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ARABIDOPSIS TRITHORAX1 Dynamically Regulates
FLOWERING LOCUS C Activation via Histone 3
Lysine 4 Trimethylation W

Stéphane Pien,a,b,c,1 Delphine Fleury,c Joshua S. Mylne,d Pedro Crevillen,d Dirk Inzé,c Zoya Avramova,e

Caroline Dean,d and Ueli Grossniklausa

a Institute of Plant Biology, Zürich-Basel Plant Science Center, University of Zürich, Zurich CH-8008, Switzerland
b Institut für Pflanzenwissenschaften, Zürich-Basel Plant Science Centre, Eidgenössische Technische Hochschule-Zentrum,

Zurich CH-8092, Switzerland
c Department of Plant Systems Biology, Ghent University/Vlaams Instituut voor Biotechnologie, B-9052, Belgium
d Department of Cell and Development Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
e School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0118

Trithorax function is essential for epigenetic maintenance of gene expression in animals, but little is known about trithorax

homologs in plants. ARABIDOPSIS TRITHORAX1 (ATX1) was shown to be required for the expression of homeotic genes

involved in flower organogenesis. Here, we report a novel function of ATX1, namely, the epigenetic regulation of the floral

repressor FLOWERING LOCUS C (FLC). Downregulation of FLC accelerates the transition from vegetative to reproductive

development in Arabidopsis thaliana. In the atx1 mutant, FLC levels are reduced and the FLC chromatin is depleted of

trimethylated, but not dimethylated, histone 3 lysine 4, suggesting a specific trimethylation function of ATX1. In addition, we

found that ATX1 directly binds the active FLC locus before flowering and that this interaction is released upon the transition to

flowering. This dynamic process stands in contrast with the stable maintenance of homeotic gene expression mediated by

trithorax group proteins in animals but resembles the dynamics of plant Polycomb group function.

INTRODUCTION

Epigenetic mechanisms play crucial roles in shaping and main-

taining cell identity and in patterning the body plan during

development. Epigenetic information is partly carried by histone

proteins in the form of reversible covalent modifications at their

N-terminal tails. In Drosophila melanogaster, the Polycomb

group (PcG) and trithorax group (trxG) proteins form higher-order

complexes, which antagonistically repress and maintain the

expression of homeotic genes (HOX genes), respectively (Simon

and Tamkun, 2002). PcG and trxG complexes contain SET (for

Suppressor of variegation 3-9, Enhancer of zeste, TRX) domain

proteins that have histone methyltransferase (HMT) activity. They

posttranslationally modify lysines on histones H3 and H4 (Lachner

et al., 2004), thereby regulating the accessibility of the transcrip-

tion machinery to the HOX gene clusters. These Lys methylation

states have been classified as repressive and activating marks,

depending on their effect on gene expression.

In recent years, several Arabidopsis thaliana PcG complexes

were shown to repress their target genes via deposition of

H3K27me3 marks (reviewed in Pien and Grossniklaus, 2007).

This supports a conservation of the PcG function between plants

and animals. Consequently, if trithorax functions were also

conserved during evolution, trxG proteins may antagonistically

regulate PcG target genes. Consistently, two Arabidopsis PcG

target genes, the flowering time regulator FLOWERING LOCUS

C (FLC) and the floral homeotic gene AGAMOUS (AG), show an

enrichment of H3K4me2 and H3K4me3 marks at their chromatin,

which correlates with active transcription (Bastow et al., 2004;

He et al., 2004; Schubert et al., 2006). In Drosophila, such marks

are deposited by the trxG protein Trithorax (TRX) and in mouse

by the mixed-lineage leukemia (MLL) protein. The presence of

H3K4me marks suggests that trithorax homologs and their

associated functions exist in Arabidopsis.

Five close homologs of TRX and MLL were identified in the

Arabidopsis genome and named ARABIDOPSIS TRITHORAX

(ATX1-5) (Alvarez-Venegas and Avramova, 2001; Baumbusch

et al., 2001). ATX1 is predicted to contain a SET domain (Alvarez-

Venegas et al., 2003) that has both histone binding and HMT

activity (Rea et al., 2000; Katsani et al., 2001). In vitro assays

demonstrated that H3K4 is a substrate for ATX1’s HMT activity,

while mutant isoforms of ATX1 lacking part of the SET domain

have no activity (Alvarez-Venegas et al., 2003). Loss of ATX1

leads to flower homeotic defects and affects leaf morphogenesis

(Alvarez-Venegas et al., 2003). Recently, ATX1 was shown to

bind AG chromatin and to be required for H3K4me3 deposition at

this locus (Saleh et al., 2007).

Transcriptional profiling in the atx1 mutant allowed us to

identify FLC, a flowering time regulator, as a putative ATX1
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target gene. FLC encodes a MADS domain transcription factor

that functions as a repressor of the floral transition. Transcrip-

tional regulation of FLC has been well studied and shown to be

associated with chromatin modifications, but little was known

about the activation and maintenance of expression of this

central gene. Therefore, we studied FLC regulation as a model to

decipher the molecular mechanism of trithorax function in plants

and to gain insight into novel functions of the ATX1 gene. We

showed that both single and double mutation of ATX1 and its

closest homolog ATX2 (Alvarez-Venegas and Avramova, 2001)

lead to early flowering, correlating with a reduction of FLC

transcripts levels. ATX1 and its target gene FLC are coexpressed

in a spatio-temporal manner. Using chromatin immunoprecipi-

tation (ChIP), we showed that ATX1 binds at the FLC locus and its

presence correlates with H3K4me3 modifications. Furthermore,

ChIP analyses revealed that ATX1 not only activates FLC but it

also prevents its repression, since H3K27me2 repressive marks

are deposited in the absence of ATX1 function. Finally, our study

identified ATX1 as a direct transcriptional activator of FLC.

RESULTS

atx1 and atx2 Are Early-Flowering Mutants Affecting the FLC

Expression Level

The atx1-1 mutation was previously reported to delay the tran-

sition to flowering (Alvarez-Venegas et al., 2003). These studies,

however, did not quantify the changes in flowering time or leaf

number at bolting. Therefore, we investigated the atx1-1 mutant

in more detail to decipher how the flowering transition was

affected. In contrast with previously published work (Alvarez-

Venegas et al., 2003), under our growth conditions atx1mutations

Figure 1. Characterization of atx Mutants.

(A) At flowering, the atx1 (Ws) rosette If ([A], right) is smaller than the wild

type ([A], left), with a reduction in the leaf number in atx1 compared with

the wild type.

(B) The average number of rosette leaves at flowering, a measure of

flowering time, is reduced in atx1 and atx2 mutants. Open bars, leaf

number at flowering under long-day conditions; gray bars, short-day

conditions. All data are presented as means 6 SE (n ¼ 15 to 20; P < 0.05

using Student’s t test).

