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Comparison of passive and active canopy sensors
for the estimation of vine biomass production

Stamatis Stamatiadis Æ Dimitris Taskos Æ Eleftheria Tsadila Æ
Calliopi Christofides Æ Christos Tsadilas Æ James S. Schepers

� Springer Science+Business Media, LLC 2009

Abstract Recent advances in optical designs and electronic circuits have allowed the

transition from passive to active proximal sensors. Instead of relying on the reflectance of

natural sunlight, the active sensors measure the reflectance of modulated light from the

crop and so they can operate under all lighting conditions. This study compared the

potential of active and passive canopy sensors for predicting biomass production in 25–32

randomly selected positions of a Merlot vineyard. Both sensors provided estimates of the

normalized difference vegetation index (NDVI) from a nadir view of the canopy at ver-

aison that were good predictors of pruning weight. Although the red NDVI of the passive

sensors explained more of the variation in biomass (R2 = 0.82), its relationship to pruning

weight was nonlinear and was best described by a quadratic regression (NDVI =

0.55 ? 0.50 wt-0.21 wt2). The theoretically greater linearity of the amber NDVI-biomass

relationship could not be verified under conditions of high biomass. The linear correlation

to stable isotope content in leaves (13C and 15N) provided evidence that canopy reflectance

detected plant stresses as a result of water shortage and limited fertilizer N uptake. Thus,

the canopy reflectance data provided by these mobile sensors can be used to improve site-

specific management practices of vineyards.

Keywords Ground sensors � NDVI � Stable isotopes � Leaf d13C � Leaf d15N �
Leaf nitrogen
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Introduction

Information about spatial variation and the timeliness of data acquisition are key to helping

producers make management decisions that have the potential to increase profitability.

Advanced electronics and optics for measuring reflectance and computer technologies for

recording, storing and processing large amounts of temporal and spatial data often move

into production agriculture and speciality crops from military and sophisticated engi-

neering applications. Vineyard management is one such application because management

decisions are readily linked to the quantity and quality of the wine produced. Recent

studies with optical remote sensing have demonstrated the relationship between canopy

reflectance and biomass production in vineyards (Dobrowski et al. 2003; Johnson 2003;

Johnson et al. 2003). This relationship was obtained despite peculiarities in vine growth

patterns such as discontinuous canopies, low ground cover, understory foliage and dif-

fering trellis systems. Long-range canopy reflectance data are typically derived from air-

craft or satellite images in the visible near infrared (NIR) regions of the spectrum and are

transformed subsequently into vegetation indices, such as the normalized difference veg-

etation index (NDVI). Since NDVI is related to plant canopy leaf area index (LAI) and the

amount of photosynthetically active radiation absorbed by the canopy, maps of NDVI can

be used to interpret spatial patterns of pest and disease infestation, water status, fruit

characteristics and wine quality (Johnson et al. 2003). Specific interpretation of the

reflectance features and patterns requires ground-truthing to account for the spatial dis-

tribution of plant and soil properties.

Mobile proximal sensors are an emerging technology designed to overcome many of the

limitations associated with satellite- or aircraft-based remote sensing systems (Bausch and

Delgado 2003). Although airborne platforms have the advantage of delivering spectral

information rapidly over relatively large areas of the landscape, this information might not

be available in time to implement critical management decisions. This is because the

availability of airborne sensor data is constrained by weather conditions, the frequency of

revisiting the site and elaborate data processing. These problems are further complicated

by peculiarities in vine canopy architecture, such as inter-row soil and shadow interference

that require additional processing steps to produce realistic maps of spectral reflectance.

Proximal sensors overcome issues with timeliness and the need for image processing, but

time of day and cloud cover can still be problematic for ground-based passive sensors.

Passive sensors detect the canopy radiance (reflected radiation) of natural sunlight with a

down-facing sensor. Canopy reflectance is electronically calibrated by monitoring the

irradiance (incoming radiation) with an up-facing sensor. In this way, passive sensors

effectively eliminate issues with differential and changing cloud cover, but do not address

the problem of shadows. A recent study demonstrated the value of passive proximal

sensors for predicting the spatial variation of biomass production in a Merlot vineyard with

measurements taken at midday over clear skies (Stamatiadis et al. 2006).

