below a depth of about 15 to 25 m in the
past. However, diatoms and other algae would only be affected by
stratification in the mixolimnion and cycling of nutrients from
below 5–6 m.

The closest weather station is in Mammoth (Yellowstone National
Park), 10 km west of Crevice Lake, and measurements there extend
back to 1894 (http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?wy9905).
Mean temperatures range from −6.78 °C in January to 17.44 °C in July
and 4.5 °C annually. Annual precipitation is 39.4 cm, and over the last
50 years, between 32 and 39% is received between April and June. The
average summer/winter (JJA/DJF) moisture is 1.69, as a result of low
winter precipitation (e.g., January average=0.45 cm) and frequent
summer convectional storms (July average=0.53 cm). The high sum-
mer/winter precipitation ratio qualifies the lake as a summer-wet site
(sensu Whitlock and Bartlein, 1993).

The drainage basin currently supports open forests of Pseudotsuga
menziesii (Douglas-fir), Juniperus scopulorum (Rocky Mountain juni-
per), and Pinus flexilis (limber pine), as well as steppe dominated by
Artemisia tridentata (big sagebrush) and bunchgrasses. Pinus contorta
(lodgepole pine) grows primarily on rhyolite substrates and above
2000 m elevation. Picea engelmannii (Engelmann spruce), Abies
lasiocarpa (subalpine fir), and Pinus albicaulis (whitebark pine) are
abundant at higher elevations (2400–2900 m) and in cold-air drain-
ages. A rocky scree slope is present along the northern side of the wa-
tershed, but most of the catchment is vegetated. Betula occidentalis
(water birch), Alnus incana (Rocky Mountain alder), and Salix (willow
spp.) grow in moist settings in the Black Canyon of the Yellowstone
River, and Carex (sedge), Scirpus (bulrush), and Typha latifolia (cat-
tail) are present along the lake margin.

3. Methods

Sediments from the deepest part of lake were cored from the ice in
February 2001 with a modified square-rod Livingstone piston corer, a
larger diameter (8-cm) UWITECH® percussion piston corer, and a
freeze-box corer. Four overlapping UWITECH® cores were retrieved,
split longitudinally, and photographed. The photographs were used
to document sample locations, macrofossil locations, and general sed-
imentary changes, and to correlate among cores based on distinctive
laminations. All sampling was done on sediments recovered by the
freeze-box core and UWITECH® cores. Livingstone cores were used
for correlation and archival purposes.

A composite section from the overlapping cores was 770 cm long
(Rosenbaum et al., 2009) and designated “CV01”. Sediments from
375 to 770 centimeters below lake floor (cmblf) were composed of
massive calcite sand interbedded with laminated calcite mud and a
120-cm-thick interval of jumbled angular blocks of laminated and
massive carbonate. The massive units consisted of coarse- to fine-
grained calcite sand and mud, with seeds of Betula glandulosa, frag-
ments of the green alga Chara, insect and chironomid remains, and
angular shell fragments. These massive units likely represent one or
a combination of slumps, turbidites, and debris flows on the steep
sides of the lake, which brought sections of carbonate benches from
the littoral zone to the center of the basin. The uncertain chronology
and likely disconformities implied by the massive carbonate units
led us to focus our analyses on the sediments above 375 cmblf.

Whitlock et al. (2008), Bracht et al. (2008), and Stevens and Dean
(2008) describe analysis of magnetic properties, geochemistry, dia-
toms, pollen, and charcoal for last 2650 cal years (the interval above
112 cmblf). Both halves of the UWITECH® cores below 112 cmblf
were cut into 0.5-cm slices to a depth of 470 cmblf. Every sample
was analyzed for magnetic properties, and every eighth sample
(every 4 cm) was analyzed for geochemistry, mineralogy, and diatom
species composition, with an average sample spacing of 80 yr. Pollen
samples (0.5-cm-thick slices) below 112 cmblf were spaced at inter-
vals ranging from 2–10 cm, and charcoal was analyzed in contiguous
0.5 cm samples for the entire length of the composite core.