(C) RT-PCR quantification of FLC transcripts in the wild type and in atx1

and atx2 mutants. Left panel, wild type (Ws) and atx1-1 (Ws) mutant; right

panel, wild type (Col), atx1-2 (Col), and atx2-1 (Col) mutants. Numbers

(6SE) refer to FLC transcript level relative to the wild type of three

independent biological replicate experiments. ACT, actin loading control.

(D) Average number of rosette leaves at flowering. atx1-1 (Ws) mutants

were crossed with Col plants (ColSf-2), into which the wild-type San Feliu-2

(Sf-2) flowering-time locus FRIGIDA (FRISf-2) had been introgressed

(Lee and Amasino, 1995) (white columns). atx1-2 atx2-1 (Col) double

mutants were crossed with ColSf-2 (gray columns). Columns 1 to 4

represent segregating F2 populations; the origin of the relevant alleles is

indicated. Columns 5 to 7 are from a homogeneous background resulting

from crosses between ColSf-2 and Col. 1, FRISf-2 (ColSf-2) ATX1 (ColSf-2)

(n ¼ 12); 2, FRISf-2/fri (ColSf-2/Ws) ATX1 (ColSf-2) (n ¼ 46); 3, FRISf-2/fri

(ColSf-2/Ws) ATX1/atx1 (ColSf-2/Ws) (n ¼ 67); 4, FRISf-2/fri (ColSf-2/Ws)

atx1-1 (Ws) (n ¼ 38); 5, FRISf-2 (ColSf-2) ATX1 (Col) ATX2 (Col); 6, FRISf-2

(ColSf-2) atx1-2 (Col) ATX2 (Col); 7, FRISf-2 (ColSf-2) atx1-2 (Col) atx2-1 (Col).

In a heterozygous FRISf-2/fri background, the introduction of one atx1

copy results in a reduced number of leaves at flowering time. The

suppression of FRI had a greater effect on flowering time in the atx1

(Ws) background. In a ColSf-2 background carrying the FRISf-2 allele, the

atx1-1 atx2-1 double mutant suppressed the late-flowering phenotype

more dramatically than the atx1-2 single mutant. All data are presented

as means 6 SE (n ¼ 12 to 67; P < 0.05 using Student’s t test).
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led to an early-flowering phenotype in the rapid-flowering ac-

cessions Wassilewskija (Ws) and Columbia (Col), as measured

by the number of rosette leaves at bolting (Figures 1A and 1B).

atx1-1 mutants flowered early under both long-day and short-

day conditions, showing that ATX1 is involved in repressing the

transition to flowering, independently of the photoperiod.

To investigate the molecular basis of the early-flowering phe-

notype of atx1-1 mutant plants, we performed RNA profiling

experiments with 10-d-old atx1-1 and wild-type seedlings using

the Affymetrix ATH1 GeneChip. To reveal whether trxG and PcG

proteins play similar antagonistic roles as they do in animals

(Simon and Tamkun, 2002), we looked for differentially ex-

pressed genes that had already been classified as PcG target

genes. With these criteria, we found that the floral regulator FLC,

a PcG target gene, had greatly reduced steady state transcript

levels in the atx1-1 mutant (3.4-fold decrease; see Supplemental

Table 1 and Supplemental Table 2 online). This reduction was

confirmed by RT-PCR in both atx1-1 and atx1-2 (Col) homozy-

gous mutants (Figure 1C).

We further investigated the impact of atx1 mutations on

flowering time by crossing atx1-1 and atx1-2 mutants with a

line containing an active FRIGIDA (FRI) allele (Lee and Amasino,

1995). The presence of the active FRI allele is associated with

Arabidopsis late-flowering accessions and results in a high level

of FLC expression. Loss of ATX1 strongly suppressed the late-

flowering effect of FRI in a dosage-dependent manner (Figure

1D). Thus, ATX1 is required for the increased expression of FLC

that results from overexpression of FRI in the line containing an

active FRI allele.

Mutation of the closest homolog of ATX1, ATX2 (Alvarez-

Venegas and Avramova, 2001), revealed a role for ATX2 in FLC

regulation (Figure 1C). In a FRI background, the atx1-2 atx2-1

double mutant suppressed the late-flowering phenotype more

dramatically than in the atx1-2 single mutant (Figure 1D), sug-

gesting that ATX1 and ATX2 play a partially redundant role in

activating FLC.

ATX1 and FLC Are Spatio-Temporally Coexpressed

Since we found that ATX1 and ATX2 regulate FLC, we analyzed

the spatio-temporal expression of these three genes by in situ

hybridization. If ATX1 and ATX2 directly regulate FLC during the

plant life cycle, then the spatio-temporal expression patterns of

ATX1, ATX2, and FLC are expected to overlap. In situ hybridi-

zation analyses for ATX1 and FLC in 10-d-old seedlings revealed

expression of both genes in the vasculature of the cotyledons,

hypocotyls, and the first pair of leaves (Figures 2A to 2D). The

pattern of FLC mRNA accumulation reproduces the expression

pattern of the reporter gene uidA, encoding b-glucuronidase

(GUS), translationally fused to FLC (FLC-GUS) (Bastow et al., 2004).

Both ATX1 and FLC transcripts were present in overlapping

Figure 2. Spatio-Temporal Expression Patterns of ATX1 and FLC in

Wild-Type and atx1-1 Tissue as Assayed by in Situ Hybridization.

(A), (C), (E), (G), and (I) Sections probed with an antisense ATX1 probe.

(B), (D), (F), (H), and (J) Sections probed with an antisense FLC probe.

Wild-type tissue sections hybridized with sense probes for ATX1 and

FLC gave no signal at any developmental stage.

(A) and (B) Ten-day-old seedlings with ATX1 and FLC transcripts

accumulating in the vasculature and the hypocotyl.

(C) and (D) Ten-day-old seedlings. Cross sections of the first pair of leaves,

with ATX1 and FLC transcripts accumulating in the vasculature (arrows).

(E) and (F) Wild-type globular embryos showing expression of both ATX1

and FLC.

(G) and (H) In atx1-1 globular embryos, neither ATX1 nor FLC transcripts

are detectable.

(I) and (J) At flowering, neither ATX1 nor FLC message is detectable in

the wild-type vasculature.
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patterns during embryogenesis (Figures 2E and 2F). FLC tran-

script was not detected in atx1-1 embryos, suggesting that ATX1

is necessary to activate FLC well before the floral induction path-

ways are active (Figures 2G and 2H). Just prior to flowering, a

strong reduction of both ATX1 and FLC transcript levels occurred

in the vasculature of wild-type plants (Figures 2I and 2J). The

overlap of the spatio-temporal expression patterns of the two

genes is consistent with a direct regulation of FLC by ATX1. These

data were confirmed by a cross between a FRI line containing an

FLC-LUCIFERASE (FLC-LUC) translational fusion (Mylne et al.,

2004) and the atx1-2 mutation (Figures 3A and 3B). In FRI FLC-LUC

plants, FLC was highly expressed, as indicated by the FLC-LUC

signal in the vasculature and the shoot apex (Figure 3A). In FRI

FLC-LUC atx1-2 lines, FLC expression was strongly reduced in the

vasculature (Figure 3B). Interestingly, ATX1 expression could not

be detected in the shoot apical meristem of wild-type plants (Figure

2A), and mutations in ATX1 did not lead to a loss of FLC expression

in that tissue (Figure 3B), suggesting that FLC expression in the

shoot apical meristem is positively regulated by some other

factor(s). We investigated the expression pattern of ATX2 at the

same developmental stage. ATX2 was expressed in the vascula-

ture and, unlike ATX1, was also detected in the shoot apical

meristem (see Supplemental Figure 1 online). In FRI FLC-LUC

atx1-2 atx2-1 lines, FLC expression was strongly reduced in the

vasculature and in the shoot apex (Figure 3C). However, FLC

expression was still detectable in the shoot apical meristem of

FRI FLC-LUC atx1-2 atx2-1 lines, confirming that ATX1 and ATX2

play their major role in the vasculature.

