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Characterization of a recurrent 
missense mutation in the forkhead 
DNA-binding domain of FOXP1
Tyler B. Johnson  1, Keegan Mechels1, Ruth Ellen Anderson1, Jacob T. Cain  1, 
David A. Sturdevant1, Stephen Braddock3, Hailey Pinz3, Mark A. Wilson4, Megan Landsverk2, 
Kyle J. Roux1,2 & Jill M. Weimer1,2

Haploinsufficiency of Forkhead box protein P1 (FOXP1), a highly conserved transcription factor, leads to 
developmental delay, intellectual disability, autism spectrum disorder, speech delay, and dysmorphic 
features. Most of the reported FOXP1 mutations occur on the C-terminus of the protein and cluster 
around to the forkhead domain. All reported FOXP1 pathogenic variants result in abnormal cellular 
localization and loss of transcriptional repression activity of the protein product. Here we present three 
patients with the same FOXP1 mutation, c.1574G>A (p.R525Q), that results in the characteristic loss of 
transcription repression activity. This mutation, however, represents the first reported FOXP1 mutation 
that does not result in cytoplasmic or nuclear aggregation of the protein but maintains normal nuclear 
localization.

Haploinsufficiency of forkhead box protein P1 (FOXP1) causes a rare neurodevelopmental disorder that is char-
acterized by a vast array of symptoms that include developmental delay, motor coordination deficits, specific lan-
guage impairment, autistic features, intellectual disabilities, dysmorphic features, various cancers, and congenital 
defects of the heart, kidneys and urinary tract1,2 (MIM 605515 (gene); MIM 613670 (disorder)). The FOX proteins 
are a family of evolutionarily conserved transcription factors that share a characteristic winged-helix (forkhead) 
DNA-binding domain. Members of the FOXP subfamily, which includes four paralogous proteins, have crucial 
roles in embryonic development and organogenesis of heart, lung, esophagus, and immune system3–8. Each of 
these proteins share four common domains: an N-terminal Q-rich (polyglutamine) domain, internal zinc-finger 
and leucine zipper, and a C-terminal forkhead box DNA-binding domain (FOX).

FOXP1 is widely expressed in human and mouse tissues with specific regional expression in the central nerv-
ous system including the cerebral cortex, striatum, and spinal cord6,9–11. Its role is crucial in these regions during 
cortical development for regulation of neuronal migration, differentiation, and morphogenesis8,12,13. Suppression 
of Foxp1 within the developing brain leads to radial migration defects where neurons improperly localize, as 
well as problems with morphogenesis and neurite outgrowth8. Foxp1 binds a 7-nucleotide consensus sequence, 
TATTT(G/A)T, and represses transcription at target locations, including SV40 and interleukin-2 promoters14, 
and directly regulates expression of genes important for neurogenesis12. FOXP1 also directly binds to and con-
trols expression of genes associated with autism9 and abnormalities of the central nervous system, musculature, 
cognition, and higher mental function12. Proteomic studies also show that FOXP proteins directly interact with 
partners with diverse roles in neurodevelopment including migration of cortical projection neurons, cortical 
neuron plasticity, and neurogenesis15.

Outside the CNS, FOXP1 plays an important role in development monocytes and macrophages16, regu-
latory T-cells17, cardiomyocytes7, lung epithelial cells18. In immune cells, overexpression of FOXP1 in mouse 
monocytes impaired monocyte differentiation, migration and macrophage function through repression of 
colony-stimulating factor receptor16. Additionally, deletion of Foxp1 in mice influences B-cell and thymocyte 
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development3,19. Foxp1 also plays an important role in cardiac development as Foxp1 null mice are embryonic 
lethal due to defects in myocyte maturation leading to thinning of the ventricular myocardial compact zone7.

The native FOXP1 sequence encodes conserved functional domains that dictate its cellular functions (Fig. 1). 
The N-terminus of the protein contains a polyglutamine (Q-rich) domain, putative zinc finger and leucine zipper 
domains. Q-rich domains, which are sequences that are commonly present in many transcription factors20, have 
been demonstrated to be important for protein-protein interactions21 as well as modulation of transcriptional 
repression activity14,22. Additionally, the zinc finger and leucine zipper contribute to protein-protein interactions 
and transcriptional repression, as is the case for many other proteins containing these domains14,23–26. Through 
the leucine zipper domain, FOXP1 is able to form specific homo- and heterodimers with its paralog FOXP227. 
Near the C-terminus are two nuclear localization sequences resulting in the protein’s natural localization to the 
nucleus in normal tissues and cells2,28,29 and a forkhead box DNA-binding domain (FOX); however, exogenously 
expressed pathogenic variants result in disrupted nuclear localization and formation of cytoplasmic and nuclear 
aggregates27,29–31. Additionally, these mutations result in loss of both transcriptional repression activity and typi-
cally the ability to form dimers with wild type FOXP1 and FOXP229,31,32, although there are reported variants that 
preserve their dimerization capability29.

