The Receptor Mechanisms Underlying the Disruptive Effects of Haloperidol and Clozapine on Rat Maternal Behavior: A Double Dissociation between Dopamine D$_2$ and 5-HT$_{2A/2C}$ Receptors

Zhao Changjiu
University of Nebraska-Lincoln, czhao2@unl.edu

Ming Li
University of Nebraska-Lincoln, mli2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/psychfacpub

Part of the Psychiatry and Psychology Commons

Changjiu, Zhao and Li, Ming, "The Receptor Mechanisms Underlying the Disruptive Effects of Haloperidol and Clozapine on Rat Maternal Behavior: A Double Dissociation between Dopamine D$_2$ and 5-HT$_{2A/2C}$ Receptors" (2009). Faculty Publications, Department of Psychology. 412.

http://digitalcommons.unl.edu/psychfacpub/412
The Receptor Mechanisms Underlying the Disruptive Effects of Haloperidol and Clozapine on Rat Maternal Behavior: A Double Dissociation between Dopamine D_2 and 5-HT_{2A/2C} Receptors

Changjiu Zhao, Ming Li
Department of Psychology, University of Nebraska–Lincoln, NE, USA

Abstract

Many antipsychotic drugs disrupt active components of maternal behavior such as pup approach, pup retrieval and nest building at clinically relevant doses in postpartum female rats. However, the neurochemical mechanisms underlying such a disruptive effect remain to be determined. This study examined the neurochemical mechanisms that mediate the disruptive effects of haloperidol (a typical antipsychotic) and clozapine (an atypical antipsychotic) on rat maternal behavior. Postpartum rats were administered with haloperidol (0.2 mg/kg, sc) or clozapine (10.0 mg/kg, sc) together with either vehicle (saline or water), quinpirole (a selective dopamine D_2/D_3 agonist, 0.5 or 1.0 mg/kg, sc), or 2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT_{2A/2C} agonist, 1.0 or 2.5 mg/kg, sc), and their maternal behaviors were tested at different time points before and after drug administration. Haloperidol and clozapine treatment disrupted pup approach, pup retrieval, pup licking and nest building. Pretreatment of quinpirole, but not DOI, dose-dependently reversed the haloperidol-induced disruptions. In contrast, pretreatment of DOI, but not quinpirole, dose-dependently reversed the clozapine-induced disruptions. Quinpirole pretreatment even exacerbated the clozapine-induced disruption of pup retrieval and nest building. These findings suggest a double dissociation mechanism underlying the disruption of haloperidol and clozapine on rat maternal behavior. Specifically, haloperidol disrupts maternal behavior primarily by blocking dopamine D_2 receptors, whereas clozapine exerts its disruptive effect primarily by blocking the 5-HT_{2A/2C} receptors. Our findings also suggest that 5-HT receptors are involved in the mediation of rat maternal behavior.

Received 6 April 6, 2009; received in revised form June 3, 2009; accepted June 10, 2009; available online June 17, 2009.

Keywords: Haloperidol; Clozapine; Dopamine D_2/D_3 receptor; Quinpirole; 5-HT_{2A/2C} receptor; DOI; Rat maternal behavior.
marily dopamine D₂ antagonists (Dragunow et al., 1990; Seeman et al., 1976), and because apomorphine, a dopamine receptor agonist, can reverse the inhibitory effects of haloperidol (Giordano et al., 1990). However, solid evidence demonstrating that typical antipsychotics act through this specific D₂ mechanism is still lacking. For atypical antipsychotics (e.g., clozapine, olanzapine), because they generally have multiple-receptor binding profiles (Meltzer, 1989; Miyamoto et al., 2005), it is hard to pinpoint their exact neurochemical mechanisms. Most atypical antipsychotics possess a much more potent antagonism on the 5-HT₁a receptor in addition to relatively weak antagonism on D₂ receptor (Meltzer et al., 2003). It is thus possible that the disruptive effects of atypical antipsychotics on maternal behavior could be attributed to their action on D₂ receptor alone (Kapur and Seeman, 2001) or to its dual action on both 5-HT₁a and D₂ receptors (Meltzer et al., 1989a,b) or on other receptors.

In the present study, we administered quinpirole, a selective D₂/D₃ dopaminergic receptor agonist or 2,5-dimethoxy-4-iodo-amphetamine (DOI), a selective 5-HT₂₅ receptor serotoninergic receptor agonist together with HAL (0.2mg/kg) or CLZ (10.0mg/kg) to postpartum rats. We examined which of these two agonists was able to reverse the disruptive effects induced by HAL or CLZ. We hypothesized that quinpirole, but not DOI, would be able to reverse the HAL-induced disruption on maternal behavior and may also be effective in alleviating the CLZ-induced disruption to some extent. We had no prior conviction regarding the effect of DOI due to lack of sufficient evidence in the literature on the role of serotonin in maternal behavior (Numan and Insel, 2003).

