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ABSTRACT

Motivation: Reverse engineering GI networks from experimental data

is a challenging task due to the complex nature of the networks and

the noise inherent in the data. One way to overcome these hurdles

would be incorporating the vast amounts of external biological know-

ledge when building interaction networks. We propose a framework

where GI networks are learned from experimental data using Bayesian

networks (BNs) and the incorporation of external knowledge is also

done via a BN that we call Bayesian Network Prior (BNP). BNP depicts

the relation between various evidence types that contribute to the

event ‘gene interaction’ and is used to calculate the probability of a

candidate graph (G) in the structure learning process.

Results: Our simulation results on synthetic, simulated and real

biological data show that the proposed approach can identify the

underlying interaction network with high accuracy even when the

prior information is distorted and outperforms existing methods.

Availability: Accompanying BNP software package is freely available

for academic use at http://bioe.bilgi.edu.tr/BNP.

Contact: hasan.otu@bilgi.edu.tr

Supplementary Information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Gene interaction (GI) networks provide insight for understand-

ing the biological mechanisms that explain various phenotypes in
health and disease. The inference of GI networks from high-

throughput biological data is an important and challenging
task in systems biology. Throughout the literature, the term GI

has been used in a broad sense implying direct and indirect inter-
actions between genes and/or gene products. Several machine

learning and statistical methods have been proposed for the

problem (Akutsu et al., 2000; D’Haeseleer et al., 2000; Hecker
et al., 2009; Lezon et al., 2006; Liang et al., 1998; Yeung et al.,

2002) and Bayesian network (BN) models have gained popular-
ity for the task of inferring gene networks (Friedman and Koller,

2003; Friedman et al., 2000; Hartemink, 2005; Kim et al., 2003).
Because of the complexity of GI networks and the sparse, noisy

nature of experimental data, machine learning and statistical

methods may lead to poor reconstruction accuracy for the

underlying network. One way to overcome this problem would

be to incorporate prior biological knowledge when making net-

work inferences using experimental data. Due to technological

advances in sequencing, microarray, proteomics and related

fields, biological and clinical data are being produced at an

ever increasing rate. The 2013 database issue of the Nucleic

Acids Research journal lists 1512 molecular biology databases,

which provide a vast amount of annotated data and meta data

that could be used in a systematic way (Fernandez-Suarez and

Galperin, 2013).

BNs have a number of features that make them viable candi-

dates for combining prior knowledge and data as BNs can deal

with uncertainty, avoid over fitting a model to training data, and

learn from incomplete datasets. BNs handle stochastic events in a

probabilistic framework accounting for noise, which results in

emphasizing only strong relations in the observed data.

Furthermore, BNs are able to focus on local interactions where

each node is directly affected by a relatively small number of

nodes (Friedman et al., 2000) and interactions defined by a BN

can be related to causal inference (Verma and Pearl, 1991). These

properties are similarly observed in biological networks justifying

the use of BNs in exploring pathways in the setting of identifying

GI networks using experimental data. Learning algorithms for

both the structure and parameters of BNs have been developed

(Neapolitan, 2004). Most of the research on BNs has focused on

directed acyclic graphs (DAGs) and static systems with discrete

variables and/or linear Gaussian models. Friedman et al. (2000)

used BNs to generate a causal model of the yeast cell-cycle data

using either a model with discretized expression levels (e.g.