ATX1 Is Required for the Deposition of H3K4me3 Marks at

the FLC Locus

To address whether ATX1-dependent histone modifications are

involved in the regulation of FLC, we analyzed chromatin mod-

ifications at the FLC locus by ChIP at three regions surrounding

the translational start codon (Figure 4A). These regions are

essential for FLC transcription and function (Bastow et al.,

2004; Kim et al., 2005), and H3K4me3 marks in these regions

correlate with FLC transcription (He et al., 2004). We found that

H3K4me3 levels were reduced in region B and undetectable in

region A in atx1-1 mutants (Figure 4B) compared with wild-type

plants at the same developmental stage. Just prior to floral

induction, H3K4me3 levels decreased in wild-type plants to

levels similar to those in atx1-1 mutant seedlings. Taken to-

gether, these findings suggest that ATX1 is required for the

establishment of the H3K4me3 mark at the FLC locus to promote

and/or maintain a transcriptionally active state.

In plants and animals, H3K4 can be either, mono-, di-, or

trimethylated. These three epigenetic marks can be interpreted

differently by the transcription machinery depending on the

organism (Fuchs et al., 2006). Therefore, we quantified in parallel

H3K4me2 and H3K4me3 marks at the FLC locus in wild-type and

atx1-1 plants. Surprisingly, region B, which covers the transcrip-

tion start site of FLC, displayed elevated levels of H3K4me2 in

10-d-old atx1-1 seedlings compared with the wild type (Figure

4B). In regions A and C, this mark was almost at the same level as

in wild-type plants. At later developmental stages, prior to the

flowering transition, a similar pattern could be observed. Alto-

gether, the loss of ATX1 activity strongly impaired the deposition

of H3K4me3 marks but did not suppress the deposition of

H3K4me2 marks at FLC chromatin. These findings suggest that

the function of ATX1 seems to be specific for the deposition of

the H3K4me3 mark.

Loss of H3K4me3 marks at the FLC locus induces a gain of

H3K27me2 marks

Since in the atx1-1 mutant, FLC is depleted in the H3K4me3

activation mark and is transcriptionally repressed, we measured

the levels of H3K27me2 and H3K27me3, two marks previously

shown to correlate with FLC repression (Bastow et al., 2004;

Sung et al., 2006). In the regions A and B, an increased level of

H3K27me2 was observed in atx1-1 mutant seedlings compared

with wild-type seedlings at the same stage. H3K27me2 levels

also increased, although less dramatically, prior to flowering. In

wild-type plants, the level of H3K4me3 inversely correlated with

the level of H3K27me2. However, H3K27me2 marks were still

present on FLC chromatin in regions A and B during active

Figure 3. FLC-LUC Expression Pattern in FRI, FRI atx1-2, and FRI atx1-2 atx2-1 Plants.

(A) In FRI FLC-LUC lines, FLC is highly expressed in the vasculature and the shoot apex (arrow).

(B) In FRI FLC-LUC atx1-2 lines, FLC expression is strongly reduced in the vasculature.

(C) In FRI FLC-LUC atx1-2 atx2-1 lines, FLC expression is strongly reduced in the vasculature and in the shoot apex (arrow).

Twenty-five-day-old plants were analyzed for FLC-LUC expression for all lines analyzed. Two biological replicates were performed, growing side by

side 10 plants of each genotype.
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transcription of the gene prior to the flowering transition. Simi-

larly, low H3K27me3 levels could be detected in wild-type

seedlings at the FLC chromatin in all regions investigated (Figure

4B). It is worth noting that the presence of this repressive mark

together with the activating mark H3K4me3 does not prevent

active transcription of FLC. The level of the H3K27me3 mark,

however, substantially increased in plants prior to flowering, which

correlates with FLC repression at that developmental stage. This

is consistent with the observation that H3K27me3 deposition by

plant PcG proteins correlates with transcriptional repression of the

Arabidopsis PcG target genes MEDEA (MEA), PHERES1 (PHE1),

AG, SHOOTMERISTEMLESS (STM), and AGAMOUS-LIKE 19

(AGL19) (Gehring et al., 2006; Jullien et al., 2006; Makarevich et al.,

2006; Schönrock et al., 2006; Schubert et al., 2006).

ATX1 Directly Interacts with FLC Chromatin to Regulate

Its Transcription

The ability of ATX1 to promote H3K4me3 deposition suggests

that ATX1 directly interacts with the FLC locus to modify its

chromatin state via its HMT activity (Alvarez-Venegas et al.,

2003). We investigated this possibility by ChIP (Figure 4C) using

an antibody raised against ATX1. We found that ATX1 was

enriched at the FLC chromatin (regions A and B) in wild-type

seedlings relative to atx1-1 mutants. In the wild type, ATX1 was

not enriched in region C, which is consistent with the absence of

the H3K4me3 mark in that region (Figure 4B). These data show

that ATX1 binding to the FLC chromatin correlates with the

deposition of H3K4me3 marks. In wild-type plants at the floral

transition, when FLC is downregulated, ATX1 binding at the FLC

locus could not be detected. This observation suggests that ATX1

dynamically binds the FLC locus to regulate its transcription.

DISCUSSION

The trxG Genes ATX1 and ATX2 Are Required to Activate

FLC Expression

Our study provides strong evidence that ATX1, a homolog of the

Drosophila trx protein, is required to control flowering transition

and acts to upregulate FLC expression. ATX1 acts downstream

of, or in parallel with, FRI in an interdependent manner. It also

Figure 4. Histone Modifications and ATX1 Binding at the FLC Locus.

(A) Genomic structure of the FLC promoter and regions investigated by

ChIP. The thick lines represent the 59 untranslated region and intron 1,

while the black box represents the translated region of exon 1. Regions

amplified by PCR are labeled A to C.

(B) Relative levels of histone modifications in FLC chromatin were ana-

lyzed by PCR from at least three replicate ChIP assays using H3K4me2-,

H3K4me3-, H3K27me2-, and H3K27me3-specific antibodies. Black bars,

10-d-old Ws seedlings; open bars, 10-d-old atx1-1 mutant seedlings; gray

bars, 16-d-old wild-type plants prior to flowering. Means are calculated

based on at least three independent experiments and are given with bars

indicating 1 SE.