2. Materials and methods

2.1. Subjects

Animals were naive pregnant female Sprague–Dawley rats (9–12 weeks old at the start of pregnancy) purchased from Charles River Inc. (Portage, MI). Upon arrival to our animal facility, the rats were between gestational days 13–15. Each subject was housed individually in 48.3 cm × 26.7 cm × 20.3 cm transparent polycarbonate cage lined with aspen shavings in a colony on a 12-h light/dark cycle (lights on at 6:30 AM). All behavioral tests were performed in the light phase between 9:00 AM and 4:00 PM. The colony was maintained under standard vivarium conditions with an ambient temperature of 23°C, relative humidity of 55–60%. Standard laboratory rat chow and water were available ad libitum. All animal procedures were approved by the University of Nebraska Institutional Animal Care and Use Committee.

2.2. Drugs and choices of doses

HAL (5.0 mg/ml ampoules, Siorc Pharmaceuticals, Inc, Irvine, CA) was diluted with sterile water. CLZ (a gift from NIMH drug supply program) was dissolved in 1.0% glacial acetic acid in distilled water. Quinpirole (QUI) and DOI (RBI-Sigma, Natick, MA) were dissolved in 0.9% saline. HAL (0.2 mg/kg), CLZ (10.0mg/kg), QUI (0.5 or 1.0 mg/kg), DOI (1.0 or 2.5 mg/kg) and vehicle (water or saline) were all administered subcutaneously in a volume of 1.0 ml/kg body weight. Choices of drug doses for HAL and CLZ were based on our previous studies showing that, at these doses, HAL and CLZ effectively disrupt active maternal behaviors in rats (Li et al., 2004; Zhao and Li, 2009). The doses of QUI were chosen based on our preliminary study showing that 1.0mg/kg of QUI improved the HAL’s disruption on pup retrieval. DOI doses were chosen on the basis of reports showing that DOI at these doses potentiates the effects of amphetamine on dopamine release in the striatum, medial prefrontal cortex and nucleus accumbens (Ichikawa and Meltzer, 1995; Kuroki et al., 2003) and blocks the CLZ-induced dopamine release in the medial prefrontal cortex (Ichikawa et al., 2001).

2.3. Basic experimental procedure

Starting 2 or 3 days prior to the first possible expected parturition date, the subjects were monitored every morning for signs of parturition. Once the dam was found with pups in the morning (that day was designated as Day 1 postpartum), the mother was transferred into a clean cage with wood shavings for bedding. Two shredded paper towels were also provided for nesting material. The litter was culled to 8 pups (4 males and 4 females with the most visible milk bands). Maternal behavior tests were conducted on one day between Days 6 and 8 postpartum.

2.4. Maternal behavior test

The basic procedure was similar to what has been described in Zhao and Li (2009). Using a laptop computer with an event recording program (JWatcher, http://www.jwatcher.ucla.edu/), we recorded various components of maternal behavior in an 8-min testing session at different time points before and after drug administration. Each test started by removing the 8 pups from the dam and destroying the nest. Ten seconds later, the pups were returned to the corner of the cage diagonal to the nest site or dam sleeping corner. When the subject picked up a pup in her mouth and carried it back to the nest site, it was referred to as a successful pup retrieval. The total number of pups retrieved was recorded. Approach latency was defined as the time taken for mother rats to approach and sniff the pups from the reunion. First and last pup retrieval latency was defined as the time elapsed from the first pup approach to the retrieval of the first and eighth pup into the nest, respectively. A score of 480 s was assigned to nonresponders who did not approach or retrieve the testing pups at all.

The occurrence of other behaviors was also recorded, including pup nursing behavior (a rat positioning herself over the pups with legs splayed to accommodate the pups, including hawk, high and low crouching over postures), pup licking (a female rat placing its tongue on the anogenital area and the rest of a pup’s body), nest building (a rat picking up nesting material in her mouth and transporting it back to the nest site or pushing the material with her forepaws toward the nest site). At the conclusion of the test, any unretrieved pups were returned to the nest site.

2.4.1. Experiment 1. Effects of pretreatment with quinpirole or DOI on haloperidol-induced maternal behavior deficits in rats

Forty-four postpartum rats were randomly assigned to one of the following six groups: VEH+VEH (n=4, sterile water or saline), VEH+HAL (n=8), QUI-0.5+HAL (n=8), QUI-1.0+HAL (n=8), DOI-1.0+HAL (n=8), and DOI-2.5+HAL (n=8). On the drug test day (1 day on either Postpartum Day 6, 7, or 8), all subjects were tested 5 times at different time points before and after drug administrations, with the first maternal behavior test starting at 30 min prior to the HAL or vehicle injection (i.e., baseline) and the other tests occurring at 30, 60, 120 and 240 min after HAL or vehicle injection. QUI, DOI or vehicle was injected s.c. twice with the first injection at 10 min before and the second at 50 min after the HAL or vehicle injection. We adopted such an injection strategy because our preliminary data showed that injection of QUI at 10 min prior to the administration of HAL could optimally reverse its disruption on pup retrieval. Also, agonists were injected twice separately on the basis of their relatively short duration of action and rapid peak plasma concentrations (Deutch and Duman, 1996; Whitaker and Lindstrom, 1987).