Boolean, or underexpressed/normal/overexpressed), or a linear

Gaussian model. The latter treats the expression level of a gene

as being normally distributed around a mean which is a linear

sum of inputs. Therefore, rather than true causal relationships,

the results may represent co-regulation of genes. Accordingly, a

method to sample network structures from the posterior distri-

bution with Markov Chain Monte Carlo (MCMC) has been

introduced (Friedman and Koller, 2003).
Many BN structure learning algorithms are based on heuristic

search techniques with the likelihood approximation because of

the infeasible computational complexity. These approaches may

lead to a false model, as neither the search technique nor the

objective functions guarantee the optimal solution. Informative

priors generated from existing biological information can im-

prove structure learning to get better models to describe the*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bioe.bilgi.edu.tr/BNP
mailto:hasan.otu@bilgi.edu.tr
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt643/-/DC1
Gene 
gene 
interaction
``
gene interaction
''
gene 
interaction
,
gene interaction
cell 
 (Friedman, etal., 2000)


underlying GIs. In several studies the use of prior biological

knowledge in conjunction with gene-expression data has been

shown to improve the fidelity of network reconstruction.

Hartemink et al. (2002) incorporated genomic location data to

guide the BN model inference. Tamada et al. (2003) proposed a

method, which iteratively detects consensus motifs based on the

structure of the estimated network model, then evaluates the

network using the result of the motif detection, until the inferred

network becomes stable. Imoto et al. (2003) proposed a frame-

work utilizing Gibbs distribution where an energy function was

used to evaluate the probability of an edge in the inferred net-

works. Werhli and Husmeier (2007) extended this approach to

integrate multiple sources of prior knowledge into dynamic

Bayesian network (DBN) learning via MCMC sampling.

Mukherjee and Speed (2008) proposed a scheme to incorporate

known network features including edges, classes of edges, degree

distributions, and sparsity into gene network reconstruction

within a Bayesian learning framework utilizing MCMC

sampling.
These studies were limited in the use of external biological

knowledge by incorporating only certain features, such as net-

work topology or binding sites in promoter regions.

Furthermore, in the aforementioned approaches manual cur-

ation and/or incorporation of the external knowledge are em-

ployed. In this article, we present a framework to incorporate

multiple sources of prior knowledge, regardless of its type, into

BN learning. The meaning of prior knowledge in our context is

the enumeration of pair-wise interactions of genes from biolo-

gical information sources and the use of this information in BN

modeling. The proposed method is fully automatic and does not

use likelihood approximations to find the optimal network that

explains observed experimental data. We propose a novel frame-

work that uses BN infrastructure itself to incorporate external

biological knowledge when learning networks. This infrastruc-

ture yields GI information for pairs of genes, which can be used

as informative priors to calculate the probability of a candidate

graph, G. This information is then incorporated in the network-

learning process that tries to identify the most probable graph

given data. We provide an open-access web-based implementa-

tion of the proposed method at http://bioe.bilgi.edu.tr/BNP. Our

results indicate that we can successfully reconstruct networks

using synthetic data in addition to simulated and real gene-

expression data.

2 METHODS

The schematic depiction of the overall proposed method is presented in

Figure 1. Pair-wise interaction information is gathered from biological

databases and a BN model for prior knowledge, Bayesian Network Prior

(BNP) is developed. In BNP, one node is depicted as GI and the topology

represents the dependence structure for different evidence types within

each other and with the GI node. For a set of genes, the model is instan-

tiated with the given evidence and/or experimental data for each pair of

genes. The GI node is used to infer whether the gene pair is related or not,

represented by a prediction value between 0 and 1. A prior knowledge

matrix, B, is populated with these prediction values for all gene pairs.

Using a proposed novel energy formula and informative prior formula,

this prior knowledge is utilized to calculate the probability of a candidate

DAG, G, in the structure learning process. This parameter is used to

optimize P(GjD) instead of the likelihood, P(DjG), used by existing struc-

ture learning algorithms.

2.1 Informative structure priors

A BN is a compact graphical representation of the joint probability dis-

tribution over a set of random variables and consists of a DAG¼ (V, E),

with a node set V corresponding to the random variables X1, . . . , Xn and

an edge set E on these nodes and a set of conditional probability distri-

butions � for each node in the DAG. The DAG encodes the assertions of

conditional independence. If the random variables are discrete, condi-

tional probability distributions � can be represented as a set of condi-

tional probability tables (CPT). CPTs list the probabilities for each value

that a child node can assume given a combination of values of its parents.