Recently commercialized active ground-based sensors eliminate the need for frequent

calibration and overcome the problems of cloud cover and limitations of the time of day

when measurements are made (i.e. natural illumination and shadows). This is achieved by

generating modulated (pulsed) light from an auxiliary light source so that the active sensors

can operate equally well under all lighting conditions. The polychromatic bank of light

emitting diodes (LEDs) used in the Crop Circle ACS-210 (Holland Scientific, Lincoln, NE)

sensor emits light in two wavebands, visible (595 nm) and NIR (880 nm). Natural light is

not modulated, so with sophisticated electronics the detection circuitry of the sensor is able

to differentiate between the radiance (reflectance) generated by natural and modulated

Precision Agric

123



light. The close proximity of active sensors to the vine canopy greatly reduces or elimi-

nates interference from soil reflectance because the light source can be directed towards the

desired part of the canopy. It is important to note that the sensing capability of active

sensors decreases with distance between the light source and target. For example, the

intensity of reflectance for a given target will be four times greater at a 1 m distance than at

2 m. Therefore, the influence of soil background can be minimized if the target is closer

than the soil or by directing the sensor strategically towards the target (i.e. non-nadir).

When coupled to a differential GPS, these ground sensors can provide data of high spatial

resolution (10 readings per second adjusted for movement of the sensor footprint) that can

be integrated with fertilizer applicators and sprayers to facilitate real-time applications

(Holland et al. 2006). This study compared the potential of active and passive canopy

sensors for predicting the spatial variation of biomass production in a Merlot vineyard in

northern Greece. The vineyard displayed sufficient spatial heterogeneity in terms of

topography and growth patterns to facilitate a comparison between the sensors.

Materials and methods

Site description

This study was undertaken in a commercial Merlot vineyard block (0.5 ha) in the

municipality of Goumenisa (northern Greece) during the summers of 2003, 2004, 2005 and

2006. Vines were trained on a bilateral cordon with two fixed pairs of foliage wires and

were spur-pruned. Vine spacing was 2.2 m between rows and 1.3 m within rows. The field

has a soil with coarse texture and an 11% inclination with associated erosion problems.

Shoot growth ceased before the stage of color change of grapes (veraison) during all

growing seasons. A single topping took place in the last week of June. The soil was

surface-tilled for weed removal.

Fertilizer was applied before the growing season in February or March. As a common

practice by the local producers, the field received 31.5 kg N ha-1, 75 kg K ha-1 and

25 kg Mg ha-1 in the form of ammonium sulfate and K–Mg sulfate every year except for

2004. In 2004 the rates of N and K application were increased by 50% at the eroded top of

the field and P was also added in an attempt to increase vine productivity. The mean vine

size of the upland positions was small (*60% of those at the foot of the slope), which

appeared to be caused by a shallow soil and limited root depth (0–30 cm) resulting from a

deep calcic horizon (30–100 cm depth). Other management practices that were applied

uniformly in the field included drip irrigation and products to protect the plants, such as

CuSO4, S and organic fungicides.

Field sampling and analysis

Thirty-two sampling sites were selected randomly in 2003 to represent the entire field and

each location consisted of four consecutive vines along the rows (Fig. 1). The number of

sampling locations was reduced in the following 3 years of the experiment (2004–2006) by

retaining the first 25 only. Leaf samples (20–25 leaves) were taken at random from the

basal shoot nodes at each sampling location at veraison (August). All bunches and canes

from the same sampling locations were collected and weighed in September and

December, respectively. The biomass units were expressed in kg plant-1 by dividing the

total wet weight with the number of plants (4) at each location.
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Leaf samples were dried at 65�C and ground to a fine powder in the laboratory. Total

nitrogen and carbon content, and isotope composition (d15N, d13C) of the leaf samples

were measured by an automated combustion elemental analyzer interfaced with a con-

tinuous-flow isotope ratio mass spectrometer (PDZ Europa). Samples were prepared as

described by Schepers et al. (1989) and 2.8 ± 0.1 mg of each was used for the analysis.

The isotopic signature of the leaves provided information on plant stress relative to water

shortage (d13C) and fertilizer N uptake (d15N).