2.4.2. Experiment 2. Effects of pretreatment with quinpirole or DOI on clozapine-induced maternal behavior deficits in rats

The basic procedure was identical to that of Experiment 1 with the exception that CLZ was tested in this experiment instead of haloperidol. Forty-four postpartum rats were randomly assigned to one of the following six groups and their maternal behaviors were tested: VEH+VEH (n = 4, sterile water or saline), VEH+CLZ (n = 8), QUI-0.5+
CLZ (n = 8), QUI-1.0+CLZ (n = 8), DOI-1.0+CLZ (n = 8), and DOI-2.5+CLZ (n = 8).

2.5. Data analysis

With the exception of latency data, various measurements of maternal behavior were expressed as mean ± SEM. To increase statistical power, we combined the two vehicle control groups from Experiments 1 and 2 into a single group since they did not differ significantly on any measure (Independent-Samples T-test or Mann-Whitney U test, all ps > 0.10). Data were analyzed using a factorial repeated measures analysis of variance (ANOVA) with between-subjects factor being the treatment groups (e.g. saline, HAL) and the within-subjects factor being test time points (baseline, 30, 60, 120 and 240 min post-injection). Group differences at different time points were further analyzed using simple main effect test (one-way ANOVA) followed by Turkey’s HSD post hoc tests where appropriate.

For the latency data, because they were not normally distributed (e.g. the cut-off time assigned 480 s for the latency data), these data were expressed as median ± interquartile range. Nonparametric Kruskal–Wallis test was used for analyzing the differences among the treatment groups. Once the overall significant effects were determined, two-group comparisons were performed using Mann–Whitney U test. A conventional two-tailed level of significance at the 0.05 level was required.

3. Results

3.1. Experiment 1. Effects of pretreatment with QUI or DOI on haloperidol-induced maternal behavior deficits

3.1.1. Haloperidol treatment disrupted various components of maternal behavior

Consistent with our previous findings (Li et al., 2004; Zhao and Li, 2009), a single injection of HAL significantly disrupted various active components of maternal behavior (pup retrieval, pup licking, nest building, but not pup nursing). Rats treated with HAL took a much longer time to initiate contact with pups and retrieve their pups into the nest sites (Table 1) and retrieved fewer pups at the 30, 60, 120 and 240 min test points (Figures 1, 2B, C) (0.001 < all ps < 0.05). However, HAL treatment had no significant effect on nursing activity (Figures 1, 2D).

3.1.2. QUI pretreatment dose-dependently improved the haloperidol-induced maternal behavior deficits

As can be seen in Table 1 and Figure1A–C, both doses of QUI improved the HAL-induced deficits in pup approach, pup retrieval, pup licking and nest building, as described below.

Table 1

<table>
<thead>
<tr>
<th>Groups</th>
<th>Approach latency (s)</th>
<th>First pup retrieval latency (s)</th>
<th>Last pup retrieval latency (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline 30 min 60 min 120 min 240 min</td>
<td>Baseline 30 min 60 min 120 min 240 min</td>
<td>Baseline 30 min 60 min 120 min 240 min</td>
</tr>
<tr>
<td>VEH+VEH 8</td>
<td>2.1 1.2 1.5 1.5</td>
<td>1.9 2.0 2.6 2.1</td>
<td>19 23.6 24.0 24.0</td>
</tr>
<tr>
<td></td>
<td>(2.0) (0.7) (1.2)</td>
<td>(0.8) (4.6) (8.0)</td>
<td>(0.9) (1.4) (0.7) (0.5)</td>
</tr>
<tr>
<td>VEH+HAL 8</td>
<td>1.6 15.6 87.5 45.4</td>
<td>11.7 480.0 480.0 480.0</td>
<td>112.4 480.0 480.0 480.0</td>
</tr>
<tr>
<td></td>
<td>(0.9) (186.9) (311.7)</td>
<td>(224.6) (135.1)</td>
<td>(180.8)</td>
</tr>
<tr>
<td>QUI-0.5+HAL 8</td>
<td>1.4 2.2 3.4 2.6</td>
<td>8.9 47.4 4.0 3.3</td>
<td>90.3 253.2 480.0 285.4</td>
</tr>
<tr>
<td></td>
<td>(0.8) (15.1) (26.9)</td>
<td>(5.6) (41.6) (89.6)</td>
<td>(35.7) (358.2)</td>
</tr>
<tr>
<td>QUI-1.0+HAL 8</td>
<td>2.8 2.8 12.5 7.7</td>
<td>5.0 30.7 4.3 2.4</td>
<td>327.1 2.4</td>
</tr>
<tr>
<td></td>
<td>(4.1) (7.4) (78.1)</td>
<td>(24.5) (14.2)</td>
<td>(84.1)</td>
</tr>
<tr>
<td>DOI-1.0+HAL 8</td>
<td>1.3 11.1 117.5 43.6</td>
<td>30.6 2.8 293.6 480.0 480.0 65.2</td>
<td>179.7 480.0 480.0 480.0</td>
</tr>
<tr>
<td></td>
<td>(0.7) (29.5) (122.6)</td>
<td>(52.2) (301.4)</td>
<td>(189.4) (441.1)</td>
</tr>
<tr>
<td>DOI-2.5+HAL 8</td>
<td>2.0 49.3 480.0 278.6 819.3 3.1 480.0 480.0 480.0 480.0 480.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.5) (107.8) (169.4)</td>
<td>(446.2) (216.1)</td>
<td>(15.3)</td>
</tr>
</tbody>
</table>

Data are represented as median ± interquartile range.