In GI network-modeling studies using BNs, Xi represents a gene and

edges represent relationship between genes. The task of network inference

(i.e. structure learning) is to make inferences regarding the graph G that

best explains the data. This can be achieved by finding the DAG G that

maximizes

PðGjDÞ ¼
PðDjGÞPðGÞ

PðDÞ

where P(DjG) is the likelihood, P(D) is the probability of the data, P(G) is

the structure prior (or network prior) probability of the graph G and

P(GjD) is the posterior probability of G. In commonly used heuristic

structure learning algorithms, P(DjG) is optimized instead of the true

model P(GjD). The likelihood criterion does not guarantee to find the

optimum solution even if a heuristic approach is not employed.

Nevertheless, optimizing the likelihood can be justified by assuming

P(D) and P(G) to be equal for all G. The former assumption can be

regarded as reasonable as D is observed. However, the latter assumption

is generally not correct and is made mainly due to difficulties in calculat-

ing P(G) and/or lack of prior knowledge on G. Use of uniform (flat)

priors for Gs ignores the contribution of P(G) and this may cause failure

in differentiating between DAGs that are in the same Markov equiva-

lence set. Therefore, the true DAG among the ones that support the same

conditional probability distribution cannot be identified. The proposed

approach aims to calculate P(G) using external knowledge and provide

improvements in the structure-learning phase for GI networks.

For discrete BNs, most of the learning tasks are performed by calcu-

lating P(DjG) with the Bayesian Dirichlet equivalent (BDe) scoring func-

tion and by assuming uniform (flat) prior structure for all possible

candidate DAGs (Heckerman et al., 1995). In the proposed approach,

Fig. 1. Overall workflow of the proposed method. BNP is constructed

using GI information from external biological databases and when

instantiated with an evidence vector for a pair of genes, the GI probability

is inferred. For a list of genes, the pair-wise interaction information is

stored in the prior matrix B, which is used to calculate the probability of a

candidate graph G in the structure learning process
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we employ a greedy search algorithm that aims to maximize P(GjD). For

a given candidate DAG, G, we calculate P(G) by first obtaining the prior

information matrix, B. Unlike existing methods, the proposed approach

does not use categorized prior knowledge but assigns probabilities to each

candidate edge. The matrix B is obtained by instantiating BNP with the

evidence vector for each pair of genes in the input gene set. These evi-

dence vectors can originate from any performed experimental data at

hand, or external knowledge, or both.

Let B be the prior information matrix, where B(i, j)¼P(Xij), the degree

of prior belief that gene i and j interact based on external knowledge. Let

AG denotes the adjacency matrix of the candidate graph G. We define the

matrix U such that U(i, j)¼ 1 – [B(i, j)AG(i, j)], the element by element

multiplication of B and AG. Note that if there exists no edge from i to j in

G, U(i, j)¼ 1; and if there is an edge from i to j in G, U(i, j) is inversely

proportional to our prior belief on the existence of the edge. The total

energy of G is defined as:

EðGÞ ¼
X
i, j

Uði, jÞ

N2

where N is the number of nodes in G. This way, we do not assign cat-

egorical values for U(i, j) and exploit fully the information about prior

existence of an edge. Informative structure prior is formulated as:

PðGj�Þ ¼ Ce��EðGÞ

where C is a scaling constant. The choice of C does not affect the relative

comparison during scoring of graphs in structure learning. The hyper-

parameter � can be marginalized using

PðGÞ ¼ c:
1

�H � �L

Z�H

�L

e��EðGÞ d�:

For ease of simulation, the integral is calculated for a range of E(G)

and stored in a lookup table. In the numerical calculation of this integral,

��¼�H –�L is the parameter of interest, which is optimized as explained

in subsection 3.2. The integration approach automatically incorporates

the uncertainty on the parameter by averaging the likelihood values of the

parameter. Point estimates acquired by maximizing the parameters may

change arbitrarily with arbitrary re-parameterizations. Point estimates

maximize the probability density without taking into account the com-

plementary volume information, which may yield in suboptimal results.