(C) ChIP assay using an ATX1-specific antibody. Regions A, B, and C

were examined for ATX1 enrichment in FLC chromatin. þ, ATX1 anti-

body; �, no antibody controls. Regions A and B showed enrichment of

ATX1 in Ws seedlings. PF, 16-d-old Ws plants prior to flowering.
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acts directly on FLC and binds to its promoter and transcription

start site regions. Many regulators of FLC transcription have

been described (reviewed in He and Amasino, 2005), but, unlike

ATX1, these do not appear to modify FLC chromatin directly. The

putative HMT EARLY FLOWERING IN SHORT DAYS (EFS), a

homolog of the trxG Drosophila protein Absent small homeotic

disks1 (ASH1) (Tripoulas et al., 1994), was shown to be neces-

sary for the deposition of H3K4me3 marks at FLC chromatin of

winter annual accessions (He et al., 2004). In such accessions,

vernalization (extended exposure to cold) is required to activate

the VRN Polycomb Repressive Complex 2 (VRN-PRC2) (Levy

et al., 2002; Kim et al., 2005), which represses FLC, leading to

flowering. However, in the commonly studied rapid-flowering

accession Col, vernalization is not required for flowering, and

mutations in EFS do not affect the level of H3K4me3 at the FLC

locus (He et al., 2004). In this context, our data provide evidence

that ATX1 regulates FLC transcription in the rapid-flowering

accessions Ws and Col. Additionally, in lines containing an active

FRI allele, which mimic winter annual accessions, the atx1-1

atx2-1 double mutant suppressed the late-flowering pheno-

type, suggesting that genes of the ATX family are also central

for FLC-mediated regulation in winter annual accessions. How

ATX1, ATX2, and EFS collaborate in this process remains unclear

and would require additional investigations. Our data suggest

that ATX1 and ATX2 are involved in the same pathway since the

early-flowering phenotype observed in single mutants is not

more severe in the atx1-2 atx2-1 double mutant. However, in the

FRI background, mutation of both genes leads to a shorter

vegetative phase compared with atx1 single mutants in the same

background. This may be explained by delayed transcription of

ATX2, whose expression is detected later than ATX1 during the

vegetative phase and which may have a stronger impact in winter

annual accessions than in rapid-flowering accessions.

PcG and trxG Proteins Dynamically Regulate

FLC Expression

In contrast with animals, where PcG and trxG proteins play a role

in the permanent repression or activation of genes whose ex-

pression state was determined by other factors, in plants, PcG

and trxG proteins dynamically interact in the regulation of target

genes, such as FLC, during the plant life cycle (reviewed in Pien

and Grossniklaus, 2007). In wild-type plants at the floral transi-

tion, when FLC transcripts are no longer detectable in the apex

and neighboring vasculature, ATX1 binding at the FLC locus

could not be detected (Figure 4C). This indicates that ATX1

dynamically binds the FLC locus to regulate its transcription. In

Drosophila, TRX together with members of the PRC1/2 com-

plexes are constitutively bound to the HOX Ultrabithorax (Ubx)

locus independent of whether the Ubx gene is actively tran-

scribed or not (Papp and Müller, 2006). In contrast with the

situation in Drosophila and mammals, ATX1 binding is not stable,

Figure 5. Model for Dosage-Dependent Regulation of FLC Expression by Chromatin Modifications.

(A) In rapid-flowering accessions (fri background), FLC is activated by ATX1 via the deposition of H3K4me3 marks at the FLC 59 untranslated region

during the vegetative phase.

(B) The H3K27me3 repressive mark is present but does not prevent FLC expression. EFS is required to prevent early flowering but does not modify the

level of H3K4me3 marks at the FLC locus (Kim et al., 2005). The removal of H3K4me3, together with an increased level of H3K27me3 mark deposited by

a still unknown PRC2 complex, leads to FLC repression and subsequent flowering.

(C) In winter annual accessions (FRI background), ATX1 together with EFS activates FLC expression via the deposition of H3K4me3 marks.

(D) A prolonged cold treatment (vernalization) induces the VRN2-PRC2 complex, which in turn represses FLC via the deposition of H3K27me3 marks.
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which points to a dynamic function of trxG complexes in plants.

This dynamic process is reflected by the removal of previously

deposited H3K4me3 at the FLC promoter during the transition

from vegetative to reproductive development (Figure 4B). Re-

cently, dynamic regulation was also demonstrated for PcG pro-

teins (Baroux et al., 2006). Together, these data suggest that

plant PcG and trxG proteins affect a wide range of gene expres-

sion programs and potentially contribute to plant developmental

plasticity.

FLC Is Regulated through Dosage-Dependent Interactions

of Activating and Repressive Histone Modifications

The results presented here highlight the importance of the

H3K4me3 modification mediated by ATX1 for the transcriptional

activation of FLC: the levels of H3K4me2 in the atx1 mutants are

clearly not sufficient in this context. However, we cannot rule out

that the deposition of H3K4me2 marks does not play a role in

active FLC transcription. A recent study provided evidence on

the requirement of FCA together with FLOWERING LOCUS D

(FLD) to mediate H3K4 demethylation of FLC in its central region

and, thus, to silence the gene (Liu et al., 2007). By contrast, at

several Arabidopsis loci, the H3K4me2 mark was shown to be

associated with the H3K27me2 mark, independent of whether

the associated genes were actively transcribed or not (Alvarez-

Venegas and Avramova, 2005).

Surprisingly, our data showed that repressive H3K27me2 and

H3K27me3 modifications were present at the FLC locus during

active transcription and FLC silencing. This observation is in

agreement with the whole-genome analysis of H3K27me3 distri-

bution in the Arabidopsis Ws accession, where this mark was

detected at FLC chromatin during active transcription (Zhang

et al., 2007). However, it is notable that the levels of H3K27me2

and H3K27me3 marks at FLC are always lower than the levels

observed in plants prior to flowering, where FLC is silenced (Figure

4B). The presence of repressive marks at the FLC locus during its

active expression can be interpreted as basal levels that are not

sufficient to repress FLC expression in that context. Therefore, our

results suggest a mechanism where the active or repressive state

of FLC expression depends on the accumulation of repressive and

activating marks in a dosage-dependent manner (i.e., the expres-

sion of FLC correlates with the deposition of H3K4me3 marks and

basal levels of H3K27me2 and H3K27me3 marks at the FLC

promoter). Conversely, repression of FLC is associated with the

removal of H3K4me3 marks and a substantial increase of

H3K27me3 marks at the FLC promoter (see model in Figure 5).

