2004

Effects of Choline, Betaine, and Wheat Floral Extracts on Growth of *Fusarium graminearum*

Jessica S. Engle
Ohio State University

Patrick E. Lipps
Ohio State University

Terry L. Graham
Ohio State University

Michael J. Boehm
University of Nebraska-Lincoln, mboehm3@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/plantpathpapers

Part of the [Other Plant Sciences Commons](http://digitalcommons.unl.edu/plantpathpapers), [Plant Biology Commons](http://digitalcommons.unl.edu/plantpathpapers), and the [Plant Pathology Commons](http://digitalcommons.unl.edu/plantpathpapers)

http://digitalcommons.unl.edu/plantpathpapers/394

This Article is brought to you for free and open access by the Plant Pathology Department at Digitalcommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of Digitalcommons@University of Nebraska - Lincoln.
Effects of Choline, Betaine, and Wheat Floral Extracts on Growth of *Fusarium graminearum*

Jessica S. Engle, Graduate Research Associate, Patrick E. Lipps, Professor, Terry L. Graham, Professor, and Michael J. Boehm, Associate Professor, Department of Plant Pathology, The Ohio State University, Wooster 44691

ABSTRACT

Fusarium head blight has been more severe when infection occurs during anthesis, indicating that floral organs may be important infection courts. Choline acetate and glycinebetaine have been extracted from wheat and reported to be growth stimulants of *Fusarium graminearum*. They are hypothesized to enhance infection and tissue colonization. Growth of *F. graminearum* was examined on media amended with extracts from floral parts of nine wheat genotypes with various Fusarium head blight resistance levels. Results indicated no significant effect of anther, palea, or lemma extracts on radial growth when compared with unamended controls. Effects on spore germination and hyphal growth of *F. graminearum* by choline, betaine, and an equimolar mixture at concentrations ranging from 0.01 to 1,000 µM also were examined. Spore germination was not significantly (*P* ≤ 0.05) affected by choline, betaine, or a combination of the compounds compared with unamended controls. Radial hyphal growth also was not consistently affected (*P* ≤ 0.05) by choline or betaine when compared with controls. Equimolar mixtures of the two compounds showed significant slight reduction in growth rate at higher concentrations when compared with controls. The reduction in growth rate was due to higher concentrations of betaine. Results of this study indicate that endogenous compounds in floral parts may not be associated with wheat resistance to *F. graminearum*.

Additional keywords: Gibberella zeae, Triticum aestivum, winter wheat

Fusarium head blight of wheat (*Triticum aestivum* L.), caused by *Fusarium graminearum* Schwabe (teleomorph: *Gibberella zeae* (Schwein.) Petch), has become a widespread problem in the United States as a result of increased implementation of reduced-tillage farming practices, especially in crop rotations where wheat follows corn (*Zea mays* L.) (4,8,10). *F. graminearum* infection of the floret causes sterility, poor seed fill, poor seed quality, and contamination of grain with the mycotoxin deoxynivalenol, which has resulted in widespread economic loss in the north-central region of the United States (2,4,5,17,22). Minimal control of Fusarium head blight has been achieved through fungicide application and cultural practices to date, making planting of moderately resistant cultivars the primary management tool (2,4,11–13,16,17).

Corresponding author: P. E. Lipps
E-mail: lipps.1@osu.edu

Salaries and research support were provided by state and federal funds appropriated to the Ohio Agricultural Research and Development Center, the Ohio State University. Partial funding for this research was obtained from the United States Wheat and Barley Scab Initiative.

Accepted for publication 9 September 2003.

Publication no. D-2003-1118-04R
© 2004 The American Phytopathological Society

Open Access licensed.
provide more complete information on the growth response of *F. graminearum*.