When one has a choice of which variables to integrate over and which to

maximize over, it is suggested that one would integrate over as many

variables as possible in order to capture the relevant volume information

of high-dimensional probability distributions (MacKay, 1996, 1999).

2.2 Bayesian network prior

The goal in building BNP is to construct a framework such that the

distilled external biological knowledge is used in an intelligent way to

make an assessment about the interaction of a pair of genes.

Previously, Troyanskaya et al. (2003) proposed a Bayesian Framework

for combining various data sources for gene function prediction. In this

method a Naive Bayesian model was constructed. The parameters (CPTs)

of the model were determined by experts. Then, a separate network was

instantiated for each gene pair by initializing the bottom-level nodes with

evidence and the probability of the functional relationship between the

two genes was updated. The model was designed for functional predic-

tion, not for GI network learning. Here, we describe a novel-prior know-

ledge inference model that automatically learns parameters of the nodes

used in BNP that predicts if two genes interact using external biological

knowledge. The model organism chosen for BNP was human and the

external data came from pathway, microarray, gene and protein inter-

action databases. The assembled information source is made up of ‘evi-

dence types’, each making a ‘Yes’ or ‘No’ call about the interaction of

two genes and BNP is the BN that represents the relation between these

evidence types and GI. In what follows, we explain the data sources in

detail.

Microarray co-expression was calculated using two datasets. The first

dataset aims to provide a gene atlas for the human genes and examines 79

normal human tissues with 158 samples (Su et al., 2004). The second

database came from the ‘Reference Database for Gene Expression

Analysis’ (RefExA) that represents 70 normal human tissue samples

(http://www.lsbm.org). Affymetrix Expression Console v1.1 was used to

normalize the samples using the MAS 5.0 method. Probe sets with ab-

sence calls in all of the samples were omitted from further analysis.

Centered Pearson correlations were calculated and 71 617 pairs of

probe sets with a correlation value greater than 0.98 were passed on to

be used to construct BNP. KEGG (Kanehisa et al., 2012), NCI/

NATURE (Schaefer et al., 2009) and Reactome (Vastrik et al., 2007)

databases were utilized to gather pathway based evidence data. 3258

pair-wise gene relations that existed in at least two of the three pathway

databases were used for further analysis. A dataset was obtained from

BioGrid (Stark et al., 2011) with evidence of interactions that are

observed in experiments with 17 different assay types such as affinity

capture and two-hybrid. BioGrid analysis revealed a total of 35 600

non-redundant pair-wise interactions. After the microarray probe set

level data was regressed to the gene level and all three sources were

merged, 60 950 pair-wise GIs based on 19 evidence types were obtained

(see Supplementary Table S1). A GI node is appended to this evidence

matrix (where rows represent gene pairs and columns represent evidence

types) with a ‘true’ value if there were at least two evidence types implying

interaction. BNP was built by learning both structure and parameters

using Greedy Hill Climbing (Neapolitan, 2004).

3 RESULTS

3.1 Constructing the BNP

BNP was built using the GI evidence matrix that contained

460 000 pairs of genes. The model was trained and tested using
a 5-fold cross validation approach, where the dataset was rando-

mized and 80% of the data was used to train the model and 20%

of the data was used to test the model. Success rate of the model
with respect to the GI data label is calculated as the classification

error. This procedure was repeated five times and average error
values were calculated. At each time, after BNP was built with

80% of the evidence matrix using the Greedy Hill Climbing

(GHC) method, the remaining 20% of the data matrix was
tested by inferring the value of the GI node. This test was

done through instantiation of BNP using the evidence vector
of a given pair of genes. Loopy Belief Propagation inference

algorithm was used for inference. If the inference value was
40.5, the GI node was taken to be ‘true’. The classification

error rate for the 5-fold cross validation was 0.105� 0.003 imply-

ing an accuracy of �90% when estimating if two genes interact
given external biological knowledge.