The C-terminal FOX domain, which is critical for its activity as a transcriptional repressor, is the site of more 
than 80% of all pathogenic missense mutations. The FOX domain is composed of 88 amino acids that are organ-
ized into five α-helices and three β-sheets some of which are directly involved in recognition and binding to 
DNA as well as protein-protein interactions through domain swapping33. Siper et al. provided a comprehensive 
discussion on the structural consequences of missense and in-frame mutations occurring in the FOX domain 
that have been identified in patients2. Notably, these mutations all occur on residues important for DNA-binding 
or protein-protein dimerization. They discuss the implications of changes in amino acid sequence in the FOX 
domain and note possible obstruction of electrostatic interactions with DNA, DNA recognition, and aberrant 
protein folding and dimerization.

Several studies have reported a wide spectrum of de novo human mutations in FOXP1 including deletions34–38, 
nonsense and missense variants1,29,39,40, frameshifts30, and translocations41. Here, we present three patients with a 
missense c.1574G>A (p.R525Q) mutation at the same residue. Although the clinical presentation of patient one 
has been described in detail1,39, the effect of this alteration on FOXP1 localization and activity has never been 
demonstrated. We provide biochemical characterization of the localization of the protein and a measure of its 
transcriptional repression activity. Finally, this represents the first reported case of a FOXP1 missense mutation 
with normal nuclear localization and aberrant transcriptional repression.

Results
Clinical assessment. The first patient reported to have a de novo c.1574G>A (p.R525Q) mutation in FOXP1 
was previously described in two separate reports1,39. Briefly, the patient was born to a non-consanguineous couple 
of Northern European ancestry and had respiratory distress and a left pneumomediastinum shortly after birth. 
By the age of four, he had presented with horseshoe kidney, hypospadias, urinary tract defects, recurrent fevers, 
dysmorphic features, global developmental delays, speech delay and autism. He also had undertubulation and 
shortening of the long bones of the upper and lower extremities as well as episodes of relapsing-remitting fevers.

Patient two presented to the  genetics clinic as an adult with significant intellectual disability including sub-
stantial expressive language delay. He had a history of failure to thrive with delayed pubertal development and low 
testosterone. The patient was normocephalic with a normal skull shape, a tall, sloped forehead, and arched eye-
brows with synophrys. He had a normal chin and ears and palate was intact, his teeth were crowded and irregular. 
He was in constant motion with many self-stimulatory behaviors including kicking, biting, and throwing himself 
to the ground. He was able to follow directions and carry out tasks but was unable to express himself. An EKG was 
normal. Whole exome sequencing in a commercial laboratory on the patient and both of his parents revealed the 
same de novo FOXP1 variant, c.1574G>A (p.R525Q).

Patient three was born to non-consanguineous parents of mixed European descent. The pregnancy was com-
plicated by spotting, sub chorionic hemorrhage, elevated maternal serum alpha-fetoprotein (MSAFP), possi-
ble Dandy-Walker malformation (DWM) with bilateral ventriculomegaly, unilateral ureteral dilation, and fetal 
macrosomia. He was delivered vaginally at 34 3/7 weeks without complication. The birth weight was 3140 g and 
length was 46 cm. Apgar scores were 8 and 8, at 1 and 5 minutes, respectively. He was admitted to the neonatal 
intensive care unit for management of respiratory distress. Hypoglycemia and jaundice were also noted. Postnatal 
imaging and examination revealed a horseshoe kidney with right hydronephrosis, bilateral undescended testes, 
and mega cisterna magna versus arachnoid cyst, without evidence of DWM. At approximately six months of life, 
the patient was diagnosed with sagittal craniosynostosis and macrocephaly. The patient underwent cranial vault 

Figure 1. FOXP1 p.R525 mutations map to the FOX DNA-binding domain. FOXP1 protein structure is 
composed of common conserved domains: an N-terminal Q-rich (polyglutamine) domain, internal zinc-finger 
(ZF) and leucine zipper (LZ), and a C-terminal forkhead box DNA-binding domain (FOX). Additionally, two 
nuclear localization signals (NLS) are present at the C-terminus that target the protein to the nucleus under 
normal conditions. Arginine 525 is localized to the DNA-binding FOX domain nestled between the two NLS.
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reconstruction at age nine months. The patient sat unsupported at 12 months, crawled at 14 months, and walked 
at 18 months. He was evaluated by child psychology at 1.5 years and was felt to have low average cognition and 
borderline expressive/receptive language abilities. The patient presented to the genetics clinic at age 2 years 7 
months. He did not have any verbal speech, but did know some signs and communicated with pointing at time 
of initial evaluation. Macrocephaly was noted (OFC 53.8 cm, >99th centile) as well as a broad, tall forehead with 
a prominent, pointed chin. Ears were well-formed, but low-set. The palate was intact with a mild prominent sec-
ondary alveolar ridge and his height was 96 cm (86th percentile). He could run and jump, but was notably clumsy. 
At the time of the most recent follow up (age 2 years, 11 months) he could say 7 words, knew 6 signs, and was 
working with a picture system. He could follow multi-step commands. At that time, he could also identify people 
and colors, and was working to help dress himself. He wore ankle and foot orthoses (AFOs) due to low tone and 
unsteady gait, as well as a helmet intermittently for protection from falls, although clumsiness was reportedly 
continuing to improve. The family described the patient to have sensory issues and a bad temper with hitting, bit-
ing, and throwing objects when not getting his way. He was working on toilet training. Whole exome sequencing 
in a commercial laboratory revealed the FOXP1 c.1574G>A (p.R525Q) mutation. A maternal sample was not 
available; however, paternal and unaffected full sibling’s samples were negative for the mutation. No additional 
variants were identified.