MATERIALS AND METHODS

Hyphal extension. Three *F. graminearum* isolates characterized by high aggressiveness on the susceptible spring wheat cv. Wheaton were obtained in Ohio from infected wheat and were selected based on their ability to produce abundant perithecia in pure culture. To examine the effects of choline and betaine on radial growth, solid media (2% water and dextrose agar) were amended to obtain final concentrations of: 0.01, 0.1, 1.0, 10, 100, and 1,000 µM of choline chloride (Sigma-Aldrich, St. Louis), betaine hydrochloride (Sigma-Aldrich), and an equal molar concentration of the two compounds. Compounds were added when the agar had cooled to approximately 55°C after autoclaving.

Mycelial plugs of the individual isolates were removed from the advancing edge of a water agar culture with a 5-mm cork borer and inverted onto the center of the 15-cm-diameter dishes. The petri dishes were randomly placed under UV and white fluorescent light banks with a 12-h photoperiod (14) in a room at 21 ± 3°C. At 24, 48, and 72 h after placing the plug on the agar, the longest and shortest colony diameters were measured using a dissecting microscope (×12.6 magnification).

The six concentrations were tested in separate experiments of three concentrations each. Each experiment included the corresponding unamended media, 2% water and 2% dextrose agar, as the controls. Radial growth over each 48-h interval between measurements was calculated from the mean of the measurements of each dish. Each petri dish was a statistical unit (replicate). There were three replications of each compound concentration on each of the two agar media in each experiment in a randomized complete block design where experimental repeats were blocks. The experiment was conducted twice.

Rate of hyphal extension (millimeters per hour) was calculated for the period between 24 and 72 h based on average measurements. The three lower and three higher concentrations were analyzed separately. Significance of differences in rate of hyphal extension among treatment main effects (isolate, media, and compound concentration) and their interactions were tested by analysis of variance (ANOVA) using the general linear model in MINITAB (release 12; MINITAB, Inc., State College, PA).

Spore germination. Ascospore and macroconidial germination of the three *F. graminearum* isolates was evaluated on plain glass microscope slides covered with a 10-, 100-, and 1,000-µM layer of choline- or betaine-amended 2% water and dextrose agar as described previously (9). Three 1-µl drops of sterile water containing approximately 20 ascospores or macroconidia were placed on the slide. Slides then were placed onto the surface of sterile 2% water agar dishes to maintain adequate moisture. The dishes were randomly placed under the light bank previously described.

Each drop of spore suspension on a slide was a subunit. Each slide for each compound-amended agar type was a replicate, and there were two replicates per experiment. The experiment was conducted twice. The numbers of germinated spores were counted using a dissecting microscope (×12.6 magnification) 2, 4, 6, 8, and 24 h after placing the spore suspensions on the agar coated slides. A spore was considered germinated when the germ tube was clearly discernible. The slides were not removed from the petri dishes during spore counts.

Significant differences in percentage of germinated spores among treatment main effects (isolate, media, and compound concentration) and interactions were tested by ANOVA for a completely randomized block design where blocks were experimental repeats using the general linear model in MINITAB. Data for the two different spore types were analyzed separately.

Floral compound extracts. Nine wheat genotypes were selected to evaluate the effect of floral compound extracts on the growth of *F. graminearum*. Selection was based on differences in mean Fusarium head blight severity and incidence from the 1999 uniform winter wheat Fusarium head blight screening nursery (6; Table 1). Mean incidence and severity were based on seven field locations across six states in the United States and one nursery in Ontario, Canada. Seed harvested from the nursery planted in Wooster, OH was used for this experiment. The seed was stored at 4.5°C under low relative humidity until use.

Seed were germinated and placed in a growth chamber at 3.5°C with an 8-h photoperiod for approximately 65 days for vernalization. Four seedlings for each genotype were transplanted into individual 15.2-cm pots containing autoclaved Wootsilt-loam soil and placed by genotype on benches in a 20.0 ± 3.0°C greenhouse with a 12-h photoperiod of supplemental lighting. Standard greenhouse conditions were used to produce healthy plants (9).

Each pot containing four plants per genotype was considered a statistical unit (replicate). There were six replicates per block. Each of three temporally repeated experiments was a block. The blocks were separated by a month in planting date.