Final BNP was constructed with the entire evidence matrix
using the GHC method. The strength of the probabilistic rela-

tionships expressed by the edges of BNP was measured using
Friedman’s bootstrap method with 1000 repeats (Friedman

et al., 1999). Model averaging was used to build a consensus
DAG of BNP, containing only the significant edges with a sig-

nificance threshold of 0.413 determined by using the method of

Nagarajan et al. (2010). The consensus DAG of BNP is shown in
Figure 2. BNP consists of 20 nodes and 98 edges. The density of

the network is 0.52 with an average degree of 9.8, showing high
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connectivity. The most connected nodes are ‘Microarray’

(denoting an interaction based on gene expression) and
‘Reconstituted Complex’ (implying an interaction is detected be-

tween purified proteins in vitro) with 19 edges, i.e. full connect-

ivity. These are followed by ‘Two-Hybrid’ (18 edges), Affinity
Capture MS (17 edges) and Affinity Capture Western (16 edges)

assays. BNP provides a unique depiction about how different
experimental assays are related to each other and to the event

of GI, which opens ways to new hypotheses about assay type

interrelation. The evidence matrix and the source code used to
build BNP as well as the parameters of the final BNP model are

available on the web portal hosting BNP.

3.2 Sensitivity analysis of prior parameters

We used the ubiquitous Sprinkler BN shown in Supplementary

Figure S1 to test the sensitivity of the proposed method to the
prior formula hyperparameter �. Sprinkler BN is a binary net-

work that shows the conditional probability distributions for the

events of the weather being cloudy, raining, grass being wet and
the sprinkler being on. We generated simulated discrete datasets

that follow the model shown in Supplementary Figure S1 using

the Bayes Net Toolbox (BNT) for Matlab (http://cs.ubc.ca/
�murphyk). We used a range of �� values of [�L, �H] from
0.1 to 20 and performed receiver operating characteristic

(ROC) curve analysis. The area under the curve (AUC) values
for the best performing DAGs were calculated using posterior

probability P(GjD) with informative priors (proposed method)

and marginal likelihood P(DjG) scores with uniform flat priors.

In this and all subsequent AUC calculations, the edges are con-
sidered to be undirected. For each �� value, the scoring was

repeated 50 times by generating new data sizes of 10, 20, 50

and 100. In Supplementary Figure S2, we plot the mean AUC
values obtained versus the parameter interval values. Our results

suggest that the proposed method always outperforms the like-
lihood based approaches and the performance reaches a plateau

for �� values of 1 and higher. Based on these observations, for

the remaining experiments, we used a �� value of 10.

3.3 Incorporation of P(G)

Following optimization of the prior parameters, we tested the

incorporation of P(G) on the Sprinkler BN as well as randomly
generated 5-node BNs. In the Sprinkler BN tests, we generated

data that follows the model shown in Supplementary Figure S1
for a dataset size 1000. We scored each of the 543 possible 4-node

DAGs in a brute force approach without using a heuristic search

algorithm. We calculated P(DjG) using BDe and P(GjD) using
the proposed approach. In Supplementary Table S2, we show the

top 10 scoring DAGs with the highest P(GjD) scores using nine

different distorted prior matrix cases. Our results suggest that the
proposed approach outperforms conventional structure learning

methods even when the prior structure matrix B is vastly dis-

torted. The true DAG comes uniquely out at the top when
P(GjD) is considered. It is possible to differentiate between

DAGs in the same Markov Equivalence Class by incorporating

Fig. 2. Topology of the BNP. BNP depicts the conditional dependence structure between various evidence types and the GI node based on external

biological knowledge. BNP is used to predict the interaction probability for two genes using provided experimental data combined with external

information. Links of the GI node are shown in solid lines for visual purposes
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P(G), however, this does not hold true for the P(DjG) scores,
which do not use P(G).
We then generated 100 random 5-node BNs along with their