The chronology for the Crevice Lake sediments was based largely
on varve counts above 112 cmblf and accelerator mass spectrometer
(AMS) radiocarbon ages below that depth. In all, twenty-one age
determinations were obtained, fifteen from terrestrial plant macro-
fossils and six from pollen concentrates (Table 1). The pollen concen-
trates consisted of the plant residue remaining after standard pollen-
preparation procedures (Faegri et al., 1989), including charcoal,
organic detritus, and pollen. Graphite targets were prepared in the
USGS 14C laboratory in Reston, Virginia and analyzed at the Center
for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore
National Laboratory in Livermore, California. Radiocarbon ages were
calibrated using the terrestrial calibration data set with the CALIB
5.0.2 program (Stuiver et al., 1998) and the University of Cologne's
online radiocarbon calibration program CalPal (http://www.calpal.
de). A piece of wood in laminated calcite mud at 727.45 cmblf was
dated at 13,186 cal yr BP and is the oldest date from unquestionable
profundal sediment. All ages are expressed in calendar years before
present (cal yr BP), where present is AD 1950.

Concentrations of total carbon (TC) and total inorganic carbon
(TIC) were determined by coulometric titration of CO2 following ex-
traction from the sediment by combustion at 950 °C and acid volatili-
zation, respectively (Engleman et al., 1985), in USGS laboratories,
Denver, CO. Weight percent TIC was converted to weight percent
CaCO3 by dividing the fraction of carbon in CaCO3 by 0.12. Total organ-
ic carbon (TOC) was determined as the difference between TC and TIC.
Organic matter (OM) content was assumed to be twice the TOC con-
tent (Dean, 1999). The accuracy and precision for both TC and TIC, de-
termined from hundreds of replicate standards (reagent-grade CaCO3

and a Cretaceous OC-rich marlstone), was better than 0.10 weight %.
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Twenty-two samples from above 180 cmblf (b5000 cal yr BP) were
analyzed for total nitrogen (TN) in Huffman Laboratories, Golden,
Colorado.

Samples were analyzed for 50 major, minor, and trace elements
by inductively coupled plasma-mass spectrometry (ICP-MS) at SGS
Laboratories, Toronto, Canada. Rock standards (USGS) were included
with the sediment samples, and 5% of the samples were analyzed in
duplicate. The precision, determined by analyzing rock standards
and duplicate sediment samples, was better than 10% and usually bet-
ter than 5% at a concentration of 10 times the limit of detection.

Semi-quantitative estimates of mineral contents were determined
by standard X-ray diffraction (XRD) techniques (Moore and Reynolds,
1997) in USGS laboratories, Denver, CO. Results were reported as the
peak intensity (in counts per second, cps) of the main XRD peak for
each mineral and as a percentage of the sum of the main XRD peak in-
tensities of all minerals. Percentage calculations are used with cau-
tion, because they do not reflect the different X-ray mass absorption
characteristics of different minerals.

Stable-isotope values of endogenic calcite were determined at the
University of Minnesota on a Finnigan-MAT 252 isotope-ratio mass-
spectrometer coupled to a Kiel autosampling device. Samples were
pre-treated for 12 h with 2% reagent-grade bleach to remove organic
matter and then sieved at 63 μm to remove ostracodes and shell mate-
rial. The flow-through material (b63 μm) was freeze-dried, crushed,
and analyzed. Both δ18O and δ13 C values are reported in the standard
per mil (‰), δ−notation relative to the Vienna Pee Dee Belemnite
(VPDB) marine-carbonate standard for carbon and oxygen.

Samples for diatom analysis (366 total) were treated with cold
10% hydrochloric acid and 30% hydrogen peroxide to remove carbon-
ates and organic matter, respectively (Bracht et al., 2008). Samples
were rinsed with reverse-osmosis purified water, dried onto cover-
slips, and mounted on slides with Zrax, a high- refractive-index per-
manent mounting medium. At least 300 individuals were identified
and counted in each sample. Diatom counts are expressed as percent-
ages relative to the total number of individuals counted in each
sample.

A total of 103 pollen samples were prepared using standard pro-
cedures (Bennett and Willis, 2001), except that dilute Schulz solu-
tion was used instead of acetolysis treatment (Doher, 1980).
Lycopodium spores were added to enable calculation of pollen con-
centration. Between 300–1000 pollen grains were counted for each
level, and pollen percentages were based on the sum of terrestrial
pollen and spores. Diploxylon-type Pinus pollen was attributed to P.
contorta, and haploxylon-type Pinus was assigned to P. flexilis,
which grows locally, but P. albicaulis from higher elevations in YNP
also may have been a pollen source. Total Pinus was the sum of the
diploxylon-type, haploxylon-type, and Undifferentiated Pinus pol-
len. The arboreal/nonarboreal ratio (AP/NAP), derived from the per-
centage of non-riparian tree pollen divided by that of shrubs and

herbs, was used as an index of forest cover relative to steppe cover
(Whitlock, 1993).