Entire spikes were collected when at least one floret had extruded anthers. Fifteen spikes randomly collected from all the replicates of a genotype in a block were placed in a plastic bag and stored in a −10°C freezer. Samples from each of the 15 spikes, 11 anthers, two paleas, and two lemmas were randomly collected. A greater number of anthers were harvested from the spikes because of the smaller size of anthers compared with lemmas and paleas. The individual floral tissues collected from the 15 spikes of each block were combined to form the floral tissue sample for each genotype. Therefore, there were three floral tissue samples for each of three blocks.

During dissection, the lemma, palea, and anthers were removed with sterile, fine-tipped forceps and placed in separate 1.5-ml Eppendorf tubes containing 0.5 ml of 100% methanol and stored in a freezer at −10°C. Samples were stored in 100% methanol to sterilize sampled tissues. The Eppendorf tubes were opened and placed in an air bench to evaporate the methanol and the samples were rehydrated with 1 ml of sterile water. The samples were frozen and thawed once before being ground with a polypropylene pellet pestle (Kontes Glassware, Vineland, NJ) in Eppendorf tubes. Tubes were centrifuged and the supernatant transferred to fresh tubes. Tissue maceration and extraction was re-

Table 1. Mean severity and incidence of Fusarium head blight on nine genotypes selected from the 1999 uniform winter wheat screening nursery

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Incidence (%)</th>
<th>Severity (%)</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ernie</td>
<td>36.1</td>
<td>8.6</td>
<td>PR</td>
</tr>
<tr>
<td>IL94-1909</td>
<td>28.3</td>
<td>9.1</td>
<td>PR</td>
</tr>
<tr>
<td>OH552</td>
<td>53.9</td>
<td>11.8</td>
<td>PR</td>
</tr>
<tr>
<td>Goldfield</td>
<td>38.1</td>
<td>14.1</td>
<td>PR</td>
</tr>
<tr>
<td>Freedom</td>
<td>44.5</td>
<td>15.5</td>
<td>PR</td>
</tr>
<tr>
<td>OH609</td>
<td>35.4</td>
<td>15.9</td>
<td>PR</td>
</tr>
<tr>
<td>IL95-4162</td>
<td>34.5</td>
<td>17.6</td>
<td>S</td>
</tr>
<tr>
<td>Patterson</td>
<td>49.5</td>
<td>24.6</td>
<td>S</td>
</tr>
<tr>
<td>2545</td>
<td>61.0</td>
<td>19.9</td>
<td>S</td>
</tr>
<tr>
<td>LSD</td>
<td>13.3</td>
<td>6.4</td>
<td>...</td>
</tr>
</tbody>
</table>

C Nurseryes were evaluated at six locations across the United States and one location in Ontario, Canada. Incidence is the mean percentage of spikes with at least one symptomatic spikelet. Severity is the mean percentage symptomatic spikelets per spike.

* Relative reaction compared with 2545 based on incidence and severity assessments, where PR = partially resistant and S = susceptible. Classification based on cultivar means from incidence or severity significantly different (for PR classification) or not significantly different (for S classification) from the susceptible cultivar 2545 for resistance according to Fisher’s protected least significant difference (LSD) (*P* ≤ 0.05).
peated twice and the supernatants from each sample were pooled. A 2.5-ml aliquot of each pooled supernatant was mixed with 2.5 ml of 4% water agar in sterilized test tubes in a 55°C water bath. The amended agar (5 ml) was vortexed and then poured into 5-cm-diameter petri dishes. Plugs of two *F. graminearum* isolates were removed from the advancing edges of water agar cultures with a 5-mm cork borer and inverted on the surface of the amended agar with individual isolate plugs on opposite sides of the petri dish. Hyphal growth from the edge of each plug was measured after 24, 48, and 72 h. Two measurements for each isolate were averaged per tissue sample per block per genotype.