The FOXP1 p.R525Q mutation maintains nuclear localization but loses transcriptional repres-
sion. To determine the effect of the missense p.R525Q on cellular localization, we transiently transfected 
HeLa cells with constructs overexpressing WT FOXP1, a truncating mutant FOXP1 p.R525*, or the p.R525Q 
mutant, all fused to an N-terminal GFP reporter (Fig. 2). We performed immunolabeling for the GFP reporter 
and analyzed the cells by laser scanning confocal microscopy. Wild type FOXP1 localizes to the nucleus like most 
functional transcription factors (Fig. 3). The truncating mutant (p.R525*) aggregates in the cytoplasm while the 
missense mutant (p.R525Q) maintained nucleoplasmic localization similar to wild type FOXP1 (Fig. 3).

Mutations in FOXP1 result in drastic reduction of SV40 promoter repression in vitro29. In order to evaluate 
transcriptional repression activity of the missense mutant compared to wild type and p.R525* levels, we tested 
the ability of the p.R252Q variant to repress the SV40 promoter. Despite normal nuclear localization of missense 
mutant, the ability to transcriptionally repress the SV40 promoter was severely diminished as was the case for the 
truncating mutant (Fig. 4).

Discussion
Many cases of de novo mutations in FOXP1 have been reported including full and partial gene deletions34–38, non-
sense and missense variants1,29,39,40, frameshifts30, and translocations41. Shared among the patients harboring hete-
rozygous mutations in FOXP1 are conditions including intellectual disability, language impairment, autistic features, 
motor coordination and dysmorphic features also occasionally presenting with various cancers, and congenital 
defects of the heart, kidneys and urinary tract1,2. In this study, we report three patients with a p.R525Q missense 
mutation in the transcriptional repressor FOXP1. These patients all presented with the typical intellectual disability, 
autism spectrum disorder, language impairment, and behavioral tendencies including aggressiveness and obses-
sions. However, some of the additional clinical features noted in our patients such as the skeletal anomalies and 
fevers in patient one and the macrosomia in patient three have not been previously reported in patients with FOXP1 
mutations. The cause of neonatal macrosomia is unknown. Prenatal work ruled out maternal diabetes and there 
were no other variants identified on whole exome sequencing. The patient did have an 11q14.1 deletion on chro-
mosomal microarray analysis, an intronic deletion of DLG2 that has been identified in one normal control, which 
was considered to be a variant of unknown significance. Ultimately, we felt the deletion to be noncontributory, and 
there is certainly no evidence to link it to his history of neonatal macrosomia. Whether the additional features in 
these patients are a result of the FOXP1 mutation alone or additional unidentified genetic alterations is yet unclear.

Forkhead box proteins are a highly conserved class of transcription factors with a diverse role in development 
and disease. An inherent characteristic of most transcription factors is that they maintain their presence in the 
nucleus in order to activate or repress the transcription of genes in response to certain stimuli. FOXP1 localization 
is no exception to this rule, adhering to nuclear localization under normal circumstances28. To date, 41 different 
mutations have been reported in the FOXP1 gene (Summary in2). The Arg525 amino acid appears to be a muta-
tional hotspot as, to date, five additional patients have been reported harboring a p.R525* mutation2,32,42. Sollis et 
al. determined that regardless of the mutation, FOXP1 mutants lost transcriptional repression activity and always 
resulted in cytoplasmic and/or nuclear aggregation of the resulting protein product, likely due to protein misfold-
ing and loss of NLS sequences or functional loss of NLS motifs29. These mutations do not affect the NLS primary 
sequence but must structurally destabilize the domain sufficiently to impair NLS functionality. Here, the p.R525Q 
mutant construct, which is predicted to do no more than impair DNA binding, displayed normal nuclear locali-
zation. However, we show that the mutation resulted in severely diminished transcriptional repression indicating 
that DNA-binding was affected by the amino acid substitution while NLS activity is retained.