A total of 781 macroscopic charcoal samples, ranging between 0.5
and 1.0 cm3 in volume, were analyzed to reconstruct the local fire his-
tory. Samples were boiled for 15 min in 5% solution of potassium hy-
droxide and washed through a 125 μmmesh sieve. The residues were
examined at 36× magnification, and charcoal particles tallied. Char-
coal counts were converted to concentration (particles cm−3) and
then to charcoal accumulation rates (CHAR, particles cm−2 yr−1) at
constant time steps (12 years). The CHAR data were decomposed
into a slowly varying background (BCHAR) component, using a Low-
ess smoother robust to outliers with a 500-year window width
(http://CharAnalysis.googlepages.com; Higuera et al., 2010). BCHAR
represents the long-term variations in fuel biomass, and charcoal
peaks, which represent individual fire episodes, where the positive
deviations (CHAR-BCHAR) that exceeded the 95th percentile distri-
bution of a Gaussian mixture model. Peaks identification was based
on 500-year overlapping window of the CHAR time series, producing
a unique or “local” threshold for identifying fire episodes. Further
screening eliminated those peaks or episodes that resulted from sta-
tistically insignificant variations in CHAR (Gavin et al., 2006). If the
maximum count in a CHAR peak had a >5% chance of coming from
the same Poisson-distribution population as the minimum charcoal
count within the preceding 75 years, then the fire episode was
rejected (Higuera et al., 2010).

4. Results

4.1. Chronology

The age model consists of two parts: (1) a third-degree polyno-
mial for the upper 112 cm, which was derived in previous studies
(Stevens and Dean, 2008; Whitlock et al., 2008); and (2) a linear
model for the remainder of the record (Fig. 2). The linear model
for the lower part of the section was constrained by the oldest
two radiocarbon ages used in the previous studies, five additional
radiocarbon ages from macrofossils, and the 7630-year-old Mazama
ash (Zdanowicz et al., 1999). Radiocarbon dates from a bark frag-
ment from a depth of ~144 cmblf (Table 1; Fig. 2) yielded an age
that was deemed too old and rejected. Because of probable discon-
tinuities in deposition, indicated by the massive blocks mentioned
above that prompted us to restrict our analyses to sediments
above 375 cmblf, most ages from below 375 cmblf were not incor-
porated in the model. However, one date from a plant fragment in
laminated sediment from 405 cmblf was incorporated in the age-
depth model (Table 1). No macrofossils were found between 144
and 255 cmblf, and ages were obtained from pollen concentrates
to fill this gap. The pollen concentrates, however, yielded ages that
were systematically older than those from macrofossils and the

Table 1
Radiocarbon and calibrated ages from CV01 at Crevice Lake.

Sample ID Core USGS radiocarbon Material Depth Age AMS 14 C CALIB Age CalPal Age

Segment Lab number Dated (cmblf) (yr BP) (cal. yr BP) (cal. yr BP)

CV-25 CV01A-1 WW-4618 needle 20.45 210±55 190 185±114
CV-108/109 CV01A-1 WW-4619 needle 49.45 1010±55 900 908±66
CV-148 CV01A-1 WW-4625 needle 63.30 1610±120 1529 1534±132
CV-184 CV01A-1 WW-4626 needle 75.85 1920±120 1855 1871±143
CV-213 CV01A-1 WW-4620 bark 83.85 2390±45 2428 2484±111
CV-272 CV01A-1 WW-4621 needle 104.15 2500±80 2552 2569±126
CV01A-1 88 CV01A-1 WW-5788 plant frag. 122.05 2878±33 3007 3013±49
CV-M4 CV01C-2 WW-4623 wood 255.20 5850±45 6646 6663±61
CV-M2 CV01C-2 WW-4627 needle 281.70 6340±250 7176 7190±260
Mazama ash 313.40 7627 7627
CV-M1 CV01C-2 WW-4622 needle 340.90 7510±120 8346 8309±107
CV01B-2 45.5 CV01B-2 WW-5790 plant frag. 405.45 9145±67 10327 10337±80
CV01E-1 103 CV01E-1 CV01 E-1 103–104 wood 727.45 11300±52 13186 13198±100
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Fig. 6. Summary of the environmental proxy at Crevice Lake over the last 9400 cal yr BP plotted against July and January insolation anomalies.
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sediments (average of 34.5%; Fig. 6) suggests warm surface waters
that likely resulted from the short but intense summers, possibly
aided by an initial pulse of dissolved CaCO3 from calcareous glacial
drift.