Rate of hyphal extension (millimeters per hour) was calculated for the period between 24 and 72 h. The different floral tissues were analyzed separately. Percentage of increased growth compared with the control (unamended water agar) was calculated for each floral part extract. Significance of differences in the percentage of increased growth compared with the control among treatment main effects (wheat genotype and *F. graminearum* isolate) and interaction was tested by ANOVA conducted using the general linear model in MINITAB.

RESULTS

Hyphal extension. The three *F. graminearum* isolates had significantly different (*P* = 0.05) linear growth rates on amended agar plates over the time period measured, but growth rate of an isolate was constant across repeats of experiments. The three isolates had a mean radial growth rate of 0.35 to 0.64 mm/h on water agar, which was significantly different (*P* < 0.0001) from the mean radial growth rate of 0.35 to 0.54 mm/h on dextrose agar. Choline induced a relatively small but significant (*P* = 0.05) increase in radial growth of the three isolates on water agar, but not on dextrose agar, at concentrations from 0.01 to 1.0 µM compared with the unamended control after 72 h (Fig. 1A). However, this small effect was not observed at concentrations ranging from 10 to 1,000 µM (Fig. 2A).

The three isolates also had a relatively small but significant (*P* = 0.05) increase in radial growth on water agar amended with betaine, but not on amended dextrose agar, at concentrations from 0.01 to 1.0 µM compared with the unamended control after 72 h (Fig. 1B). Betaine did not significantly affect radial growth at concentrations of 10 to 100 µM, although there was a reduction of hyphal growth of all isolates at the 1,000-µM concentration compared with the unamended control of both agars (Fig. 2B).

Likewise, the equimolar mixture of choline and betaine slightly, but significantly, (*P* = 0.05) increased the radial growth of the isolates at concentrations ranging from

Fig. 1. Mean radial growth rate of three *Fusarium graminearum* isolates over a 72-h period on water and dextrose agar amended with A, choline; B, betaine; and C, equimolar mixture of choline and betaine at compound concentrations ranging from 0 (unamended control) to 1.0 µM. Data presented are the means from three experiments (means were combined across experiments, with each experiment having three replicate plates per agar type per compound at each concentration). Bar indicates one standard deviation.
The equimolar concentrations of choline and betaine significantly \((P \leq 0.01)\) reduced hyphal growth at the 1,000-µM concentration compared with the unamended control of both agars, but had little effect on hyphal growth at concentrations ranging from 10 to 100 µM (Fig. 2C).

\[0.01 \text{ to } 1.0 \text{ µM (Fig. 1C).} \]

Spore germination. Ascospores and macroconidia germinated readily on unamended water agar- and dextrose agar-coated glass slides with 99% germination within 24 h. Germination of ascospores and macroconidia was not significantly \((P = 0.05)\) affected by 10-, 100-, and 1,000-µM concentrations of choline, betaine, or an equimolar mixture when compared with the unamended control slides over a 24-h period (data not shown).

Floral compound extracts. Both isolates of \(F. graminearum\) used to evaluate growth on tissue extract-amended agar grew readily on water agar, but at significantly different rates \((P = 0.05)\), with an average of 0.3 mm/h. Hyphal growth of the two \(F. graminearum\) isolates was significantly increased \((P = 0.05)\) by anther and palea extracts of all genotypes when compared with the unamended control (Fig. 3A and B). The lemma extracts also significantly increased \((P = 0.05)\) hyphal growth for both isolates except when placed on the agar amended with extracts from the genotypes Goldfield (partially resistant) and 2545 (susceptible) (Fig. 3C). The growth stimulation by floral extracts was not consistent with resistance reactions of the genotypes as determined by disease assessments in the field (Table 1).