The absence of H3K4me3 marks at FLC chromatin in the atx1-1

mutant is correlated with an accumulation of H3K27me2 (Figure

4B), a mark associated with FLC gene repression (Bastow et al.,

2004). This suggests the presence of a default mechanism that

represses FLC transcription in the absence of H3K4me3 marks. A

similar mechanism was described in Drosophila, where the trxG

proteins ASH1 and TRX have been proposed to counteract PcG

repression, either by histone binding and/or H3K4-trimethylation,

which subsequently prevents the binding of PcG proteins to HOX

genes (Klymenko and Müller, 2004). The simultaneous binding of

TRX and PcG proteins at the Ubx locus challenged this hypothesis

(Papp and Müller, 2006). Recently, ASH1 binding at the Ubx locus

was shown to correlate with H3K4me3 deposition and to occur

only when Ubx is transcribed (Papp and Müller, 2006). Therefore,

ASH1 was proposed to counteract PcG repression via the depo-

sition of the H3K4me3 marks, which subsequently restricts H3K27

methylation in the promoter and coding regions. Whether or not

this mechanism is conserved in plants will require more investi-

gations; however, our study provides evidence for a similar

mechanism in Arabidopsis using different histone marks.

In the atx1-1 mutant background, the accumulation of

H3K27me3 marks was reduced in the promoter and the first

intron, arguing for the requirement of ATX1 and/or the presence

of H3K4me3 marks for the deposition of this repressive mark. A

similar result was recently observed at the AG locus, where ATX1

is required for the trimethylation of H3K27 in the promoter and

the downstream coding region (Saleh et al., 2007). By contrast,

the atx1-1 mutation results in an increased level of another

repressive mark at FLC, H3K27me2, showing that ATX1 activity

is not required for the deposition of this repressive mark. This

suggests that in the absence of the H3K4me3 mark in this region,

the H3K27me3 mark is not required to repress FLC.

In summary, we demonstrate that ATX1 directly regulates the

floral regulator FLC by mediating the H3K4me3 modification.

Additionally, we show that H3K4me3 deposition is accompanied

by a decrease in H3K27me2 levels at the FLC locus. Thus, we

propose that the developmentally regulated binding of ATX1 and

trimethylation of H3K4 at FLC chromatin counteract FLC silenc-

ing. Our study also shows that transition to flowering correlates

with the release of ATX1 from the FLC locus and an increase of

the level of H3K27me3 repressive marks, of which a critical level

is required to achieve full repression of FLC (Shindo et al., 2006).

This time- and dosage-dependent regulation resembles the

vernalization process, where prolonged exposure to cold leads

to progressive silencing of FLC (Chouard, 1960; Lang, 1965).

Chromatin-mediated regulation of FLC, and probably other

genes, is not an all-or-nothing process and fine-tuning may be

achieved through different levels of histone modifications.

METHODS

Plant Material and Growth Conditions

Seeds, wild-type Ws, and atx1-1 (Ws) (Alvarez-Venegas et al., 2003), wild-

type Col, atx1-2 (Col) (SALK_149002), atx2-1 (Col) (SALK_074806), and

FRI (ColSf-2) plants, in which the flowering-time locus FRI has been

introgressed from the Sf-2 accession into a Col background (Lee and

Amasino, 1995), were grown on Murashige and Skoog media with 15 g/L

of sucrose at 48C for 2 d under short-day conditions (8/16 h day/night)

with 10 mmol photons m�2 s�1 white light and then transferred to 208C

under either long-day (16/8 h day/night) or short-day conditions with

57 mmol photons m�2 s�1 white light. Luciferase imaging was as de-

scribed by Mylne et al. (2004), and the images were obtained using a

NightOwl imaging system (Berthold Technologies).

atx1-1 plants were genotyped using SP26 (forward) 59-TCTATG-

CAGCTCTTTGCTAATTGG-39 and TDNA-LB SP11 (reverse) 59-GAT-

GCACTCGAAATCAGCCAATTTTAGAC-39 or SP26 (forward) and SP27

(reverse) 59-AGCCCAGAGCATGAGCTTACC-39 for the wild-type ATX1

gene. atx1-2 plants were genotyped using JM341 (forward) 59-GGTA-

TAGCTCATGCTCTGGGC-39 and SALK-LB (reverse) 59-CCAAACTGGA-

ACAACACTCAAC-39 or JM341 (forward) and JM340 (reverse) 59-TCT-

CTTTTGTGGACTTGCTGTG-39 for the wild-type ATX1 gene. atx2-1
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plants were genotyped using JM345 (forward) 59-GCTGCAAAGAA-

CAAACTCTTCC-39 and SALK-LB (reverse) or JM345 (forward) and

JM346 (reverse) 59-AGGCCACCAATAGCTGACAAG-39 for the wild-

type ATX2 gene.

RT-PCR Analyses

RT-PCR quantifications were performed with 10-d-old seedlings. RNA

was isolated with the Trizol reagent (Invitrogen) according to the manu-

facturer’s instructions. RT-PCR for FLC was performed using FLC-

specific primers SP135 (forward) 59-TTGGATCAGTCAAAAGC-39 and

SP136 (reverse) 59-AGTAGTGGGAGAGTCACGGG-39, and ACTIN2

(ACT2) control primers were SP105 (forward) 59-GCCCTCGTTTGT-

GGGAATGG-39 and SP106 (reverse) 59-AAGCCTTTGATCTTGAGAGC-39.

Signal intensities using ethidium bromide staining (0.4 mg/mL) were

normalized relative to ACTIN2 PCR products with ImageQuant software

(Molecular Dynamics). These results are representative of three indepen-

dent biological replicate experiments. Fold changes are the mean of three

independent quantifications from three independent RNA extractions.

Primer efficiency was tested to quantify FLC and ACT2 PCR product in

the logarithmic phase.

In Situ Hybridization

Fixation and hybridization were performed as previously described

(Köhler et al., 2003). Primers used to make the probes were as follows:

ATX1, SPG63 (forward) 59-AGCTGGATCCAGTCTGATGTCTAAGAAGG-39

and SPG64 (reverse) 59-ACGTGAATTCCCTTACACCTTCTTAAACC-39;

ATX2, SPG54 (forward) 59-ATGCGGATCCGGAAGATCAGTCCTCGTAC-39

and SPG55 (reverse) 59-AGCTGAATTCTTTCTGAAGTTGATCCATC-39;

FLC, SPB1 (forward) 59-AGCTGGATCCTTGGATCATCAGTCAAAAGC-39

and SPB2 (reverse) 59-AGCTGAATTCAGTAGTGG GAGAGTCACCGG-39.

ChIP

ChIP was performed on 10-d-old seedlings and 16-d-old plants prior to

flowering, grown under long-day conditions, as previously described

(Köhler et al., 2003). Antibodies used were H3K4me2 (Upstate), H3K4me3

(Upstate), H3K27me2 (Upstate), H3K27me3 (Upstate), and ATX1 (Gen-

Script). Primers for ACTIN2/7 and for FLC regions A (Bastow et al., 2004),

B (He et al., 2004), and C (Bastow et al., 2004) were as previously

described. PCR conditions were similar to the ones used by Bastow et al.