The amino acid sequence of the forkhead DNA binding domain of human FOXP1 is 87% identical to the cor-
responding domain of FOXP2, and thus the structures of these proteins are likely to be highly similar. The 1.9 Å 
resolution X-ray crystal structure of human FOXP2 in complex with DNA (PDB 2A0743) thus provides a useful 
model for understanding the likely impact of the R525Q mutation in FOXP1. Arg564 of FOXP2 (correspond-
ing to FOXP1 Arg525) makes multiple stabilizing contacts with DNA and other protein elements. The cationic 
sidechain of Arg564 makes favorable electrostatic interactions with both a backbone phosphate of the target DNA 
and Glu566. Glu566 is conserved in FOXP1, where it is Glu527 (Fig. 5). We predict that a R525K mutation, which 
preserves charge, would at least partially rescue the phenotype. However, the guanidinium group of Arg positions 
three H-bond donors about ~2.3 Å apart, which is ideal for making multiple H-bonds with anionic acceptors such 
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as carboxylate side chains or phosphates. The structure of Foxp2 shows that R564 makes multiple H-bonds that 
include the phosphate backbone, a proximal Glu, and an ordered water. Lysine is a more limited H-bond donor, 
and a Lys at this position could not satisfy all of these H-bond acceptors simultaneously. Therefore, we expect that 
the R525K phenotype would be intermediate between the R525Q and wild-type ones. Although this Arg residue 
is within ~10 Å of the dimer interface in PDB 2A07, it does not make any dimer-spanning contacts. It is difficult 
to strictly rule out dimer destabilization without experimentally assessing this, but the structure of the homolo-
gous FOXP2 indicates that dimer disruption is not likely to be the primary effect of the R->Q substitution at this 
location. Additionally, we cannot exclude alteration in any known FOXP1 protein binding partners as the only 
structures available for analysis are DNA-bound FoxP2, not complexes with other proteins. Within the limits of 
what is available for us to analyze, the R525 environment is dominated by DNA-protein and intrachain protein 
contacts that would make protein-protein contacts less likely without a major conformational change. Therefore, 
the clinical p.R525Q mutation in FOXP1 likely destabilizes both intra-protein and protein-DNA interactions due 
to loss of the cationic guanidinium sidechain of Arg525.

In summary, we have shown that three patients with the same missense mutation (p.R525Q) in the forkhead 
box DNA-binding domain of FOXP1 results in global developmental delay, autism spectrum disorder, and char-
acteristic dysmorphic features. Although other variant FOXP1 mutations result in the same clinical presentation 
resulting from loss of transcriptional repression activity and protein aggregation, the p.R525Q mutation main-
tains normal nuclear localization as the mutation is predicted to only disrupt protein-DNA complexes rather than 
its NLS signals. Thus, small changes in the DNA-binding domain of FOXP1 that alter electrostatic interactions 
with DNA and proteins appear to severely affect its function despite translation of full-length protein. Future 
work comparing cellular transcriptomes of p.R525Q, p.R525*, and other FOXP1 variants would identify some 
of the shared fundamental changes among these mutations that lead to a similar clinical phenotype in patients.

Figure 2. Expression of FOXP1 transcripts in HeLa cells. Expression constructs containing wild type (WT) 
FOXP1, p.R525* truncating mutant (RX), p.R525Q missense mutant (RQ) or GFP-only control were transiently 
transfected into HeLa cells. (a,b) The WT and RQ mutant produce full-length protein while the truncating 
mutant results in a loss of 152 amino acids at the C-terminus of the protein and a band near 75 kDa. Equal mass 
was loaded in each lane and (c) beta-actin was used as loading control. Blots are cropped to show bands of 
interest. Full-length blots are presented in Supplementary Figure 1.
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Methods
Plasmid generation. FOXP1 genes were amplified from human cDNA (HsCD00297105, ORFeome 
Collaboration, Harvard PlasmID Database) and inserted into pcDNA3.1 (Addgene, Cat. No. #) for 
N-terminal fusion with GFP by In-Fusion cloning (Clontech). The GFP pcDNA3.1 was linearized by diges-
tion with XhoI and AflII. Primers pairs designed to contain a 15 bp homologous region to the flanking 
sequences of pcDNA3.1 included 5′-GACGAGCTGTACAAGGACCTCGAGATGCAAGAATCTGGG-3′ 

Figure 3. Localization of the FOXP1 proteins in HeLa cells. Expression constructs containing WT FOXP1, 
truncating p.R525* mutant, and p.R525Q missense mutant were transiently transfected into HeLa cells. WT 
and p.R525Q mutant properly localize to the nucleus in identical patterns while the p.R525* truncation results 
in cytoplasmic aggregation.