CPTs. Datasets of size 100 were generated with BNT and both
likelihood and proposed scores were calculated for the DAGs. In
applying the proposed approach, we distorted the prior matrix so

that it did not always represent the true adjacency matrix. For a
given DAG, we changed the real edge probabilities in the prior
matrix with a fixed value between 0.7 and 1.0. This value was
randomly chosen for each DAG. If no edge was present in the

true DAG, this was reflected with a probability value of 0 in the
prior knowledge matrix. Again a brute force method was used in
that all 29 281 possible 5-node DAGs were created and scored

using both methods. In Supplementary Figure S3, we show the
percent rank of the true DAG for both methods with changing
distortion levels. Percent rank is calculated as [(rank of the true

DAG’s score/number of all DAGs)� 100%]. In all the simula-
tions, the proposed method ranked the true DAG higher than it
was ranked using marginal likelihood scoring. The average per-

cent rank of the true DAG using the proposed method was
0.09%. In other words, the true DAG was ranked as approxi-
mately the 27th best scoring DAG, on average, using the pro-

posed method. On the other hand, the average percent rank of
the true DAG using the likelihood scoring approach was 2.28%,
implying that the true DAG was ranked as approximately the

670th best scoring DAG on average.
We further analyzed the performance of the posterior prob-

ability scoring with informative priors against likelihood scoring

with flat priors on the 4-node Sprinkler network and a randomly
selected 5-node network in detail (see Supplementary Fig. S4). In
the application of the proposed method, we distorted the prior

knowledge matrix by assigning the same probability values, ‘a’,
to the edges and the same probability values, ‘b’, to the entries
with no edges using all combinations for ‘a’ and ‘b’ in the range

[0,1] with 0.1 increments. The generated dataset size was 100 and
the process was repeated 10 times for each pair of (a, b). In
Figure 3, we show the AUC values using a heatmap. The

x-axis represents probability values assigned to non-existing
edges and the y-axis represents probability values assigned to
the true edges in the graph. Each pixel encodes the average

AUC value for the 10 simulations for a given (a, b) and the
lower left quadrant represents prior knowledge that the true
edge probability is in the range of [0.6–1.0] and the false edge

probability is in the range of [0.0–0.4].
In the lower left quadrant, the overall mean AUC of the pos-

terior probability scoring was480% for the Sprinkler BN and

close to 70% for the 5-node BN. If the true edges are indicated in
the prior matrix with high accuracy, then the proposed method
performs quite well in finding the DAG under investigation. For

example, in the Sprinkler BN, when the true edges are correctly
represented with a 1 in the prior matrix, AUC remains at 100%
even the false edge probabilities are as high as 0.9. For a fixed

true edge probability of 0.9, the average AUC is �92% when the
false edge probability ranges from 0 to 0.9. A similar trend is
observed for the 5-node BN. The heat maps shown in Figure 3

also indicate that incorrect prior knowledge is punished by our
informative prior model severely and the proposed system is
more robust to false positives than it is to false negatives in the

prior matrix.