Multi-spectral readings of the vine canopy were taken along the rows and at the sam-

pling locations in the field at veraison (August). Multi-spectral Crop Circle passive sensors

were calibrated to measure absolute reflectance to a Spectralon panel (*99.9% reflec-

tance) before being mounted at the front of a tractor (Fig. 2). The vehicle travelled forward

at a constant speed of 3.5 km h-1 at midday under clear skies and measured reflectance

was integrated over intervals of 250 ms at four wavelengths (blue at 460 ± 10 nm, green

at 550 ± 10 nm, red at 680 ± 10 nm and NIR at 800 ± 65 nm). One passive sensor

viewed the top of the vine canopy from a near-vertical position (Fig. 2) and from a distance

of *0.5 m through a mask over the optics that reduced the view area to 0.25 m diameter.

Canopy reflectance measurements for the vertical view area were compared to unmasked

measurements with an oblique side view of the canopy (*30� off-nadir) from the same

distance (Fig. 2). A third up-facing sensor was electronically coupled with the down-facing

sensors to compensate for changes in irradiance. In a similar manner, a differential GPS

(AG114 Trimble) was coupled to provide coordinates for the sensor readings with a

precision of ± 50 cm (Fig. 2). The same procedure was repeated with an active ACS-210

Crop Circle sensor from the same distance and viewing angles at two wavelengths (amber

at 595 ± 10 nm and NIR at 880 ± 65 nm) in 2005 and 2006. Active sensors measure

relative reflectance by calibrating reflectance of modulated light to a grey standard. Both

passive and active sensors can detect radiance from soil or adjoining rows, but the portion

of signal attributed to objects further away from the target is small because reflectance

follows the inverse square of the distance rule. In the case of the amber version of the ACS-

210 sensor, data generated by reflectance from turf followed the inverse square of the

distance rule, but the normalized difference vegetation index (NDVI) was constant beyond

40 cm (Fig. 3). The effect of distance between the passive sensor and the target on

Fig. 1 Spatial distribution of the 32 sampling locations within the vineyard in 2003
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reflectance is unknown because a mask was placed over the sensor to collimate the

reflected light and define the footprint. The data were recorded in a portable PC inside the

vehicle. The NDVI was computed as:

NDVI ¼ NIR� red½ �= NIRþ red½ � for the passive sensor: ð1Þ

NDVI ¼ NIR� amber½ �= NIRþ amber½ � for the active sensor: ð2Þ
For direct comparison of spectral reflectance, NDVI was further standardized by the

mean of each sensor for each year as follows:

NDVInorm ¼ NDVIi � NDVImean½ �=NDVImean: ð3Þ
Data analyses included the analysis of variance (general linear models) and correlation

analysis. In the analysis of variance, the least significant difference (LSD) test was used to

Fig. 2 Configuration of the mobile system with two down-facing passive sensors (near-vertical and oblique
viewing angles) coupled with an up-facing sensor and a differential GPS
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Fig. 3 Influence of distance between the Crop Circle ACS-210 sensor and turf on NIR and amber
reflectance and calculated NDVI (n = 1774 readings)
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detect differences between year means at p \ 0.05. Data analysis was done using Statis-

tical Analysis System software, version 6 (SAS Institute 1990).

Results and discussion

All measured vine properties show significant year-to-year variability except for leaf d13C

(Table 1). Pruning weight, as an indicator of annual biomass production, was largest in

2004 and this was probably the result of increased fertilizer application early in that year.

Annual variation in bunch weight followed a different pattern; it was largest in 2006. Leaf

C content was less in the years of greater biomass production, but the C:N ratio was

inversely related to leaf N content (Table 1). The low d15N signal in 2004 indicated

increased fertilizer uptake and coincided with the increased fertilizer application and

biomass production of that year.

Sensor NDVI values at veraison are linearly correlated to several vine properties for

single years (Table 2). The NDVI is known to be related to plant canopy leaf area index

Table 1 Annual variability of vine properties

Year Productivity at harvest Leaf composition at veraison

Pruning wt.
(kg plant-1)

Bunch wt.
(kg plant-1)

C (%) N (%) C:N d15N (%) d13C (%)

2003 0.72 c� 2.88 c 46.9 a 2.70 a 17.5 d 4.86 a -25.89

2004 0.96 a 45.3 b 2.23 bc 20.6 b 2.73 c -26.03

2005 0.69 c 4.37 b 47.6 a 2.15 c 22.3 a 3.48 b -26.01

2006 0.81 b 5.72 a 43.7 c 2.28 b 19.3 c 3.14 b -26.05

� Within columns, means followed by different letters are significantly different whereas those with the
same letter are not according to LSD (p \ 0.05)

