Acetyl-CoA carboxylases are checkpoints in adipocyte differentiation

Elizabeth Lyn Cordonier
University of Nebraska-Lincoln

Daniel Camara Teixeira
University of Nebraska-Lincoln

Zhonghi Han
University of Nebraska-Lincoln

Angela K. Pannier
University of Nebraska - Lincoln, apannier2@unl.edu

Janos Zempleni
University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/biosysengfacpub

Part of the *Bioresource and Agricultural Engineering Commons, Environmental Engineering Commons, and the Other Civil and Environmental Engineering Commons*

Cordonier, Elizabeth Lyn; Teixeira, Daniel Camara; Han, Zhonghi; Pannier, Angela K.; and Zempleni, Janos, "Acetyl-CoA carboxylases are checkpoints in adipocyte differentiation" (2013). *Biological Systems Engineering: Papers and Publications*. Paper 421.
http://digitalcommons.unl.edu/biosysengfacpub/421

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems Engineering: Papers and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Acetyl-CoA carboxylases are checkpoints in adipocyte differentiation

Elizabeth Lyn Cordonier¹, Daniel Camara Teixeira¹, Zhonghi Han¹², Angela K Pannier² and Janos Zempleni¹

¹ Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
² Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE

Acetyl-CoA carboxylases (ACC) 1 and 2 depend on biotin as a coenzyme and catalyze the carboxylation of acetyl-CoA to malonyl-CoA. Malonyl-CoA produced by cytoplasmic ACC1 and mitochondrial ACC2 is a precursor in fatty acid (FA) synthesis and an inhibitor of mitochondrial FA oxidation, respectively. We hypothesized that ACCs are checkpoints in adipocyte differentiation, and used human mesenchymal stem cells (hMSC) and murine 3T3-L1 preadipocytes to test our hypothesis. The expression of ACC2 increased by 1500% in differentiating hMSC compared with non-differentiating hMSC, judged by qRT-PCR and western blot. This increase preceded the increase of adipocyte marker genes FABP4 and PPARy. Treatment of hMSCs with grape leaf extract (GLE) inhibited the differentiation into adipocytes judged by the abundance of PPARy/FABP4 mRNA and staining of lipid droplets with Oil Red-O. Likewise, treatment of 3T3-L1 cells with the microbial ACC inhibitor soraphen A inhibited differentiation, judged by decreased lipid accumulation. Treatment of transgenic fruit flies, predisposed to storing excess body lipids, with GLE decreased body lipids by ~50%. In future studies, we will use mutagenesis to determine which of the two ACCs is the critical checkpoint in differentiation. We conclude that ACCs are checkpoints in adipocyte differentiation and that manipulation of ACC activity decreases body fat.

Grant Funding Source: ARD Hatch, NIFA, and NIH