* p<0.05 relative to the VEH+VEH group.

b p<0.05 relative to the VEH+HAL group.
analysis showed that the reversing effect reached the normal level when the two QUI+HAL groups were compared to the VEH+VEH control group (Figure 1B, p = 0.85 for QUI-0.5+HAL group, p = 0.95 for QUI-1.0+HAL group).

3.1.2.4. Nest building. Similar to the effect on pup retrieval and pup licking, both doses of QUI significantly improved the HAL-induced disruption of nest building activity. Repeated measures ANOVA revealed a significant interaction between the two factors \(F_{(2, 168)} = 6.18, p < 0.001 \), a significant main effect of treatment groups \(F_{(2, 168)} = 17.52, p < 0.001 \), and a significant effect of testing time \(F_{(4, 168)} = 55.95, p < 0.001 \). One-way ANOVA and post hoc tests showed that the QUI-0.5+HAL group was significantly different from the VEH+HAL group at the 120 and 240 min test points (both ps = 0.021), whereas the QUI-1.0+HAL group differed significantly from the VEH+HAL group at the 30, 120 and 240 min test points post-injection (Figure 1C, all ps < 0.001). In particular, although both doses of QUI reversed
3.2.1. Clozapine treatment impaired various components of maternal behavior

Consistent with our previous findings (Li et al., 2004; Zhao and Li, 2009), the present study showed that a single injection of CLZ significantly disrupted various active components of maternal behavior and maintained such a disruptive effect for about 4 h. In comparison with the vehicle-treated ones, rats treated with CLZ took a much longer time to approach and retrieve their first pups into the nest sites (Table 2) at the 30, 60 and 120 min test points (all ps < 0.01). Post hoc tests revealed that there was no significant difference between the two DOI+CLZ groups and the VEH+CLZ group. For pup nursing, one-way ANOVA and post hoc tests indicated that the DOI-2.5+CLZ group showed an even more suppressed nursing duration at the 30 and 120 min test points compared to the VEH+CLZ group (p = 0.048 for 30 min, p = 0.041 for 120 min) (Figure 2D). The DOI-1.0+CLZ group did not differ significantly from the VEH+CLZ group across the testing period.

3.2.2. QUI pretreatment dose-dependently reversed the clozapine-induced maternal behavior deficits

3.2.2.1. Latency to approach and retrieve pups. As shown in Table 2, both 1.0 and 2.5 mg/kg of DOI shortened the prolonged approach latency induced by CLZ when the two DOI+CLZ groups were compared to the VEH+CLZ group and restored it to the normal level (ps < 0.01). It also reduced the CLZ-induced deficits of the first pup retrieving latency (Table 2, Figure 3A,C). One-way ANOVA on the number of pups retrieved and the duration of nest building at the 240 min test point (Figure 3A, C, p = 0.001 for the number of pups retrieved, p = 0.007 for the nest building), while the QUI-1.0+CLZ group differed significantly from the VEH+CLZ group in nest building at the 240 min test point (Figure 3C, p = 0.026). QUI pretreatment did not improve the CLZ-induced deficits in pup licking and pup nursing activities (Figure 3B,D) at any test points. Repeated measures ANOVA on pup licking and pup nursing revealed a significant interaction between the two factors [pup licking: F(4, 168) = 10.53, p < 0.001; nest building: F(4, 168) = 38.33, p < 0.001]. One-way ANOVA and post hoc tests showed that the QUI-1.0+CLZ group differed significantly from the VEH+CLZ group in the number of pups retrieved and the duration of nest building at the 240 min test point (Figure 3A, C, p = 0.001 for the number of pups retrieved, p = 0.007 for the nest building), while the QUI-0.5+CLZ group differed from the VEH+CLZ group in nest building at the 240 min test point (Figure 3C, p = 0.026). QUI pretreatment also did not improve the CLZ-induced deficits in pup licking and pup nursing activities (Figure 3B,D) at any test points. Repeated measures ANOVA on pup licking and pup nursing revealed a significant interaction between the two factors [pup licking: F(4, 168) = 1.68, p = 0.04; pup nursing: F(4, 168) = 2.05, p = 0.007], a significant main effect of treatment groups [pup licking: F(2, 54) = 4.47, p = 0.02; pup nursing: F(2, 54) = 5.52, p = 0.001], and a significant effect of test time points [pup licking: F(4, 168) = 8.02, p < 0.001; pup nursing: F(4, 168) = 6.72, p < 0.001]. Post hoc tests on pup licking and pup nursing revealed that there was no significant difference between the two QUI+CLZ groups and the VEH+CLZ group.