Table 2 Pearson correlation coefficients (r) between vine properties and canopy NDVI at veraison

Sensor type Year Viewing angle n Productivity at harvest Leaf composition at veraison

Pruning wt.
kg plant-1)

Bunch wt.
(kg plant-1)

N (%) d15N (%) d13C (%)

Passive 2003 Nadir 25–31 0.88 0.47 (-0.10) -0.84 -0.68

Off-nadir 25–31 0.91 0.49 (-0.08) -0.81 -0.74

2004 Nadir 25 0.80 – (0.34) -0.47 -0.50

Off-nadir 25 0.64 – 0.44 (-0.02) -0.46

Active 2005 Nadir 22 0.77 (0.41) (-0.12) -0.50 -0.58

Off-nadir 24 0.56 (0.28) (0.23) -0.45 -0.43

2006 Nadir 18–19 0.65 (-0.24) (-0.01) -0.57 (-0.45)

Off-nadir 20–21 0.59 (-0.15) (-0.24) -0.64 (-0.38)

Non-significant correlations in parentheses

Significant correlation coefficients at p \ 0.05 in roman

Significant correlation coefficients at p \ 0.001 in italics

Significant correlation coefficients at p \ 0.0001 in bold

– Missing data
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(LAI) and amount of photosynthetically active radiation absorbed by the canopy (Johnson

et al. 2003). Hall et al. (2008) found that grapevine NDVI derived from multispectral

airborne images was related to planimetric canopy area, rather than LAI, in a minimally

pruned and unconfined vineyard of Cabernet Sauvignon in South Wales (Australia). This

relationship is yet to be demonstrated in trellis-trained and trimmed vineyards with smaller

variations in canopy area. Whether the primary predictive variable is LAI or canopy area,

spectral reflectance measured using airborne platforms has been correlated to vine biomass

in Californian and Australian red wine vineyards (Lamb 2004; Johnson 2003; Dobrowski

et al. 2003). Our data agree with these studies in that pruning weight has the largest

correlation coefficients with NDVI independent of sensor type and viewing angle

(Table 2). These correlations were obtained despite the fact that a single topping before

veraison reduced differences in leaf area between the sampling positions. By comparison to

the off-nadir view, the nadir view of the canopy produced NDVI values that have larger

linear correlations to pruning weight with the exception of 2003 (Table 2). In contrast, the

correlation between NDVI and bunch weight was significant only in the first year of the

experiment.

The correlation between sensor NDVI and leaf stable isotopes is inverse and significant

for almost all years (Table 2). Smaller canopy NDVI values coincide with larger leaf d15N

values for the low-biomass plants in the eroded upland positions of the field. Larger d15N

values indicate reduced fertilizer uptake or increased uptake of soil-derived N assuming

that the isotopic signal of fertilizer N was distinctly less than that of soil-derived nitrates

(Shearer and Legg 1975; Bort et al. 1998). Similarly, the larger d13C values in the upland

positions are probably a sign of water stress and, consequently, reduced growth. This is

because leaf d13C is a long-term indicator of water use efficiency (Farquhar et al. 1989;

O’Leary 1993). Strong negative correlations were also obtained between these stable

isotopes and pruning weight in the same vineyard for the first two years of the experiment

(Stamatiadis et al. 2007).

Contrary to the correlations with stable isotopes, nadir canopy NDVI is not significantly

correlated to leaf N content in any single year (Table 2). Schepers et al. (1996) raised

concerns about the reliability of using reflectance measurements from water-stressed corn

to characterize crop N status in a greenhouse experiment of variable N and water regimes.

It is likely that this was also the case in this vineyard where water stress was evident from

the significant correlations between leaf d13C and pruning weight.

Although the linear correlations of Table 2 are presented for comparison, the NDVI-

biomass relationship is nonlinear for other crops when derived from satellite images

(Gitelson et al. 2002; 2003). Indeed, the relationship between pruning weight and NDVI of

both sensors is described best by a quadratic regression for nadir-view data recorded over

two growing seasons (Fig. 4a, open circles). In this experiment, the passive sensors used

red reflectance to calculate NDVI. Under field conditions with even modest amounts of

vegetation, red reflectance approaches zero and typically reaches 2–3% with a full canopy.