Diatom productivity (biopal) was low in the early Holocene
(Fig. 6), and the dominance of Stephanodiscus, which would sequester
P recycled into the water column, explains the low P concentrations
in the sediments at this time (Fig. 3). Cyclotella species were present,
except between 8600 and 7800 cal yr BP, and the dominance of
C. ocellata over other Cyclotella species implies strong thermal strati-
fication of the epilimnion during summer and shallow mixing depths
(Fig. 6). Low values of δ18O prior to 8200 cal yr BP (Fig. 3) indicate
abundant winter precipitation at higher elevations, which influenced
the δ18O content of the Yellowstone River and its ground water con-
nection with Crevice Lake. The low values could also be evidence of
low summer evapotranspiration, as result of a shortened season or
greater cloudiness. Low δ13C values between 10,000 and 8000 cal yr
BP do not match variations in carbonate or biopal, which argues
against productivity as the explanation. A sharp decrease in δ13C
values between 8800 and 8200 cal yr BP is not reflected in the δ18O
data (Fig. 3), suggesting that changes in residence time are not the
cause of the decline. The values, however, do correspond with an in-
crease in the AP/NAP pollen ratio, which implies that δ13C values may
be controlled by carbon inputs from forest soils rather than from
aquatic sources.

Taken together, the early Holocene of northern YNP was charac-
terized by abundant snowfall, forested vegetation, infrequent but
large fire events, high freshwater carbonate production and oxygen-
deficient bottom waters. These interpretations, in turn, are consistent
with cool winters, protracted springs, and warm but effectively wet
summers. The carryover of moisture from winter into spring and
early summer was likely responsible for greater forest cover (inferred
from the pollen data) and the increased fuel load would have resulted
in infrequent but severe fires (inferred from the charcoal data). High
summer temperatures during the summer insolationmaximum led to
greater carbonate production, a shallow summer thermocline, and
anoxic conditions (inferred from the geochemical and diatom data).
Summer precipitation, if enhanced, may have contributed to the in-
frequency of fires.

Other paleoenvironmental data from the northern Rocky Mountain
region suggest early-Holocene conditions that were warmer than at
present, although effective moisture levels at this time were higher
than in the middle Holocene (Whitlock and Brunelle, 2006; Power
et al., 2011; Whitlock et al., 2011). For example, pollen records from
high-elevation sites indicate an upslope expansion of low-elevation
taxa in the northern Rocky Mountains (e.g., Pseudotsuga and Chenopo-
diaceae) in the early Holocene (Whitlock and Brunelle, 2006) and those
from low-elevation sites show relatively open forest conditions (Power
et al., 2011; Whitlock et al., 2011). Warm humid summer conditions in
the early Holocene are broadly registered throughout the Rockies and
Great Plains (e.g., Fall, 1997; Shuman et al., 2010; Williams et al.,
2010; Anderson, 2011; Grimm et al., 2011; Jiménez-Moreno et al.,
2011; Minckley et al., 2011; Whitlock et al., 2011; Briles et al., 2012)
and ascribed to higher-than-present summer insolation and its atten-
dant effects on regional climate.

Charcoal data indicate rising fire occurrence (Whitlock et al., 2008,
2011; Power et al., 2011), which is attributed to rising summer tem-
peratures and decreased effective moisture. At Foy Lake, extended
periods dominated by benthic diatom species with high salinity toler-
ances as well as high levels of diatom frustule dissolution indicate
lower-than-present water levels (Stone and Fritz, 2006; Shuman et
al., 2009). Oxygen-isotope and carbonate mineralogy data from low-
elevation Jones Lake also indicate warm dry conditions with little
ground-water recharge in the early Holocene (Shapley et al., 2009).
In northwestern Colorado, early Holocene δ18O values from sediment
cores study at Bison Lake (3255 m elevation) indicate rain-dominated

precipitation, suggestive of warmer winters and protracted springs,
and lower-than-present lake levels (Shuman et al., 2009; Anderson,
2011).