3.2.2.2. Post hoc tests on pup licking and pup nursing revealed that there was no significant difference between the two QUI+CLZ groups and the VEH+CLZ group.

3.2.2.3. Post hoc tests on pup licking and pup nursing revealed that there was no significant difference between the two QUI+CLZ groups and the VEH+CLZ group.

Table 2

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>Approach latency (s)</th>
<th>First pup retrieval latency (s)</th>
<th>Last pup retrieval latency (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30 min</td>
<td>60 min</td>
<td>120 min</td>
</tr>
<tr>
<td>VEH+VEH</td>
<td>8</td>
<td>2.1</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>VEH+CLZ</td>
<td>8</td>
<td>1.8</td>
<td>68.5*</td>
<td>290.8*</td>
</tr>
<tr>
<td>QUI-0.5+CLZ</td>
<td>8</td>
<td>1.0</td>
<td>357.3*</td>
<td>474.6</td>
</tr>
<tr>
<td>QUI-1.0+CLZ</td>
<td>8</td>
<td>0.85</td>
<td>1772*</td>
<td>302.9*</td>
</tr>
<tr>
<td>DOI-1.0+CLZ</td>
<td>8</td>
<td>0.8</td>
<td>1599*</td>
<td>129.0*</td>
</tr>
<tr>
<td>DOI-2.5+CLZ</td>
<td>8</td>
<td>0.4</td>
<td>360.1*</td>
<td>358.7*</td>
</tr>
</tbody>
</table>

Data are represented as median ± interquartile range.

a p < 0.05 relative to the VEH+VEH group.

b p < 0.05 relative to the VEH+CLZ group.
3.2.3.2. Number of pups retrieved. Both doses of DOI increased the number of pups retrieved in the CLZ-treated rats. One-way ANOVA and post hoc tests showed that there was a significant difference between the DOI-1.0+CLZ group and the VEH+CLZ group at the 60 and 120 min test points ($p = 0.006$ for 60 min, $p = 0.008$ for 120 min), whereas retrieval and restored it to the normal level at the 60 min test point ($p = 0.035$) at a dose of 1.0 mg/kg as well as at the 60 and 120 min test points (both ps < 0.01) at a dose of 2.5 mg/kg. For the last pup retrieval latency, both doses of DOI completely rescued the disruption at the 60 and 120 min (0.001 < all ps < 0.01) test points. Furthermore, 2.5 mg/kg of DOI shortened the last pup retrieval latency at the 240 min test point ($p = 0.001$).
the DOI-2.5+CLZ group differed significantly from the VEH+CLZ group even at the 240 min test point (Figure 4A, 0.001 < all ps < 0.05). Further analysis showed that the reversing effect of 1.0 mg/kg of DOI reached the normal level at the 60 and 120 min test points while the 2.5 mg/kg of DOI restored the CLZ-induced disruption to the normal level at 60, 120 and 240 min test points (Figure 4A, all ps > 0.05). It appears that the strongest reversal effect of DOI occurred 120 min after CLZ administration (Figure 4A).

3.2.3.3. Pup licking. Both doses of DOI alleviated the CLZ-induced disruption on pup licking. One-way ANOVA and post hoc tests showed that there was a significant difference between the DOI-1.0+CLZ group and the VEH+CLZ group at the 120 min test point (p = 0.049), while the DOI-2.5+CLZ group differed significantly from the VEH+CLZ group at the 60 and 120 min test points (Figure 4B, p = 0.034 for 60 min, p = 0.015 for 60 min). Further analysis showed that only 2.5 mg/kg of DOI restored this behavior to the normal level at the 60 and 120 min test points when the two DOI+CLZ groups were compared with the VEH+VEH control group (Figure 4B, both ps > 0.05). 3.2.3.4. Nest building and pup nursing. Compared to the reversing effects on pup retrieval and pup licking, DOI algae the curr-ently tested doses appeared to be ineffective in reversing the CLZ-induced deficits on nest building and pup nursing. Post hoc tests on nest building and pup nursing revealed that therewas no significant difference between the two DOI+CLZ groups and the VEH+CLZ group (Figure 4C, D, all ps > 0.05).

4. Discussion

The present study demonstrates an interesting double dissociation between dopamine and serotonin receptor mechanisms in the mediation of HAL- and CLZ-induced maternal behavior deficits in postpartum rats. Acute treatment of HAL and CLZ disrupted various components of rat maternal behavior. Pretreatment of QUI, a selective D3/D4 dopaminergic receptor agonist, but not DOI, a selective 5-HT2A/2C serotonin receptor agonist, dose-dependently improved HAL-induced disruption of pup approach, pup retrieval, pup licking and nest building, whereas pretreatment of DOI, but not QUI, dose-dependently improved CLZ-induced disruption of pup approach, pup retrieval and pup licking. These data strongly suggest that the HAL-induced maternal deficits are primarily mediated by its blockade of D3 dopamine receptors, whereas the CLZ-induced maternal deficits are primarily mediated by the blockade of 5-HT2A/2C receptors.