Figure 4. Luciferase activity resulting from transcriptional repression of the SV40 promoter. The bars represent 
the relative transcriptional activity of the SV40 promoter resulting from co-transfection with plasmids 
containing the FOXP1 nonsense mutants. The results are mean values ± SEM of experiments performed in 
technical triplicate. RX and RQ variants result in severely diminished transcriptional repression of the SV40 
promoter as compared to WT levels.
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& 5′-GATCAGCGGTTTAAACTTAAGCTACTCCATGTCCTCGTT-3′ used to amplify the FOXP1 WT 
insert; and 5′-GACGAGCTGTACAAGGACCTCGAGATGCAAGAATCTGGG-3′ & 5′-GATCAGCG 
GTTTAAACTTAAGTCACACAAAACACTTGTG-3′  used for the p.R525X truncating mutation 
insert. A three-piece In-fusion cloning strategy was used to generate the p.R525Q plasmid with prim-
ers spanning the missense mutation (underlined) as follows 5′ GACGAGCTGTACAAGGACCTCGAGAT 
GCAAGAATCTGGG-3′ & 5′-TTAACGTTTTCTACTTGC ACAAAACACTTG-3′; and subsequently 
5′-CAAGTGTTTTGTGCAAGTAGAAAACGTTAA-3′& 5′-GATCAGCGGTTTAAACTTAAGCTAC 
TCCATGTCCTCGTT-3′ to generate products of 472 and 1586 bps respectively. The insert to vector molar ratio 
for HD recombination was approximately 3:1 or 2:2:1. All PCR reactions used CloneAmp HiFi PCR Premix 
(Takara Bio USA, Cat. No. 639298) as per manufacturer’s recommendations with an annealing temperature of 
70 °C. Insertion of gene sequences was confirmed by Sanger sequencing.

Western blot. Cell Lysates were collected in 200 ul of Laemmli Buffer (BioRad), heated to 98 C for five min-
utes, and sonicated. 10 ul of lysate was ran on precast gradient gels, 4–20%, and then transferred to a nitrocel-
lulose membrane using the BioRad Turbo Transfer System. Primary antibody incubation was performed with 
rabbit anti-FOXP1 (Abcam; ab1664544) or chicken anti-GFP antbodies (Abcam; ab1397045), followed by a sec-
ondary antibody incubation using goat anti-rabbit HRP and goat anti-chicken HRP antibodies (Santa Cruz), 
respectively. Bands were then visualized with Luminata Forte Western HRP substrate (Millipore) and imaged 
using UVP-gel documentation system.

Figure 5. Residue R525 of human FOXP1 is predicted to interact with both DNA and nearby residues. (A) 
Chain K of the forkhead domain of human FOXP2 (PDB 2A07) bound to DNA43. DNA is depicted in ball-
and-stick and FoxP2 is shown as a ribbon diagram with α-helices colored orange and β-strands colored blue. 
The forkhead domain of FoxP2 shares 87% sequence identity with human FoxP1. Residue R564 in FOXP2 
(corresponding to R525 in FOXP1) is located at the protein-DNA interface. The red circle shows the area that is 
depicted in panel B. (B) A closer view of the environment of R564 (R525 in human FOXP1). Residue numbers 
in PDB 2A07 are indicated; their corresponding human FOXP1 numbering shown in parentheses. Potential 
hydrogen bonding interactions are shown in dotted lines with distances indicated in Ångstroms. “Wat” indicates 
an ordered water molecule mediating H-bonds between protein and DNA. R525 in human FOXP1 is likely to 
make similar contacts, which the R525Q mutation likely disrupts. Figure made with POVScript+47.



www.nature.com/scientificreports/

7SCieNtiFiC REPoRTS |         (2018) 8:16161  | DOI:10.1038/s41598-018-34437-0

Immunocytochemistry. Transient transfections were carried out as previously described46. Briefly, HeLa 
cells were grown in 24 well plates on coverglass to 60–80% confluency. Cells were transfected with 500 ng pcDNA 
3.1_FoxP1 WT, p.R525*, or p.R525Q separately using Lipofectamine 3000 reagents (Thermo Fisher Scientific) 
following the manufacturer’s suggested protocol. After 48 hours, cells were fixed with 3% paraformaldehyde for 
20 minutes. Primary antibody incubation was performed with rabbit anti-FOXP1 (Abcam) and chicken anti-GFP 
antibodies (Abcam) followed by a secondary antibody incubation using anti-rabbit-568, anti-chicken-488 
(Invitrogen), and DAPI (Life Technologies). Imaging for cellular localization was carried out on a Nikon Ni-E 
microscope equipped with a Photometrics CoolSNAP Myo camera. Exposures for each channel were 700 ms 
(DAPI), 900 ms (GFP), and 300 ms (Texas Red).

Luciferase assay. HEK 293 cells were grown in DMEM (Corning) supplemented with 10% Fetal Bovine 
Serum (VWR) and 1% Penicillin/Streptomycin (HyClone) in 24 well plates. When the cells reached 80% conflu-
ence, co-transfection of pcDNA3.1-FOXP1 (250 ng), DBH-pGL3-basic (250 ng), and pRL-TK (25 ng, Promega) 
was done using Lipofectamine 2000 (ThermoFisher) following the manufacturer’s suggested protocol. After 
24 hours, fresh DMEM was added and 24 hours later the cells were lysed using 1X Passive lysis buffer (Promega). 
Firefly and Renilla luciferase activity was detected using the Dual-Luciferase Reporter Assay System (Promega) 
following the manufacturer’s suggested protocol. Luciferase activity readings were acquired on biological tripli-
cates and technical triplicates using a Promega GlowMax 96 well luminometer (Promega). 1-way ANOVA with 
Fisher’s LSD test were used for statistical analysis.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
authors on reasonable request.