5.2. Middle Holocene (8000–3000 cal yr BP)

The middle Holocene was characterized by declining summer in-
solation and rising winter insolation (Fig. 6). Paleoclimate model sim-
ulations suggest a weakening of the subtropical high-pressure system
and summer monsoonal circulation, as well as slightly warmer win-
ters (Bartlein et al., 1998). At Crevice Lake, Blacktail Pond, and Slough
Creek Lake, lower AP/NAP values and higher Poaceae pollen percent-
ages indicate the development of open parkland and effectively drier
summers than before or at present. Pseudostuga percentages in-
creased steadily from 8000 cal yr BP to the present, marking its ex-
pansion at lower treeline (Fig. 5). At Crevice Lake and Blacktail
Pond, fire activity was high between 8000 and 7000 cal yr BP, fell
slightly between 7000 and 5000 cal yr BP, and rose between 5000
and 4000 cal yr BP. Slough Creek Lake shows a general trend toward
more fires in the middle Holocene (Millspaugh et al., 2004), and Cyg-
net Lake, a summer-dry site in central YNP, registered highest fire fre-
quency before 6000 cal yr BP followed by steadily decreasing activity
to the present day (Whitlock, 1993).

Concentrations of TOC, Mo, U, and S at Crevice Lake were low be-
tween 8000 and 4500 cal yr BP, which indicates better-oxygenated
bottom waters and perhaps only seasonal anoxia as a result of lower
organic productivity. High production of CaCO3 suggestswarm surface
waters until about 5000 cal yr BP. After 4500 cal yr BP, increased
concentrations of Mo, U, and S indicate strongly oxygen-deficient
(probably anoxic) bottom-waters, and rising TOC and biopal percent-
ages indicate increased diatom production (Fig. 6). Values of δ18O rose
to−10‰ by 5800 cal yr BP and imply less snow accumulation and/or
enhanced evaporation in summer. These values persist with little
change until 3000 cal yr BP. Prolonged spring conditions through the
middle Holocene are inferred from abundant Stephanodiscus and Syne-
dra tenera (Fig. 4). The absence of Stephanodiscus and low abundance
of Synedra between ca. 5600 and 5000 cal yr BP suggest that spring
conditions were shorter in that interval. The increase in Cyclotella
ocellata and rise in CaCO3 at this time indicate shallow water-column
mixing and strong summer stratification, consistent with warm sum-
mers and seasonal anoxia. Thus, the Crevice data imply that winters
were drier than before, spring conditions were prolonged, and sum-
merswerewarm although cooling. A period of very short springs lead-
ing into warm dry summers occurred between 5600 and 5000 cal yr
BP.

The transition to more open vegetation in Yellowstone after
8000 cal years broadly coincides with maximum aridity at many
locations in the Rocky Mountains and mid-continent (e.g., see
Bartlein and Whitlock, 1993; Whitlock and Brunelle, 2006; Williams
et al., 2009; Shuman et al., 2010; Grimm et al., 2011). In the northern
Rocky Mountains, well-developed grassland and open parkland, high
fire activity, and low lake levels characterized low elevations
(MacDonald, 1989; Brunelle et al., 2005; Stone and Fritz, 2006;
Shuman et al., 2009; Power et al., 2011; Whitlock et al., 2011). The
Rocky Mountain pattern is an interesting contrast to records from
the Pacific Northwest, which register cooler effectively wetter condi-
tions after 7000 cal yr BP (Whitlock and Brunelle, 2006; Barron and
Anderson, 2011).