3.4 Synthetic pathway data

We picked 23 human KEGG pathways and modeled them as

BNs as previously described (Isci et al., 2011). The pathway

names and their graph properties can be found in

Supplementary Table S3. For each BN, a dataset of size 50

was generated using BNT with CPTs fitting to the DAGs. The

original DAGs were used to obtain distorted prior matrices. In

this case, distortion was introduced by adding Gaussian noise to

the true DAG’s adjacency matrix AT to obtain the prior matrix

B. The distortion rate was calculated using d¼Fro (AT – B)/

Fro(AT), where Fro(A) represents the Frobenius norm of the

matrix A (da Piedade et al., 2009). The distortion rate was set

to be in the [0.0–0.3] range and this range was covered in 0.05

increments rendering seven discrete rates. For each pathway and

distortion rate, the synthetic data generation, distortion and

structure-learning steps were repeated five times both using the

proposed method based on information priors and the likelihood

based standard methods. In Figure 4, we represent the average

AUC values as a function of the introduced distortion rates. For

all iterations, learnt DAGs with informative priors had higher

AUCs (between 0.9 and 1) compared to the AUCs (between 0.5

and 0.6) for DAGs learnt with flat priors. The proposed method

showed less variation in its performance measure compared to

the standard methods. As the distortion level was increased, the

difference between the mean AUC values of DAGs learnt with

informative prior and flat prior had a tendency to decrease.

Fig. 3. Heat map for the AUC values for the Sprinkler and a 5-node BN.

The color-scale used for the heat maps are shown at the bottom. Each

pixel denotes a fixed true-edge, no-edge probability pair and summarizes

the mean AUC of 10 simulations. The AUC values were calculated using

the proposed method based on dataset sizes of 100, each following the

joint probability distribution implied by the networks. Lower left corner

implies a well composed prior matrix, B, as true edge probabilities are

close to 1 and no-edge probabilities are close to 0
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3.5 Simulated pathway data

We used the same 23 KEGG pathways used in the previous step
to generate simulated gene expression data. SynTReN v1.12 was

used to generate the signal levels for the genes in each of the 23
pathways with 10 control and 10 test samples and �10% back-

ground noise (Van den Bulcke et al., 2006). The input data for
structure learning was obtained as previously described (Isci

et al., 2011). Briefly, columns represent genes in the pathway
and rows represent observations. Each row (observation) is ob-

tained by the fold change values of the genes between one pair of
control and test samples. The input matrix consisted of 100 ob-

servations (10 control� 10 test) and reflected the distribution of
fold change values between the two classes of samples. This

matrix was discretized into three levels using k-means clustering
(Li et al., 2010). The inferred DAGs using prior knowledge (pro-

posed method) and unifrom prior knowledge (flat prior, stand-
ard methods) were compared to the original pathway structures

using AUC values. This process was repeated five times for each
pathway.

When the proposed method was employed, the BNP was
instantiated for each gene pair in the given pathway to obtain
the GI probability for the pair omitting the evidence from the

KEGG information priors. These values made up the prior in-
formation matrix, B. During the instantiation, the evidence

vector used composed of existing evidence information for the
gene pair in the databases and the microarray correlation value

calculated by the input GI data. This exemplifies the utility of the
proposed method in which one can build interaction networks

based on different evidence types originating from the performed
experimental data. The BNP workflow then collates this

observed information with the distilled structure obtained from
external knowledge bases to infer the GI probability for a pair of

genes. The results for the AUC values between predicted and
true DAGs for the 23 KEGG pathways using simulated GI

data are shown in Figure 5. The proposed method dramatically
surpassed classical structure learning methods where the AUC

values for the DAGs found using the proposed method, on

average, were 30% higher. The average AUC value for the pro-

posed method was 86%. The improvement introduced by BNP

shows the value of incorporating existing external knowledge

when reverse engineering GI networks from noisy GI data.

3.6 Real microarray data

We tested the proposed method using real GI data obtained

from Renal Cell Cancer (RCC) and Normal samples as de-

posited in NCBI’s GEO database with accession numbers GSE

11024 (Kort et al., 2008) and GSE 8271 (Koeman et al., 2008).

Input data was obtained as previously described (Isci et al.,

2011). Briefly, MAS 5.0 normalized data was used and IDs in

the array platform that correspond to a given node in a given

pathway were pooled and summarized as one representative

signal value using one-step Tukey’s bi-weight algorithm

(Hoaglin et al., 2000). Generation of the observation matrix to

be used in the structure learning process for a given pathway and

incorporation of BNP were carried out as explained in the pre-

vious subsection. We attempted at finding seven KEGG path-

ways shown to be important in RCC (Isci et al., 2011) using the

expression values of the genes in these pathways from the two

real RCC microarray datasets. The AUC values for the predicted

and true pathways using the proposed method and likelihood

scoring based methods are shown in Figure 6. In all seven

cases, the proposed method found the underlying KEGG path-

way with greater accuracy. The average AUC values for the

proposed and existing methods were 89% and 57%, respectively.