The dopamine systems have been well documented to play an important role in the regulation of maternal behavior. For example, systemic (e.g., haloperidol, a D2 antagonist) or microinjection of dopamine receptor antagonists such as SCH-23390 (a D2 antagonist), pimozone (a D2 antagonist) and cis-flupenthixol (a mixed D2/ D1 antagonist) into the specific brain regions implicated in maternal behavior (e.g., medial preoptic area, nucleus accumbens) disrupts various active maternal behaviors (Byrnes et al., 2002; Giordano et al., 1990; Keer and Stern, 1999; Li et al., 2004; Miller and Lonstein, 2005; Numan et al., 2005; Numan and Stolzenberg, 2009; Silva et al., 2001, 2003; Stern and Taylor, 1991). 6-OHDA lesion of the ventral striatum and ventral tegmental area disrupts pup retrieval (Hansen, 1994; Hansen et al., 1991a,b). Additionally, mother–pup separation, which putatively enhances maternal motivation (Hansen, 1994), stimulates dopamine release in the ventral striatum of maternal rats (Hansen et al., 1993). Because HAL is primarily a D2 receptor antago-nist, we hypothesized that it disrupts maternal behavior by blocking D2 dopamine receptors. We tested this hypothesis by co-administ-rating QUI, a selective D3/D4 agonist together with HAL and examined whether QUI could reverse the effects of HAL. As expected, QUI did significantly improve the HAL-induced maternal behavior defi-cits. HAL rats pretreated with QUI showed shortened pup approach and retrieval latency than those pretreated with vehicle. This result is in general agreement with a previous study showing that apomorphine, a mixed D1/D2 receptor agonist with a preferential affinity and potency for the D2 over D1 receptor subtype (Kebabian and Calne, 1979), reversed HAL-induced pup retrieval deficits in post-partum rats (Giordano et al., 1990). We extended this line of research by showing that HAL specifically acts on D2 receptors to achieve its disruptive effect. Of note, this finding does not necessarily rule out the involvement of the D3 receptor mechanism because HAL does have a weak D3 antagonism (Miyamoto et al., 2005), and other studies also find that D3 receptors are involved in the regulation of mater-nal behavior (Miller and Lonstein, 2005; Numan et al., 2005; Numan and Stolzenberg, 2009).

The lack of the effect of DOI treatment on HAL-induced maternal behavior deficits is not surprising given the fact that DOI is a selective 5-HT2A/2C agonist and HAL lacks an action on these seroto-nergic receptor systems. Interestingly, DOI pretreatment further decreased the duration of pup nursing in the HAL-treated rats (see Figure 2D). Informal observations indicate that after the pups were returned to the cage, the HAL rats pretreated with 2.5 mg/kg of DOI did not approach and retrieve their pups, but stayed in the corner of the cage with no apparent movement. This may explain the reduction of pup nursing by DOI. In light that DOI itself reduces locomotor activity (Hameleers et al., 2007; Krebs-Thomson and Geyer, 1996; Mittman and Geyer, 1991; Wing et al., 1990), it is possible that DOI-induced hypolocomotor activity may have contributed to its disruptive effect on pup nursing.

Our original hypothesis that QUI may also attenuate the CLZ-induced disruption to some extent, as CLZ also possesses a D2 antagonism, was not supported by the present findings. In contrast, QUI actually worsened some maternal behavior deficits, such as on pup retrieval and nest building. These findings indicate that CLZ-induced maternal deficits are not primarily mediated by its weak antagonism of D3 receptor. Our preliminary work (data not shown) finds that QUI at a dose of 1.0 mg/kg by itself disrupts pup retrieval and nest building. Therefore, it is possible that a combination of clozapine and QUI may provide an additive disruption on the CLZ-induced maternal deficits.