The diatom assemblage at Foy Lake alternated between periods
dominated by Cyclotella michiganiana, which indicate strong summer
stratification at intermediate water depths, and periods with benthic
and tychoplankton species, which suggest low lake levels. Episodes of
reduced moisture occurred between 8000 and 7000 cal yr BP, very
dry conditions between 7000 and 5600 cal yr BP, and dry conditions
with some wet intervals between 5600 and 3500 cal yr BP (Stone
and Fritz, 2006). At Jones Lake, high aragonite/calcite ratios and
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δ18O values before 5600 cal yr BP are also consistent with higher-
than-present aridity during the middle Holocene. Lake levels from
northwestern Montana to southern Colorado were lower in the
early part of the middle Holocene, and widespread aridity then is
explained as a combination of drier winters and greater evaporative
demand in summers (Shuman et al., 2009). Lake levels began to rise
after 5500 cal yr BP, suggesting the onset of effectively winter condi-
tions and/or cooler summers. In Wyoming, this event coincides with
evidence of high water levels from 5600 to 4800 cal yr BP (Minckley
et al., 2011).

5.3. Late Holocene (ca. 3000 cal yr BP–present)

The decreasing amplitude of the seasonal cycle of insolation in the
late Holocene led to the establishment of the modern climate and
vegetation (Whitlock and Brunelle, 2006). At Crevice Lake, expansion
of Pseudotsuga and Pinus and decline of Juniperus suggest cooler
growing-season conditions than before. Fuel biomass (based on
BCHAR) was high between 4500 and 1600 cal yr BP, low between
1600 and 300 cal yr BP, and high in the last 300 cal years. Fire epi-
sodes at Crevice and Slough Creek lakes were large but infrequent
in the last 300 cal yr BP.

High δ18O values during the late Holocene indicate lower winter
precipitation compared with earlier conditions, but intervals of some-
what wetter winters are inferred by declines in δ18O between 2200
and 2000, 1100 and 800, and 500 and 400 cal yr BP. Low CaCO3 levels
in the last 3000 cal yr BP suggest cool summers, and production of
CaCO3 between 2200 and 1400 cal yr BP was reduced. In addition,
CaCO3 was diluted by the influx of detrital material indicated by in-
creases in concentrations of quartz and feldspar. Replacement of Ste-
phanodiscus by Cyclotella bodanica between 2200 and 800 cal yr BP
marks a time when the spring season was shortened and the
transition from winter to summer was rapid. The dominance of
C. bodanica over other Cyclotella species indicates deep water-
column mixing, i.e., the top of the thermocline was deep in summer
at this time, and high concentrations of TOC, Mo, U, and S indicate
that bottom waters were permanently anoxic (meromictic) as a re-
sult of the decomposition of organic matter. Today, the top of the
thermocline in late summer is about 5 or 6 m. The lake is >31 m
deep and, if it was meromictic, the top of the anoxic monimolimnion
would have been at 15–25 m. Therefore, the mixolimnion would be
stratified with a hypolimnion of 10–20 m if the top of the thermocline
was at 5 m, and that hypolimnion itself would be highly oxygen
deficient by late summer as it is today (ca. 2 mg/L).

The isotope, diatom, geochemistry, and charcoal evidence togeth-
er indicate that winters became drier and summers cooler in the last
3000 cal years, with some dramatic excursions towards drier and/or
wetter conditions. Abbreviated spring conditions, for example, char-
acterized the Roman Warm Period (centered ca. 2000 cal yr BP) and
the Medieval Climate Anomaly (between ca. 1200 and 800 cal yr
BP), and other records from the northern Rocky Mountains also
show multiple decadal-long droughts at these times (Laird et al.,
1996; Woodhouse and Overpeck, 1998; Fritz et al., 2001; Case and
MacDonald, 2003; Pierce et al., 2004; Stevens et al., 2006; Bracht-
Flyr and Fritz, 2012). In northern YNP, summer aridity during the Me-
dieval Climate Anomaly is evidenced by increased fire frequency at
Slough Creek Lake (Millspaugh et al., 2004), fire-triggered sedimenta-
tion events (Meyer et al., 1995), reduced beaver activity (Persico and
Meyer, 2009), and increases in dry-adapted rodents (Hadly, 1994).

