1996

NF96-310 Costs of Harvesting and Hauling Corn Stalks in Large Round Bales

H. Douglas Jose
University of Nebraska-Lincoln, hjose1@unl.edu

Lance L. Brown

Follow this and additional works at: http://digitalcommons.unl.edu/extensionhist
Part of the [Agriculture Commons](http://digitalcommons.unl.edu/extensionhist), and the [Curriculum and Instruction Commons](http://digitalcommons.unl.edu/extensionhist)

Historical Materials from University of Nebraska-Lincoln Extension. 409.
http://digitalcommons.unl.edu/extensionhist/409

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Materials from University of Nebraska-Lincoln Extension by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
The costs of harvesting crop residues either by machines or grazing are not typically included in the calculations shown in crop enterprise budgets such as the *Nebraska Crop Budgets*. These uses are considered supplementary activities since the grain is the primary product and the residues are only harvested when there is an economic incentive to do so. The following is an analysis of the costs of harvesting corn stalks for either livestock fodder or industrial uses.

The costs calculated below are based on the following assumptions:

1. Stalks are harvested from a 130 acre, center pivot irrigated field, yielding 150 bushels per acre. (The corners are not used to grow corn).

2. The weight of stalks available as residue is assumed to be equal to the weight of grain harvested. For a 150 bushel yield, the weight of stocks available is:

 \[
 150 \times 56 = 8,400\text{ lbs or } \frac{8,400}{2,000} = 4.2\text{ tons per acre.}
 \]

 The actual yield of stocks depends on how the stocks are harvested and are as follows:
 a. Stalks that are shredded and raked — 3.5 tons per acre
 b. Stalks that are raked — 2.75 tons per acre
 c. Stalks baled directly after combining — 2.0 tons per acre

3. Bales weigh 1,100 pounds each.

4. 30 bales can be loaded on a truck for transportation. The load would weigh \(30 \times 1,100)/2,000 = 16.5\text{ tons.}\)

5. The machinery cost components including labor at $6.00 per hour and the costs of owning and operating the machines, are:
6. The transportation of the bales to a processor is $2.50 per mile per load for a minimum of ten miles or $2.50/16.5 = $0.152 per ton per mile. The cost to haul a load 30 miles is $0.152 x 30 = $4.56 per ton.

7. The baling rate is 6 acres per hour, the shredding rate is 6.5 acres per hour and the raking is 9 acres per hour.

8. The estimated value of the soil nutrients removed from the field is $9.59 per ton of stover.

Costs of Harvesting Operations

<table>
<thead>
<tr>
<th></th>
<th>Baling, Raking & Shredding</th>
<th>Baling & Raking Only</th>
<th>Baling Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>costs per acre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baling</td>
<td>$19.25</td>
<td>$15.15</td>
<td>$12.00</td>
</tr>
<tr>
<td>Tractor for baling</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Raking</td>
<td>3.50</td>
<td>3.50</td>
<td>—</td>
</tr>
<tr>
<td>Roll shredding</td>
<td>2.00</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tractor for raking or</td>
<td>7.00</td>
<td>4.00</td>
<td>—</td>
</tr>
<tr>
<td>shredding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moving bales off the</td>
<td>6.36</td>
<td>5.00</td>
<td>3.64</td>
</tr>
<tr>
<td>field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals (excluding hauling & value of nutrient loss)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Acre</td>
<td>$42.11</td>
<td>$31.65</td>
<td>$19.64</td>
</tr>
<tr>
<td>Per Ton</td>
<td>$12.03</td>
<td>$11.50</td>
<td>$9.85</td>
</tr>
<tr>
<td>Totals (including hauling 30 miles & value of nutrient loss)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Acre</td>
<td>$91.64</td>
<td>$70.59</td>
<td>$47.94</td>
</tr>
<tr>
<td>Per Ton</td>
<td>$26.18</td>
<td>$25.67</td>
<td>$23.97</td>
</tr>
</tbody>
</table>

Summary

The cost to harvest corn fodder when the stalks are shredded, raked and baled is $12.03 per ton, f.o.b.
the farm. The cost of moving a load of 30 bales 30 miles is another $4.56 per ton bringing the total cost to $16.59 per ton. If the stalks are baled direct after combining, the harvesting cost is $9.85 per ton, f.o.b. the farm. The hauling cost remains $4.56 per ton for 30 miles bringing the delivered cost to $14.41 per ton. However, the yield for direct baling is only two tons per acre compared to 3.5 tons per acre for the shredding, raking and baling system.

The feeding value of the residue would be another consideration if grazing is an alternative. It has been estimated that grazing saves 26 pounds of grass hay per head per day or 780 pounds of hay per acre grazed for the winter grazing season. If the grass hay is valued at $50 per ton, this is worth $19.50 per acre grazed. For a complete discussion of the feeding value of crop residues, refer to NebGuide G92-1116, Grazing Crop Residue.

Sources of Data

¹The yields represented are only estimates of production. These can fluctuate greatly depending on the yield of the corn, how soon the stover is baled after the corn is combined, and the process used in the production of stover bales.