The most striking finding from the present study was that DOI pretreatment rescued most, if not all, maternal behavior deficits induced by CLZ. We found that CLZ rats pretreated with DOI took a much shorter time to initiate contact with pups and retrieve their pups into the nest sites (Table 2), retrieved more pups (Figure 4A) and spent more time licking their pups than CLZ rats pre-treated with vehicle (Figure 4B). CLZ has a unique and multifaceted pharmacological, behavioral and clinical profile in comparison with other antipsychotic drugs (Matsubara et al., 1993; Meltzer, 1989; Saf-ferman et al., 1991; Schmauss et al., 1989) due to its multiple-receptor action, including a relatively high affinity for D3 histaminergic (H1), muscarinic, serotoninergic (5-HT3), and alpha-1-adrenergic recep-tors (Baldessarini et al., 1992; Lane et al., 1988; Meltzer, 1989; Meltzer et al., 1989a; Miller and Hiley, 1974; Seeman, 1992; Zivitsiansou et al., 2007), moderate affinity for D1, D3, D4, alpha-2-adrenergic and 5-HT3 receptors (Ellenbroek et al., 1991; Matsubara et al., 1993; Miyamoto et al., 2005; Murray and Waddington, 1990; Perry et al., 1983; Remington and Kapur, 2000). The unique antipsychotic property of CLZ (e.g., low EPS and less prolactin elevation) has been correlated with its lowaffinity and fast dissociation at the D3 receptor (Kapur and Remington, 2001; Kapur and Seeman, 2001; Seeman, 2002). This profile makes it difficult to pinpoint the exact mechanisms mediat-ing the antipsychotic and behavioral effects of CLZ. Our finding that DOI dose-dependently improved the CLZ-induced maternal behavior deficits suggests that CLZ exerts its disruptive effect on maternal behavior through a 5-HT2A/2C Receptor-mediated mechanism, and that this effect thus might not be directly related to its antipsy-chotic efficacy, which is mediated by blockade of D3 receptors (See-man, 2002).
There are several possible mechanisms underlying the reversing effect of DOI on CLZ-induced maternal behavior deficits. First, DOI may directly activate the 5-HT₂A receptors localized in the brain regions important for maternal behavior, such as the nucleus accumbens (NA) and the ventral tegmental area (VTA), etc. There is considerable evidence demonstrating that moderate to high levels of 5-HT₃A/₂C receptor immunoreactivity (Bubar et al., 2005; Clemett et al., 2000; Cornean-Hebert et al., 1999; Jakab and Goldman-Rakic, 1998) and mRNAs (Eberle-Wang et al., 1997; Pompeiano et al., 1994; Wright et al., 1995) are expressed in the NA and VTA, thus, DOI may antagonize CLZ’s blockade on 5-HT₃A/₂C receptors through competitive binding to 5-HT receptors in these areas to alleviate the CLZ-induced maternal behavior deficits.

Second, DOI may improve CLZ-induced maternal deficits through its indirect action on the dopaminergic systems. The mesolimbic dopamine system, originating in the VTA and terminating in the NA has been implicated in the appetitive aspects of maternal behavior (Hansen, 1994; Hansen et al., 1991a, b; Numann, 2007; Numann et al., 2005). Recently, 5-HT₃A/₂C receptors were found to be localized on the dopamine neurons in the VTA (Bubar and Cunningham, 2007; Doherty and Pickel, 2000; Ji et al., 2006; Nocjar et al., 2002). This finding provides evidence in support of the possible interaction between the serotonin and dopamine systems in the VTA (Alex and Pehek, 2007; Di Matteo et al., 2001). More importantly, a growing body of evidence shows that 5-HT₁ receptors play a prominent role in the modulation of mesolimbic dopamine-mediated function. For example, in the NA, activation of 5-HT₁ receptor appears to facilitate dopamine release that can be blocked by local injection of a 5-HT₁ receptor antagonist (Parsons and Justice, 1993). DOI, a mixed 5-HT₁/₂C receptor agonist, has been shown to increase extracellular levels of dopamine in the posterior NA (Bowers et al., 2000). Thus, it is possible that DOI may reverse the effect of CLZ by regulating the DA release in the NA and thus indirectly regulate maternal behavior via the DA system.

Future research should directly address the neural pathways that mediate the modulatory effects of 5-HT₃A/₂C receptors on mesolimbic dopamine systems.

Third, at the behavioral level, the diminished sedation could be a contributing factor in reversing CLZ-induced maternal deficits by DOI. In the present study, we noted that DOI treatment significantly alleviated CLZ-induced sedative effect as those rats showed increased motor activity, no sign of closed eyes or bowed head. It has been reported that acute and repeated injection of CLZ at a dose of 10.0 mg/kg produces substantial sedation in animals (Chesler and Salamone, 1996). The CLZ-induced sedative effect has also been reported in the clinic (Burke and Sebastian, 1993; Safferman et al., 1991). Moreover, recent work from our laboratory shows that the sedative effect of CLZ contributes to its disruption on maternal behavior (Zhao and Li, 2009). At this point, it is still premature to suggest that DOI reverses CLZ’s disruption on maternal behavior by alleviating the sedative effect of CLZ, because CLZ is not known to cause sedation by blocking 5-HT₃A/₂C receptors, but rather by blocking alpha-adrenergic and histaminergic receptors (Lieberman et al., 1989; Safferman et al., 1991). More research is needed to examine whether CLZ can cause sedation via action on 5-HT₃A/₂C receptors.