This situation corresponds to a LAI of *2.0 and causes vegetation indices, such as NDVI,

to approach a plateau because they are controlled by NIR reflectance (amount of living

biomass) at that point. Amber light is not used efficiently by photosynthesis and therefore

its reflectance remains responsive to changes in canopy chlorophyll content to much larger

LAI values (*6.0).

The slope of the relationship between NDVI and pruning weight is similar for the active

and passive sensors, but the scattering of values is greater for the active sensor (Fig. 4a).

This observation may be related to differences in the shape of the footprint for the passive

sensor (25 cm diameter, 491 cm2) and the active sensor (10 9 50 cm, 500 cm2) although
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the area monitored by each sensor was similar. Even if the footprints were the same, the

active sensor might be expected to be more variable because the output is reported at

10 Hz (every 100 ms representing *4000 pulses of modulated light) rather than 4 Hz

(continuous integration over 250 ms) for the passive sensor. Even though the sensors are

operationally different, they both provide multiple recorded values per plot (*21 and 54

readings per plot for the passive and active sensors, respectively) that should represent the

vegetative characteristics adequately for each group of four plants. The NDVI values of the

active sensor were distinctively smaller than those of the passive sensors for the same

pruning weights. This difference was caused by the unique operational characteristics of

the active sensor (auxiliary light source, amber waveband). Similar regression slopes

resulted after merging the standardized NDVI data from the two sensors to allow a direct

comparison of their relationship to pruning weight (Fig. 4b). The quadratic nature of the

relationship indicates the saturation effect of red NDVI when the biomass is large. This is a
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limitation of the passive sensors that does not enable differences to be distinguished in

canopy NDVI under conditions of excessive growth (pruning weights[1.3 kg per plant or

1 kg m-1 row, Dobrowski et al. 2003). The relationship between active sensor NDVI and

pruning weight would be expected to be more linear than that of the passive sensors

because the amber reflectance of the active sensor does not tend to saturate (i.e. reach an

NDVI plateau) until the LAI is large (Fig. 4b). Gitelson and Merzlyak (1996) demonstrated

this phenomenon by comparing the green (slightly curvilinear relationship between LAI

and NDVI) and red (near quadratic-plateau) methods of calculating NDVI. The amber

version of NDVI would be intermediate to the green and red responses to LAI. More data

are needed with the active sensors under conditions of large biomass to confirm this

hypothesis.

Since NDVI explained most of the spatial variation in pruning weight, the use of

proximal sensors for site-specific management is possible by estimating plant properties

and needs in this Merlot vineyard. The reflectance data obtained at veraison may be used to

define better management practices for the next growing season, i.e. crop thinning strat-

egies that optimize vegetative and reproductive balance to produce a higher-value product

(Dobrowski et al. 2003), provided that grape yield estimates are known. If the nature and

strength of the relationship between sensor reflectance and pruning weight holds before

veraison, it will be possible to implement real-time spatial management of vineyards

within the same growing season. A standardization of the relationship between sensor

reflectance and canopy biomass over a range of vine varieties, soil types and wider geo-

graphical areas will be necessary before this technology finds wider application in the site-

specific management of vineyards. It may also be worth considering the use of vegetation

index data to determine where and how much to top the vineyard to improve production

and fruit quality. As shown in this study, sensor data clearly quantified leaf biomass which

can be used to target soil sampling and remedial treatments.

Conclusion

Canopy NDVI determined with both passive and active sensors at veraison provided

reasonable predictions of biomass production. The linear correlation between NDVI and

leaf stable isotopes provided evidence that canopy reflectance detected plant stress as a

result of water shortage and limited N uptake. The red NDVI-biomass relationship was

nonlinear and was described best by a quadratic regression. The theoretically more linear

relationship between amber NDVI and biomass could not be verified under high biomass

conditions. Nevertheless, the canopy reflectance data provided by these mobile sensors can

be used to improve site-specific management practices of vineyards. Much is yet to be

learned about how to extend these findings to recently introduced multiband active sensors

that might be able to differentiate between water and N stresses. Our results might

encourage the knowledge base about the attributes and capabilities of active sensors to be

extended to other crops.
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