References
 1. Myers, A. et al. FOXP1 haploinsufficiency: Phenotypes beyond behavior and intellectual disability? American journal of medical 

genetics. Part A 173, 3172–3181, https://doi.org/10.1002/ajmg.a.38462 (2017).
 2. Siper, P. M. et al. Prospective investigation of FOXP1 syndrome. Molecular autism 8, 57, https://doi.org/10.1186/s13229-017-0172-6 (2017).
 3. Hu, H. et al. Foxp1 is an essential transcriptional regulator of B cell development. Nature immunology 7, 819–826, https://doi.

org/10.1038/ni1358 (2006).
 4. Shi, C. et al. Integrin engagement regulates monocyte differentiation through the forkhead transcription factor Foxp1. The Journal 

of clinical investigation 114, 408–418, https://doi.org/10.1172/JCI21100 (2004).
 5. Shu, W. et al. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134, 1991–2000, https://doi.

org/10.1242/dev.02846 (2007).
 6. Shu, W., Yang, H., Zhang, L., Lu, M. M. & Morrisey, E. E. Characterization of a new subfamily of winged-helix/forkhead (Fox) genes 

that are expressed in the lung and act as transcriptional repressors. The Journal of biological chemistry 276, 27488–27497, https://doi.
org/10.1074/jbc.M100636200 (2001).

 7. Wang, B. et al. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. 
Development 131, 4477–4487, https://doi.org/10.1242/dev.01287 (2004).

 8. Li, X. et al. Foxp1 regulates cortical radial migration and neuronal morphogenesis in developing cerebral cortex. PloS one 10, 
e0127671, https://doi.org/10.1371/journal.pone.0127671 (2015).

 9. Araujo, D. J. et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes & development 29, 2081–2096, 
https://doi.org/10.1101/gad.267989.115 (2015).

 10. Ferland, R. J., Cherry, T. J., Preware, P. O., Morrisey, E. E. & Walsh, C. A. Characterization of Foxp2 and Foxp1 mRNA and protein 
in the developing and mature brain. The Journal of comparative neurology 460, 266–279, https://doi.org/10.1002/cne.10654 (2003).

 11. Morikawa, Y., Hisaoka, T. & Senba, E. Characterization of Foxp2-expressing cells in the developing spinal cord. Neuroscience 162, 
1150–1162, https://doi.org/10.1016/j.neuroscience.2009.05.022 (2009).

 12. Braccioli, L. et al. FOXP1 Promotes Embryonic Neural Stem Cell Differentiation by Repressing Jagged1 Expression. Stem cell reports 
9, 1530–1545, https://doi.org/10.1016/j.stemcr.2017.10.012 (2017).

 13. Precious, S. V. et al. FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation. 
Experimental neurology 282, 9–18, https://doi.org/10.1016/j.expneurol.2016.05.002 (2016).

 14. Wang, B., Lin, D., Li, C. & Tucker, P. Multiple domains define the expression and regulatory properties of Foxp1 forkhead 
transcriptional repressors. The Journal of biological chemistry 278, 24259–24268, https://doi.org/10.1074/jbc.M207174200 (2003).

 15. Estruch, S. B. et al. Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with 
neurodevelopmental disorders. Human molecular genetics 27, 1212–1227, https://doi.org/10.1093/hmg/ddy035 (2018).

 16. Shi, C. et al. Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage 
function. Blood 112, 4699–4711, https://doi.org/10.1182/blood-2008-01-137018 (2008).

 17. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. 
Nature immunology 4, 330–336, https://doi.org/10.1038/ni904 (2003).

 18. Li, S. et al. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. 
Development 139, 2500–2509, https://doi.org/10.1242/dev.079699 (2012).

 19. Feng, X. et al. Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte 
development. Blood 115, 510–518, https://doi.org/10.1182/blood-2009-07-232694 (2010).

 20. Gerber, H. P. et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811 (1994).
 21. Chamberlain, N. L., Driver, E. D. & Miesfeld, R. L. The length and location of CAG trinucleotide repeats in the androgen receptor 

N-terminal domain affect transactivation function. Nucleic acids research 22, 3181–3186 (1994).
 22. Friedman, M. J. et al. Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and 

neurodegeneration. Nature neuroscience 10, 1519–1528, https://doi.org/10.1038/nn2011 (2007).
 23. Fox, A. H. et al. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. The 

EMBO journal 18, 2812–2822, https://doi.org/10.1093/emboj/18.10.2812 (1999).
 24. Feuerstein, R., Wang, X., Song, D., Cooke, N. E. & Liebhaber, S. A. The LIM/double zinc-finger motif functions as a protein 

dimerization domain. Proceedings of the National Academy of Sciences of the United States of America 91, 10655–10659 (1994).
 25. Chae, W. J., Henegariu, O., Lee, S. K. & Bothwell, A. L. The mutant leucine-zipper domain impairs both dimerization and suppressive 

function of Foxp3 in T cells. Proceedings of the National Academy of Sciences of the United States of America 103, 9631–9636, https://
doi.org/10.1073/pnas.0600225103 (2006).