A sharp decline of Cyclotella bodanica and return of Stephanodiscus
at 800 cal yr BP coincide with the onset of the Little Ice Age and
suggests lengthening spring conditions. Low concentrations of Mo
and especially U indicate better-oxygenated bottom waters after
800 cal yr BP and a loss of year-round anoxia. At 400 cal yr BP, an
increase in C. bodanica and its co-occurrence with Stephanodiscus
coincides with slight increases CaCO3, TOC, Mo, U, and S. The

combination suggests that springs were cool and wet, and summers
were short but warm enough to lead to a deep thermocline, increased
productivity, and seasonally anoxic bottom waters. Charcoal data also
indicate a return to a stand-replacing fire regime, which is also con-
sistent with spring fuel development followed by warm summers.
Tree-ring-derived Palmer Drought Severity Index (PDSI) data for
northern YNP indicate alternating wet and dry periods in the last
800 cal years, shifting to effectively wetter conditions towards the
present (Cook et al., 2004). A tree-ring reconstruction from the Yel-
lowstone region also indicates periods of moderate drought in recent
centuries but nothing as extreme as during the Medieval Climate
Anomaly (Gray et al., 2007). Thus, the last 400–600 cal years can be
considered intermediate in the range of conditions experienced in
the Holocene.

6. Conclusions

Multiple proxy data from Crevice Lake and their comparison with
other records in YNP and the northern Rocky Mountains permit a ree-
valuation of the summer-wet/summer-dry hypothesis (Whitlock and
Bartlein, 1993). Consistent with the hypothesis and broad regional
patterns, Crevice Lake and the northern YNP sites show evidence of
warmer-than-present summers in the early Holocene as the climate
shifted from cool glacial conditions to the Holocene thermal maxi-
mum. Higher-than-present summer temperatures are explained as a
direct consequence of greater summer insolation compressed into a
shortened summer season between 11,000 and 6000 cal yr BP. Equal-
ly important, however, is evidence of wet conditions, which we
explain as high winter and spring snowpack leading to greater effec-
tive moisture in summer. This interpretation is slightly different than
the summer-wet/summer-dry hypothesis, which emphasizes in-
creased summer precipitation from a strengthened monsoonal sys-
tem to explain expanded forest and decreased fire frequency during
the early Holocene. The Crevice Lake results thus suggest that carry-
over of winter moisture into the growing season likely accounted
for effectively wet summers as much or more than moisture contribu-
tions from summer convective storms.

As winter snowpack decreased in the middle Holocene, the season
of highest precipitation shifted to spring. Currently, dry winters fol-
lowed by wet springs and summer moisture deficits are characteristic
of severe fire years (Westerling et al., 2006), and high fire activity in
the middle Holocene may also be explained by fine-fuel development
during wet springs followed by summer drought. Summers were
cooler and drier than before as a result of decreasing summer insola-
tion, but still warmer than at present. The middle Holocene also fea-
tured considerable climate variability; however, the three high-
resolution records from the northern Rocky Mountains (Crevice,
Foy, and Jones lakes) do not display concurrent patterns of drought
on submillennial time scales. Our data agree with others that suggest
that the period between 8000 and 4000 cal yr BP was the driest inter-
val of the Holocene in the Rocky Mountain region and Great Plains
(Dean et al., 1996; Shinker et al., 2006; Shuman et al., 2009; Grimm
et al., 2011; Whitlock et al., 2011). In YNP, for example, highest fire
frequency is registered at so-called summer-wet and summer-dry
sites.

Dramatic environmental variability occurred in the last 3000 cal -
years, with repercussions to the terrestrial and limnologic ecosys-
tems. The Crevice Lake data suggest initially wet winters, cool
springs, and cool summers between 2600 and 2200 cal yr BP, fol-
lowed by a period of extreme drought composed of dry winters,
brief springs, and dry summers between 2200 and 800 cal yr BP.
The last 400–600 cal years have featured intermediate conditions in
which winters have been relatively dry, springs have been wet and
sometimes lengthy, and summers are relatively dry.

It is worth noting that environmental changes of the last few cen-
turies at Crevice Lake and other northern Rocky Mountain sites are
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relatively modest compared with what occurred earlier in the Holo-
cene. Over the last 9400 cal years, climate variations on centennial
and millennial time scales influenced the duration of winter snow-
pack and its carryover into spring and summer, with widespread eco-
logical consequences. On shorter time scales, dramatic fluctuations in
effective moisture during the middle and late Holocene led to rapid
adjustments in limnological and terrestrial ecosystems at Crevice
Lake and across the northern Rocky Mountains. Our results suggest
that the historical range of seasonal variability evident in Yellowstone
National Park during the Holocene can provide a useful context for
evaluating recent and projected environmental changes.
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