(2004) and He et al. (2004), where analysis to show the amplification

efficiency of all primer pairs used in the chromatin immunoprecipitation

analysis has been published. Signal intensities using ethidium bromide

staining (0.4 mg/mL) were normalized relative to ACTIN 2/7 PCR products

with ImageQuant software (Molecular Dynamics), and the fold changes

are expressed relative to the value of wild-type seedlings. Means are

given with bars indicating 1 SE.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome

Initiative database under the following accession numbers: AG,

At4g18960; AGL19, At4g22950; ATX1, At2g31650; ATX2, At1g05830;

EFS, At1g77300; FCA, At4g16280; FLD, At3g10390; FLC, At5g10140;

FRI, At4g00650; MEA, At1g02580; PHE1, At1g65330; STM, At1g62360.
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The following materials are available in the online version of this article.

Supplemental Figure 1. Spatio-Temporal Expression Patterns of

ATX2 in Wild-Type 10-d-Old Seedlings Assayed by in Situ Hybridization.

Supplemental Table 1. Steady State Message Levels in the atx1-1

Homozygous Mutant Compared with Wild-Type Ws.

Supplemental Table 2. Downregulated Genes in the atx1-1 Homozy-

gous Mutant Compared with Wild-Type Ws.
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Köhler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W., and

Grossniklaus, U. (2003). The Polycomb-group protein MEDEA reg-

ulates seed development by controlling expression of the MADS-box

gene PHERES1. Genes Dev. 17: 1540–1553.

Lachner, M., Sengupta, R., Schotta, G., and Jenuwein, T. (2004).

Trilogies of histone lysine methylation as epigenetic landmarks of the

eukaryotic genome. Cold Spring Harb. Symp. Quant. Biol. 69: 209–218.

Lang, A. (1965). Physiology of flower initiation. In Encyclopedia of Plant

Physiology, Vol. 15, W. Ruhland, ed (Berlin: Springer-Verlag), pp.

1380–1536.

Lee, I., and Amasino, R. (1995). Effect of vernalization, photoperiod,

and light quality on the flowering phenotype of Arabidopsis plants

containing FRIGIDA gene. Plant Physiol. 108: 157–162.

Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., and Dean, C.

(2002). Multiple roles of Arabidopsis VRN1 in vernalization and

flowering time control. Science 297: 243–246.

Liu, F., Quesada, V., Crevillén, P., Bäurle, I., Swiezewski, S., and
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SUPPLEMENTAL  Data 

 

Supplemental Data. Pien et al. (2008). ATX2 is expressed in the vasculature and the 

shoot apex meristem. 

 

Supplemental Figure S1. Spatio-temporal expression patterns of ATX2 in wild type 

10-day-old seedlings assayed by in situ hybridization. A, B sections probed with anti-

sense ATX2. A, ATX2 transcripts accumulate in the vasculature of the leaves, the 

hypocotyls and in the shoot apex meristem.  B, Leaf cross-sections with ATX2 

transcripts accumulating in the vasculature (black arrowhead). Wild type tissue 

sections hybridized with sense probes for ATX2 gave no signal. Scale bars: 100 μm. 

Supplemental Data. Pien et al. (2008). ARABIDOPSIS TRITHORAX-LIKE PROTEIN1 dynamically

regulates FLC activation via Histone 3 Lysine 4 tri-methylation. 



 

2 

 

Supplemental Table 1. Steady state message levels of genes involved in flowering 

time regulation in atx1-1 homozygous mutant compared to the wild type Ws. 
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Ws. 

RNA was extracted from the shoot apices of plants (comprising shoot apical meristem 

and first and second leaf primordia at the petiole-less stage) 10 days after germination 

using the Qiagen RNeasy kit (Qiagen GmbH, Hilden, Germany). This developmental 

stage is well before floral induction, such that atx1-1 mutant seedlings are 

   limma test PA call Pathway 

gene At code Fold change p Wt atx1-1 /Function 

FT At1g65480 0.89 1 A A Int 
AP1 At1g69120 1.08 1 A A Int 

MAF1 At1g77080 0.83 1 P P Rep 
EFS At1g77300 0.93 1 P P Rep 

ELF7 At1g79730 1.14 1 P P Rep 
ELF8 At2g06210 0.86 1 P P Rep 
VEL3 At2g18870 0.93 1 A/P M Unknown 
VEL2 At2g18880 1.02 1 A A Unknown 
FVE At2g19520 1.06 1 P P Auto 

ATX1 At2g31650 0.28 1.24E-02 P A Rep 
SOC1 At2g45660 0.79 1 P P Int 
FLK At3g04610 0.79 1 P P Auto 
FLD At3g10390 0.87 1 P P Auto 
PIE1 At3g12810 1.15 1 P P Rep 

VRN1 At3g18990 0.84 1 P P Vern 
VRN5 At3g24440 1.03 1 P P Vern 
SUF3 At3g33520 1.18 1 P P Rep 
FRI At4g00650 0.90 1 P P Rep 
LD At4g02560 1.06 1 P P Auto 

FCA At4g16280 1.05 1 P P Auto 
VRN2 At4g16845 0.95 1 P P Vern 
VIP3 At4g29830 1.19 1 P P Vern 
VEL1 At4g30200 0.99 1 P P Unknown 
FLC At5g10140 0.29 9.92E-03 P A Rep 
FY At5g13480 1.05 1 P P Auto 
CO At5g15840 0.61 1 A/P A/M Int 

FRL1 At5g16320 1.00 1 P P Rep 
VIP4 At5g61150 1.12 1 P P Vern 
LFY At5g61850 1.07 1 A/P A Int 

MAF2 At5g65050 0.86 1 P/M P Rep 
MAF3 At5g65060 0.82 1 P/M P/M/A Rep 
MAF4 At5g65070 0.95 1 A A Rep 
MAF5 At5g65080 0.91 1 A A Rep 



 

3 

indistinguishable from the wild type: therefore, only a minimal number of secondary 

transcriptional changes are expected. Microarray experiments were done by the VIB 

MicroArrays Facility lab (Leuven, Belgium; http://www.microarrays.be/) using 

ATH1 Affymetrix chips of 23,800 probes sets designed for Arabidopsis as described 

previously (Nelissen et al, 2005). Three replicates of each genotype were hybridized, 

with one replicate corresponding to one RNA extraction on an independent pool of 

plants. The raw data from Affymetrix GeneChip arrays (CEL files) was analyzed 

using GC Robust Multi-Array average method from affy and rma packages of 

Bioconductor Project Release 1.4 using R-1.9.0 software, and subsequently using a 

Bayesian t test of limma (Nelissen et al, 2005). The p values are calculated according 

to a Bayesian test of a linear model and corrected by Holm’s method. The PA call 

corresponds to the transcript levels according to t test using MAS5.0 and comparing 

perfect match to mismatch probes for each probes set. A: no expression (p>0.065); M: 

medium expression (0.065<p<0.05); P: expressed gene (p<0.05). The reduction in 

steady state message levels for FLC was confirmed by quantitative RT-PCR (Figure 

1C). The genes are classified into the following pathways or functions: Auto, 

autonomous pathway; Vern, vernalization pathway; Int, floral pathway integrators; 

Rep, Floral repressor. 