 26. Dwarki, V. J., Montminy, M. & Verma, I. M. Both the basic region and the ‘leucine zipper’ domain of the cyclic AMP response 
element binding (CREB) protein are essential for transcriptional activation. The EMBO journal 9, 225–232 (1990).

http://dx.doi.org/10.1002/ajmg.a.38462
http://dx.doi.org/10.1186/s13229-017-0172-6
http://dx.doi.org/10.1038/ni1358
http://dx.doi.org/10.1038/ni1358
http://dx.doi.org/10.1172/JCI21100
http://dx.doi.org/10.1242/dev.02846
http://dx.doi.org/10.1242/dev.02846
http://dx.doi.org/10.1074/jbc.M100636200
http://dx.doi.org/10.1074/jbc.M100636200
http://dx.doi.org/10.1242/dev.01287
http://dx.doi.org/10.1371/journal.pone.0127671
http://dx.doi.org/10.1101/gad.267989.115
http://dx.doi.org/10.1002/cne.10654
http://dx.doi.org/10.1016/j.neuroscience.2009.05.022
http://dx.doi.org/10.1016/j.stemcr.2017.10.012
http://dx.doi.org/10.1016/j.expneurol.2016.05.002
http://dx.doi.org/10.1074/jbc.M207174200
http://dx.doi.org/10.1093/hmg/ddy035
http://dx.doi.org/10.1182/blood-2008-01-137018
http://dx.doi.org/10.1038/ni904
http://dx.doi.org/10.1242/dev.079699
http://dx.doi.org/10.1182/blood-2009-07-232694
http://dx.doi.org/10.1038/nn2011
http://dx.doi.org/10.1093/emboj/18.10.2812
http://dx.doi.org/10.1073/pnas.0600225103
http://dx.doi.org/10.1073/pnas.0600225103


www.nature.com/scientificreports/

8SCieNtiFiC REPoRTS |         (2018) 8:16161  | DOI:10.1038/s41598-018-34437-0

 27. Li, S., Weidenfeld, J. & Morrisey, E. E. Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic 
and homotypic protein interactions. Molecular and cellular biology 24, 809–822 (2004).

 28. Banham, A. H. et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. 
Cancer research 61, 8820–8829 (2001).

 29. Sollis, E. et al. Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of 
neurodevelopmental disorder. Human molecular genetics 25, 546–557, https://doi.org/10.1093/hmg/ddv495 (2016).

 30. O’Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature genetics 43, 
585–589, https://doi.org/10.1038/ng.835 (2011).

 31. Lozano, R., Vino, A., Lozano, C., Fisher, S. E. & Deriziotis, P. A de novo FOXP1 variant in a patient with autism, intellectual disability 
and severe speech and language impairment. European journal of human genetics: EJHG 23, 1702–1707, https://doi.org/10.1038/
ejhg.2015.66 (2015).

 32. Hamdan, F. F. et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. American 
journal of human genetics 87, 671–678, https://doi.org/10.1016/j.ajhg.2010.09.017 (2010).

 33. Medina, E. et al. Three-Dimensional Domain Swapping Changes the Folding Mechanism of the Forkhead Domain of FoxP1. 
Biophysical Journal 110, 2349–2360, https://doi.org/10.1016/j.bpj.2016.04.043 (2016).

 34. Carr, C. W. et al. Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with 
FOXP1 haploinsufficiency. European journal of human genetics: EJHG 18, 1216–1220, https://doi.org/10.1038/ejhg.2010.96 (2010).

 35. Horn, D. et al. Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and 
language deficits. Human mutation 31, E1851–1860, https://doi.org/10.1002/humu.21362 (2010).

 36. Le Fevre, A. K. et al. FOXP1 mutations cause intellectual disability and a recognizable phenotype. American journal of medical 
genetics. Part A 161A, 3166–3175, https://doi.org/10.1002/ajmg.a.36174 (2013).

 37. Palumbo, O. et al. 3p14.1 de novo microdeletion involving the FOXP1 gene in an adult patient with autism, severe speech delay and 
deficit of motor coordination. Gene 516, 107–113, https://doi.org/10.1016/j.gene.2012.12.073 (2013).

 38. Pariani, M. J., Spencer, A., Graham, J. M. Jr & Rimoin, D. L. A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated 
with speech delay, contractures, hypertonia and blepharophimosis. European journal of medical genetics 52, 123–127, https://doi.
org/10.1016/j.ejmg.2009.03.012 (2009).

 39. Bekheirnia, M. R. et al. Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney 
and urinary tract and identification of a new causative gene. Genetics in medicine: official journal of the American College of Medical 
Genetics 19, 412–420, https://doi.org/10.1038/gim.2016.131 (2017).

 40. Urreizti, R. et al. A De Novo FOXP1 Truncating Mutation in a Patient Originally Diagnosed as C Syndrome. Scientific reports 8, 694, 
https://doi.org/10.1038/s41598-017-19109-9 (2018).