Because improvement of CLZ-induced disruption of nest rebuilding was not apparently observed after DOI pretreatment, it is possible that other neurotransmitter systems may be involved in CLZ-induced nest building deficit. One such system could involve the dopamine D₁/D₅ receptors, as our results show that HAL-induced disruption of nest building was reversed and restored to the normal level by QUI, a selective D₁/D₅ receptor agonist. Other systems may include dopamine D₃, D₅ and D₆ receptors. CLZ has high affinity for D₃ and moderate affinity for D₅ and D₆ receptors. Consistent with this hypothesis, previous studies have shown that D₃ receptor activity is critical for the regulation of maternal behavior. Microinjection of a dopamine D₃ receptor antagonist SCH-23390 into the medial preoptic area (MPOA) or nucleus accumbens (NA) greatly impairs pup retrieval in postpartum rats (Miller and Lonstein, 2005; Numan et al., 2005). Microinfusion of a dopamine D₁ receptor agonist SKF-38593 into either the MPOA or the NA promotes the onset of maternal behavior in pregnancy-terminated rats (Stolzenberg et al., 2007).

However, it is unknown whether the D₃ and/or D₅ receptors are involved in the regulation of maternal behavior due to lack of evidence. Alternatively, nest building activity may still be mediated by 5-HT₃A/₂C receptors, but is more sensitive and vulnerable to pharmacological intervention (Li et al., 2004; Silva et al., 2001; Zhao and Li, 2009). Future work should address this issue in detail.

The present study provides strong evidence supporting the involvement of 5-HT₁ receptors in the mediation of rat maternal behavior. Previous work on this issue is inadequate and inconsistent. For example, Brunner et al. (1999) reported that 5-HT₁ receptor knockout mother mice did not display pup retrieval deficits. More recently, Lerch-Haner et al. (2008) reported that transgenic mouse dams with a specific disruption in serotonin neuron development displayed profound maternal deficits (e.g., pup retrieval, pup nursing, nest building). This study, however, did not answer which subtypes of 5-HT receptor are implicated in maternal activity. Other studies have found that 5-HT₁A and/or 5-HT₁C receptors are involved in maternal aggressive behavior (De Almeida et al., 2005, 2006a, b; Olivier et al., 1995; Veiga et al., 2007). For example, intracerebroventricular injections of DOI, a 5-HT₁A agonist, inhibited maternal aggression in postpartum female rats (De Almeida and Luchin, 1994). To the best of our knowledge, the present study was the first to demonstrate that 5-HT₁A receptors may be important in regulating rat maternal behavior.

Consistent with our previous work (Li et al., 2004), we found that HAL and CLZ had different time courses of action. HAL tended to produce a prolonged disruption, whereas CLZ produced a transient one. For instance, the HAL-induced disruption of nest building was still apparent even at the 240 min test point (4 h post-injection), whereas the effect of CLZ was diminished (Figures 1, 3, C). It appears that the reversal effect of QUI on HAL-induced maternal deficits also differed in regard to time course of action from that of DOI on CLZ-induced deficits. For example, the reversal effect of DOI on CLZ-induced disruption of pup retrieval was somewhat delayed in onset when compared to that of quinpirole on HAL-induced impairment (Figures 1, 4A), which may be attributable to the rapid peak plasma concentrations of quinpirole (Whitaker and Lindstrom, 1987). Taken together, the present study demonstrates an interesting double dissociation receptor mechanism underlying the HAL and CLZ-induced maternal behavior deficits. Our data suggest that the HAL-induced maternal deficits are primarily mediated by the blockade of D₁ dopamine receptors, whereas the CLZ-induced maternal deficits are primarily mediated by the blockade of 5-HT₃A/₂C receptors. Because not all components of CLZ-induced maternal behavior deficits were reversed by DOI, other receptor mechanisms such as the D₃ receptor may also be involved, prompting the need for further investigation.

Acknowledgements

This research was supported by a grant from the National Institute of Mental Health (5R03MH080822-02). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or the National Institutes of Health. We would like to thank Wei He for his administrative and technical help with this work.

References

Ichikawa J, Meltzer HY. DOI, a 5-HT\textsubscript{1A} receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. *Brain Res* 1995; 698: 204–8.

Ichikawa J, Dai J, Meltzer HY. DOI, a 5-HT\textsubscript{1A} receptor agonist, attenuates clozapine-induced dopamine release in the nucleus accumbens. *Brain Res* 2001; 907: 151–5.

Kuroki T, Meltzer HY, Ichikawa J. 5-HT\textsubscript{1A} receptor stimulation by DOI, a 5-HT\textsubscript{1A} receptor agonist, potentiates amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. *Brain Res* 2003; 972: 216–21.

Meltzer HY, Matsuura S, Lee JC. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D\textsubscript{1}, D\textsubscript{2} and serotonin2 pKi values. *J Pharmacol Exp Ther* 1989b; 251: 238–46.

Miyamoto S, Duncan GE, Moste GE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antip-

Nocjar C, Roth BL, Pehek EA. Localization of 5-HT1A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. *Neuroscience* 2002; 113: 163–76.

Stolzenberg DS, McKenna JB, Keough S, Hancock R, Numan MJ, Numan M. Dopamine D2 receptor stimulation of the nucleus accumbens or the medial preoptic area promotes the onset of maternal behavior in pregnancy-terminated rats. *Behav Neurosci* 2007; 121: 907–19.

ZHAO & LI IN *Pharmacology, Biochemistry and Behavior* 93 (2009)