Microarray data (accession number: E-MEXP-502) have been deposited at 

http://www.mged.org/Workgroups/MIAME/miame.html. 



 

4 

 

Supplemental Table S2. List of down-regulated genes in atx1-1 homozygous mutant 

compared to the wild type Ws. 

 

 

At code 

Fold 

change p Gene Title 

At3g28290 0.01 4.41E-09 integrin-related protein 14a 

At1g58270 0.01 1.08E-08 meprin and TRAF homology domain-containing protein 

At3g47250 0.02 8.77E-09 expressed protein 

At1g31580 0.02 8.12E-09 expressed protein 

At1g66100 0.03 4.41E-04 thionin, putative 

At1g24793 0.03 8.61E-10 UDP-3-0-acyl N-acetylglucosamine deacetylase family protein 

At1g73490 0.04 4.09E-08 RNA recognition motif (RRM)-containing protein 

At4g15620 0.04 1.81E-07 integral membrane family protein 

At3g46030 0.04 4.06E-06 histone H2B, putative 

At1g35612 0.04 1.01E-07 expressed protein 

At4g16890 0.05 5.00E-08 disease resistance protein (TIR-NBS-LRR class), putative 

At1g23960 0.06 5.19E-06 expressed protein 

At2g15050 0.06 1.31E-08 lipid transfer protein, putative 

At3g16450 0.06 5.02E-05 jacalin lectin family protein 

At5g10400 0.06 2.99E-08 histone H3 

At4g16860 0.06 3.44E-07 disease resistance protein (TIR-NBS-LRR class), putative 

At4g19500 0.06 3.78E-06 disease resistance protein (TIR-NBS-LRR class), putative 

At4g16870 0.06 1.33E-05 copia-like retrotransposon family 

At3g47220 0.06 5.05E-06 phosphoinositide-specific phospholipase C family protein 

At1g03420 0.07 1.62E-06 expressed protein 

At3g43740 0.07 2.67E-06 leucine-rich repeat family protein 

At1g58842 0.07 5.23E-06 disease resistance protein (CC-NBS-LRR class), putative 

At3g26290 0.07 6.65E-06 cytochrome P450 71B26, putative (CYP71B26) 

At5g05060 0.08 7.40E-08 expressed protein 

At1g59900 0.08 4.99E-04 pyruvate dehydrogenase E1 component alpha subunit, mitochondrial (PDHE1-A) 

At1g73330 0.08 1.94E-03 protease inhibitor, putative (DR4) 

At5g17880 0.08 3.28E-07 disease resistance protein (TIR-NBS-LRR class), putative 

At1g63880 0.09 1.49E-05 disease resistance protein (TIR-NBS-LRR class), putative 

At3g44630 0.09 8.76E-06 disease resistance protein RPP1-WsB-like (TIR-NBS-LRR class), putative 

At4g16880 0.10 1.22E-04 disease resistance protein-related 

At4g02540 0.10 9.59E-06 DC1 domain-containing protein 

At5g41700 0.11 3.18E-07 ubiquitin-conjugating enzyme 8 (UBC8) 

At1g11280 0.11 1.47E-06 S-locus protein kinase, putative 

At3g27360 0.11 3.35E-06 histone H3 

At4g12310 0.11 2.99E-04 cytochrome P450, putative 

At5g40950 0.11 1.32E-06 50S ribosomal protein L27, chloroplast, putative (RPL27) 

At4g13720 0.11 9.97E-05 inosine triphosphate pyrophosphatase, putative / HAM1 family protein 

At4g20480 0.11 8.71E-08 expressed protein 

At2g40010 0.12 3.41E-04 60S acidic ribosomal protein P0 (RPP0A) 

At3g46530 0.12 7.77E-05 disease resistance protein, RPP13-like (CC-NBS class), putative 

At1g56510 0.13 2.75E-06 disease resistance protein (TIR-NBS-LRR class), putative 

At1g16260 0.13 2.37E-07 protein kinase family protein 

At3g06160 0.13 1.65E-03 transcriptional factor B3 family protein 

At1g24996 0.14 2.78E-03 expressed protein 

At1g65370 0.15 2.51E-05 meprin and TRAF homology domain-containing protein 

At5g56380 0.16 9.32E-06 F-box family protein 

At2g03710 0.17 1.89E-04 MADS-box protein (AGL3) 
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At3g44890 0.17 8.60E-07 50S ribosomal protein L9, chloroplast (CL9) 

At5g17890 0.17 2.10E-04 LIM domain-containing protein / disease resistance protein-related 

At3g53650 0.17 3.98E-06 histone H2B, putative 

At5g05750 0.17 5.44E-06 DNAJ heat shock N-terminal domain-containing protein 

At3g14210 0.17 1.14E-03 myrosinase-associated protein, putative 

At5g42250 0.18 8.69E-03 alcohol dehydrogenase, putative 

At3g28270 0.20 1.56E-03 expressed protein 

At4g36520 0.20 1.93E-06 trichohyalin-related 

At4g19530 0.21 2.86E-03 disease resistance protein (TIR-NBS-LRR class), putative 

At3g44610 0.21 1.46E-04 protein kinase family protein 

At3g29120 0.21 3.06E-03 hAT-like transposase family (hobo/Ac/Tam3) 

At1g23020 0.22 5.83E-04 ferric-chelate reductase, putative 

At1g28670 0.22 2.60E-03 lipase, putative 

At2g14880 0.22 3.62E-06 SWIB complex BAF60b domain-containing protein 

At5g43580 0.23 2.50E-03 protease inhibitor, putative 

At5g56910 0.24 1.01E-05 expressed protein 

At5g51620 0.24 1.34E-03 expressed protein 

At3g21950 0.25 1.16E-03 S-adenosyl-L-methionine:carboxyl methyltransferase family protein 

At5g55790 0.25 3.96E-05 expressed protein 

At3g01660 0.25 1.02E-02 expressed protein 

At5g63020 0.25 1.36E-04 disease resistance protein (CC-NBS-LRR class), putative 

At3g25760 0.25 4.02E-02 early-responsive to dehydration stress protein (ERD12) 

At2g21860 0.25 3.51E-04 violaxanthin de-epoxidase-related 

At5g46510 0.25 2.38E-03 disease resistance protein (TIR-NBS-LRR class), putative 

At2g26470 0.26 3.20E-05 expressed protein 

At1g52100 0.26 7.29E-04 jacalin lectin family protein 

At2g44200 0.26 7.48E-03 expressed protein 

At1g54260 0.26 5.13E-03 histone H1/H5 family protein 

At3g28220 0.27 2.09E-02 meprin and TRAF homology domain-containing protein 

At1g66970 0.27 4.26E-02 glycerophosphoryl diester phosphodiesterase family protein 