 41. Talkowski, M. E. et al. Disruption of a large intergenic noncoding RNA in subjects with neurodevelopmental disabilities. American 
journal of human genetics 91, 1128–1134, https://doi.org/10.1016/j.ajhg.2012.10.016 (2012).

 42. Meerschaut, I. et al. FOXP1-related intellectual disability syndrome: a recognisable entity. Journal of medical genetics 54, 613–623, 
https://doi.org/10.1136/jmedgenet-2017-104579 (2017).

 43. Stroud, J. C. et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure (London, England: 1993) 14, 159–166, 
https://doi.org/10.1016/j.str.2005.10.005 (2006).

 44. Chang, H. et al. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. Nucleic acids 
research 44, 2514–2527, https://doi.org/10.1093/nar/gkw126 (2016).

 45. Antoniou, A. et al. The dynamic recruitment of TRBP to neuronal membranes mediates dendritogenesis during development. 
EMBO reports 19 https://doi.org/10.15252/embr.201744853 (2018).

 46. Cain, J. T. et al. Nonsense pathogenic variants in exon 1 of PHOX2B lead to translational reinitiation in congenital central 
hypoventilation syndrome. American journal of medical genetics. Part A 173, 1200–1207, https://doi.org/10.1002/ajmg.a.38162 (2017).

 47. D., F. T., D., R. & A., P. G. POVScript+: a program for model and data visualization using persistence of vision ray‐tracing. Journal 
of Applied Crystallography 36, 944–947, https://doi.org/10.1107/S0021889803006721 (2003).

Acknowledgements
We thank the patients and their families who participated in this study. This work was supported by NIH R01 
GM102203 to K.J.R., NIH R01 NS082283.to J.M.W., an Institutional Development Award from NIH to support 
the Sanford Research Imaging Core (P20 GM103620 and P20 GM103548), and funding from the Sanford 
Foundation.

Author Contributions
T.B.J., K.M., R.A., J.T.C., K.J.R. and J.M.W. designed research; T.B.J., K.M., R.A., J.T.C. and D.A.S. performed the 
experiments; S.B., H.P. and M.L. generated the clinical data; T.B.J., K.M., R.A., J.T.C., D.A.S., M.L., M.A.W., K.J.R. 
and J.M.W. analyzed data and generated figures; T.B.J., J.T.C., H.P., M.L, M.A.W., K.J.R. and J.M.W. prepared the 
manuscript; and all authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-34437-0.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1093/hmg/ddv495
http://dx.doi.org/10.1038/ng.835
http://dx.doi.org/10.1038/ejhg.2015.66
http://dx.doi.org/10.1038/ejhg.2015.66
http://dx.doi.org/10.1016/j.ajhg.2010.09.017
http://dx.doi.org/10.1016/j.bpj.2016.04.043
http://dx.doi.org/10.1038/ejhg.2010.96
http://dx.doi.org/10.1002/humu.21362
http://dx.doi.org/10.1002/ajmg.a.36174
http://dx.doi.org/10.1016/j.gene.2012.12.073
http://dx.doi.org/10.1016/j.ejmg.2009.03.012
http://dx.doi.org/10.1016/j.ejmg.2009.03.012
http://dx.doi.org/10.1038/gim.2016.131
http://dx.doi.org/10.1038/s41598-017-19109-9
http://dx.doi.org/10.1016/j.ajhg.2012.10.016
http://dx.doi.org/10.1136/jmedgenet-2017-104579
http://dx.doi.org/10.1016/j.str.2005.10.005
http://dx.doi.org/10.1093/nar/gkw126
http://dx.doi.org/10.15252/embr.201744853
http://dx.doi.org/10.1002/ajmg.a.38162
http://dx.doi.org/10.1107/S0021889803006721
http://dx.doi.org/10.1038/s41598-018-34437-0
http://creativecommons.org/licenses/by/4.0/

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2018

	Characterization of a recurrent missense mutation in the forkhead DNA-binding domain of FOXP1
	Tyler B. Johnson
	Keegan Mechels
	Ruth Ellen Anderson
	Jacob T. Cain
	David A. Sturdevant
	See next page for additional authors
	Authors


	Characterization of a recurrent missense mutation in the forkhead DNA-binding domain of FOXP1
	Results
	Clinical assessment. 
	The FOXP1 p.R525Q mutation maintains nuclear localization but loses transcriptional repression. 

	Discussion
	Methods
	Plasmid generation. 
	Western blot. 
	Immunocytochemistry. 
	Luciferase assay. 

	Acknowledgements
	Figure 1 FOXP1 p.
	Figure 2 Expression of FOXP1 transcripts in HeLa cells.
	Figure 3 Localization of the FOXP1 proteins in HeLa cells.
	Figure 4 Luciferase activity resulting from transcriptional repression of the SV40 promoter.
	Figure 5 Residue R525 of human FOXP1 is predicted to interact with both DNA and nearby residues.