DISCUSSION

The effects of choline and betaine on macroconidial germination have been previously studied (15,24). In both studies, concentrations of choline, betaine, and an equimolar mixture of the two compounds ranging from 0.1 µM to \(1 \times 10^4\) µM in amended Vogel's salt solution and 2% sucrose agar had no effect on germination of macroconidia (15,25). In this study, employing different protocols and simple media, these results were confirmed over a compound concentration range of 0.01 to 1,000 µM. Ascospore germination in the presence of choline and betaine also was examined in our study. Germination of ascospores also was found not to be increased by the presence of choline or betaine. It was concluded that, regardless of the nutrient environment ascospores or macroconidia were exposed to, choline and betaine had no effect on germination.

Previous researchers have used liquid and solid media with Vogel's salt solution modified with either 2% sucrose or glucose and amended with choline chloride or betaine hydrochloride to determine the effects of these compounds on hyphal growth of \(F. graminearum\) in vitro (15,24,27). Strange and Smith (25) reported that choline in concentrations as low as 0.01 µM caused a small, but statistically significant enhancement of \(F. graminearum\) radial growth on water agar. Our results concur with these results and indicate that higher concentrations \((\geq 10\) µM) of choline on agar modified with dextrose did not affect radial growth when

Fig. 2. Mean radial growth rate of three \(Fusarium graminearum\) isolates over a 72-h period on water and dextrose agar amended with A, choline; B, betaine; and C, equimolar mixture of choline and betaine at compound concentrations ranging from 0 (unamended control) to 1,000 µM. Data presented are the means from three experiments (means were combined across experiments, with each experiment having three replicate plates per agar type per compound at each concentration). Bar indicates one standard deviation.
compared with the unamended control (15,25,27). Betaine and equimolar mixtures of choline and betaine had no effect on *F. graminearum* radial growth at low concentrations; however, in this and previous studies (15), betaine inhibited or reduced growth at higher (≥1,000 µM) concentrations. We used different protocols than these previous studies to examine the response of *F. graminearum* to choline and betaine to determine the validity of previously reported results. We concluded that these compounds have no or, at the most, only a minor role in colonization of floral tissue by *F. graminearum*. It was not clear why the higher concentrations of betaine reduced growth compared with the unamended control, whereas lower concentrations of betaine increased growth in this study. We did observe increased branching of hyphae at higher betaine concentration treatments. It may be that higher concentrations of betaine perturb other biological processes in *F. graminearum*, such as osmoregulation (7), and negatively affect growth.

Strange et al. (25) found that anther extracts highly enhanced fungal growth and colonization when added to inoculum suspensions. Other researchers found that anther extracts from a cultivar with a resistant reaction to Fusarium head blight significantly enhanced radial hyphal growth compared with the control and anther extracts from a susceptible cultivar (15). In our study, anther extracts from nine genotypes with various levels of resistance expressed in the field enhanced fungal growth to a greater extent than palea or lemma extracts. It was assumed that the higher concentration of sugars in anthers compared with the other floral structures caused the enhancement of growth. Additionally, there appeared to be no association between genotype resistance reaction in the field and enhancement of fungal growth by any of the extracts from floral structures.

Results from this study indicate that choline and betaine have no effects on germination of macroconidia or ascospores at the concentrations tested. These compounds also appear to have biologically insignificant effects on subsequent growth of *F. graminearum* at levels occurring in floral tissues. Furthermore, our results from tests using genotypes with a broad genetic background indicate that constitutive compounds in floral structures do not differ greatly among genotypes in their ability to influence hyphal growth and probably have no substantial role in resistance to *F. graminearum*. Therefore, it is concluded that preformed floral compounds are not significant in the resistance response of wheat when infected by *F. graminearum*.

ACKNOWLEDGMENTS

We thank A. L. Johnston for technical assistance.

LITERATURE CITED

Fig. 3. Mean percentage increase in growth (mm/hr) over the water agar control of two *Fusarium graminearum* isolates grown on medium amended with floral tissue extracts from nine wheat genotypes. A, Anther extracts (least significant difference [LSD] = 7.49); B, palea extracts (LSD = 5.97); and C, lemma extracts (LSD = NS). Data are the means of two isolates of *F. graminearum* on three replicate plates per floral tissue of each cultivar. Bar indicates one standard deviation.