At5g53150 0.27 2.11E-02 DNAJ heat shock N-terminal domain-containing protein 

At5g44580 0.27 9.90E-03 expressed protein 

At5g65390 0.27 1.36E-05 arabinogalactan-protein (AGP7) 

At2g31630 0.28 1.24E-02 trithorax 1 (ATX-1) (TRX1) 

At5g44410 0.28 1.45E-02 FAD-binding domain-containing protein 

At2g29090 0.28 9.76E-03 cytochrome P450 family protein 

At1g20390 0.28 2.90E-05 gypsy-like retrotransposon family 

At3g10200 0.29 3.24E-04 dehydration-responsive protein-related 

At1g59124 0.29 3.28E-04 disease resistance protein (CC-NBS-LRR class), putative  

At5g10140 0.29 9.92E-03 MADS-box protein flowering locus F (FLF) 

At5g36930 0.29 1.36E-02 disease resistance protein (TIR-NBS-LRR class), putative 

At1g75960 0.29 2.37E-02 AMP-binding protein, putative 

At1g79000 0.29 2.76E-03 p300/CBP acetyltransferase-related protein 2 (PCAT2) 

At5g43270 0.30 2.34E-02 squamosa promoter-binding protein-like 2 (SPL2) 

At4g08110 0.30 6.41E-03 CACTA-like transposase family (Ptta/En/Spm) 

At3g46980 0.30 1.84E-04 transporter-related 

At5g56030 0.30 1.93E-02 heat shock protein 81-2 (HSP81-2) 

At5g26270 0.30 1.53E-03 expressed protein 

At1g23950 0.31 3.39E-04 expressed protein 

At3g27200 0.31 3.72E-02 plastocyanin-like domain-containing protein 

At1g58150 0.31 1.51E-02 hypothetical protein 

At4g13890 0.31 1.84E-02 glycine hydroxymethyltransferase, putative 

At4g36140 0.32 8.33E-04 disease resistance protein (TIR-NBS-LRR class), putative 

At5g22860 0.32 8.39E-04 serine carboxypeptidase S28 family protein 
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At3g14240 0.32 1.10E-02 subtilase family protein 

At3g53380 0.32 4.83E-05 lectin protein kinase family protein 

At5g24150 0.32 2.31E-02 squalene monooxygenase 1,1 / squalene epoxidase 1,1 (SQP1,1) 

At1g12400 0.33 2.49E-03 expressed protein 

At4g16710 0.34 1.85E-02 glycosyltransferase family protein 28 

At3g24890 0.34 1.22E-02 synaptobrevin-related 

At3g60290 0.35 1.27E-02 oxidoreductase, 2OG-Fe(II) oxygenase family protein 

AtMg01090 0.35 2.76E-02 expressed mitochondrial protein (ORF262) 

At4g02130 0.35 2.18E-02 glycosyl transferase family 8 protein 

At4g35240 0.35 3.85E-02 expressed protein 

At1g10150 0.36 2.34E-03 expressed protein 

At2g36570 0.36 5.77E-03 leucine-rich repeat transmembrane protein kinase, putative 

At1g49630 0.37 1.03E-03 peptidase M16 family protein / insulinase family protein 

At3g47680 0.37 7.12E-03 expressed protein 

At1g69523 0.37 1.09E-02 UbiE/COQ5 methyltransferase family protein 

At1g69550 0.37 5.26E-03 disease resistance protein (TIR-NBS class), putative 

At1g49650 0.38 1.69E-02 cell death associated protein-related 

At2g18280 0.38 1.48E-02 tubby-like protein 2 (TULP2) 

At5g41650 0.39 1.85E-02 lactoylglutathione lyase family protein / glyoxalase I family protein 

At5g22510 0.40 7.32E-04 beta-fructofuranosidase, putative / invertase, putative 

At1g07640 0.40 6.71E-03 Dof-type zinc finger domain-containing protein 

At5g50530 0.40 1.11E-02 CBS domain-containing protein 

At1g27540 0.40 3.68E-03 F-box family protein 

At1g68400 0.41 6.97E-03 leucine-rich repeat transmembrane protein kinase, putative 

At5g42090 0.41 2.80E-03 expressed protein 

At3g45930 0.42 1.05E-02 histone H4 

At5g16220 0.43 1.41E-02 octicosapeptide/Phox/Bem1p (PB1) domain-containing protein 

At4g39710 0.43 2.23E-02 immunophilin, putative / FKBP-type peptidyl-prolyl cis-trans isomerase, putative 

At1g21730 0.43 2.21E-03 kinesin-related protein (MKRP1) 

At1g56720 0.43 2.40E-02 protein kinase family protein 

At1g22400 0.43 7.40E-03 UDP-glucoronosyl/UDP-glucosyl transferase family protein 

At5g27270 0.43 1.37E-02 pentatricopeptide (PPR) repeat-containing protein 

At3g63330 0.44 6.66E-03 protein kinase family protein 

At5g50580 0.44 4.52E-02 SUMO activating enzyme, putative 

At4g31530 0.44 3.22E-03 expressed protein 

At1g62810 0.44 1.73E-02 copper amine oxidase, putative 

At3g49360 0.44 1.45E-02 glucosamine/galactosamine-6-phosphate isomerase family protein 

At1g31600 0.45 1.08E-02 oxidoreductase, 2OG-Fe(II) oxygenase family protein 

At1g80960 0.45 3.60E-02 F-box protein-related 

At3g05140 0.45 9.89E-03 protein kinase family protein 

At3g24515 0.45 1.06E-03 ubiquitin-conjugating enzyme, putative 

At1g63420 0.45 1.58E-02 expressed protein 

At2g11260 0.46 1.80E-02 Hypothetical protein, complete cds, clone: RAFL16-43-P18 

At5g63760 0.46 3.17E-03 IBR domain-containing protein 

At2g13970 0.46 1.35E-02 Mutator-like transposase family 

At5g50550 0.46 3.61E-03 WD-40 repeat family protein / St12p protein, putative 

At2g33220 0.47 7.04E-03 expressed protein 

At5g03340 0.47 6.79E-04 cell division cycle protein 48, putative / CDC48, putative 

At4g19510 0.48 4.98E-02 disease resistance protein (TIR-NBS-LRR class), putative 

At5g49170 0.49 7.15E-03 expressed protein 

At5g16250 0.49 3.75E-02 expressed protein 

At3g61480 0.49 2.51E-02 expressed protein 

At1g06180 0.50 1.29E-02 myb family transcription factor 
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Supplemental Table S2. Down-regulated genes in atx1-1 mutant compared to the 

wild-type Ws. 

Data obtained from the microarray ATH1 experiment with RNA from shoot apex 

tissues. RNA was extracted from the shoot apices of plants (comprising shoot apical 

meristem and first and second leaf primordia at the petiole-less stage) 10 days after 

germination using the Qiagen RNeasy kit (Qiagen GmbH, Hilden, Germany). Genes 

were selected at a Holm’s p <0.05 and a ratio of expression < 0.50. 
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