In Supplementary Figure S5, we show the GI network found

using the proposed method for the genes in the

‘glycosaminoglycan degradation’ pathway. The comparison of

this network with the true KEGG pathway (hsa00531) shows

that495% of the edges that exist in the true pathway are cor-

rectly found in the reconstructed network. The proposed method

inserted six edges that did not exist in the true pathway.

However, as biological pathways may be incomplete, these in-

serted edges have the potential to suggest interactions that are yet

to be discovered and should not be regarded as real false

positives.

4 DISCUSSION

In this article, we describe a framework to incorporate multiple

sources of prior knowledge, regardless of its type, into Bayesian

network learning. In several studies, the use of prior biological

knowledge of the GI network in conjunction with GI data has

been suggested to improve the fidelity of network reconstruction.

However, existing methods fail to rigorously harness and use the

existing wide range of biological information. The proposed

BNP model makes inferences about interactions between gene

pairs. The model is instantiated each time with the given experi-

mental data to infer whether the gene pair is related or not,

represented by a prediction value between 0 and 1. A prior know-

ledge matrix is populated with prediction values for all combin-

ations of gene pairs. Using a proposed energy and informative

prior function, the prior knowledge is utilized in learning net-

work structure with the Greedy Search algorithm in the BN

framework. The goal on these applications is to construct gene

networks from GI data and a list of genes of interest. We tested

Fig. 4. Average AUC values for the proposed (prior) and standard like-

lihood based (flat) methods. The x-axis represents the distortion rate used

in the prior matrix, B. Twenty-three KEGG pathways were modeled as

BNs and five fitting datasets of size 50 for each pathway was generated.

Learned networks using the two methods were compared to the KEGG

pathways for AUC calculation. In application of the proposed method

the adjacency matrix of the original pathway was distorted by adding

Gaussian noise to the matrix entries
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the sensitivity our prior model to its parameters and analyzed the

performance of the posterior probability scoring with inform-

ative priors against scoring with flat priors. Our BNP model

incorporating selective evidence types rendered an accuracy of

490% when estimating if two genes interact given external bio-

logical knowledge. This informative prior formula is integrated

into the greedy search algorithm to learn Bayesian networks. It

was shown that the proposed method was able to infer real path-

ways with high AUC values, using both synthetic and real GI

data.

The proposed framework can be extended to analyze time

series gene expression data using Dynamic BNs. This can

be achieved through a straightforward application where the

calculated P(G) using BNP is incorporated in dynamic

network-learning methods.
Bayesian structure learning algorithms and the improved

algorithms described in this article have certain limitations in

terms of the size of the network to apply to. Any biological

pathway may not work alone but function as part of a large

atlas. Therefore, inferring large GI networks (atlas) from data

Fig. 5. Average AUC values for 23 KEGG pathways based on simulated gene expression data. Proposed method using informative priors (AUCp) and

standard methods using flat priors (AUCf) were compared. For each pathway, simulated gene-expression values were used after some data preprocessing

to reverse engineer the original DAG. In the simulations, 10 test and 10 control samples, yielding a dataset size of 100, were used. Five simulated datasets

per pathway were produced

Fig. 6. AUC values for the seven KEGG pathways known to be active in Renal Cell Cancer (RCC). For each of the seven pathways real microarray data

was used to obtain the observation matrices used in the structure learning process. Proposed method using informative priors (AUCp) and likelihood

based methods using flat priors (AUCf) were used to compare the learned networks with the original KEGG pathways
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is an important but challenging task. The proposed method is
applicable to this problem when the network to be learned can be
decomposed into a modular structure.
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