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Abstract 
Supercooling points were determined for untreated field-collected and untreated laboratory-

maintained Reticulitermes flavipes (Kollar) workers and soldiers. Workers treated with antibiotics or 

had their hindgut-protozoa removed by exposing them to oxygen under pressure to determine the 

effects of absence of the hindgut fauna on supercooling. Supercooling points were compared be-

tween live and freshly killed workers to determine whether supercooling in this species might be 

simply due to the biochemical properties of body fluids. Laboratory-maintained workers were also 

subjected to desiccation, starvation, or atmospheric pressure to determine their effects on supercool-

ing. Supercooling points were lowest for laboratory workers treated with antibiotics and those that 

fed on brown paper-toweling for 7 d. Untreated field-collected workers had significantly higher su-

percooling points than untreated laboratory-maintained workers (–6.06 ± 0.79°C vs –9.29 ± 2.38°C, 

P < 0.0001). Both untreated field-collected and laboratory soldiers had significantly lower supercool-

ing points than their respective workers (–7.39 ± 2.01°C vs –6.06 ± 0.79°C, P < 0.0001; and –11.60 ± 

2.53°C vs –9.29 ± 2.38°C, P < 0.0001, respectively). There was no significant association between ter-

mite body mass and supercooling points for both laboratory and field termites (P = 0.0523 and 

P = 0.6242) or water content of laboratory termites and supercooling points (P = 0.1425). Defaunated 

workers had significantly lower supercooling points (–10.34 ± 2.38°C) than normally faunated work-

ers (–9.48 ± 1.85°C)(P = 0.0095) suggesting that the symbiotic fauna may have higher supercooling 
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points and act as ice nucleators in the termite hindgut. Starved and desiccated workers had signifi-

cantly lower supercooling points (–10.38 ± 2.70°C and –10.39 ± 2.38°C, respectively) than their corre-

sponding control groups (–9.87 ± 2.11°C and –9.89 ± 1.94°C; P = 0.0454; P = 0.0234, respectively) and 

untreated workers (–9.29 ± 2.38°C; P = 0.0021; P = 0.0011) suggesting that some forms of physical 

stress might lower the supercooling point. 

 
Keywords: Reticulitermes flavipes, supercooling, overwintering, hindgut, bacteria, protozoa 

 

Insects that overwinter in climates with freezing temperatures survive using one of two 

strategies: freeze tolerance or freeze avoidance (Zachariassen 1985, Storey and Storey 1988, 

Block 1990). In freeze-tolerant insects, ice crystals form at higher subfreezing temperatures 

and their growth is controlled to reduce intra- and extra-cellular damage caused by ram-

pant ice crystal formation (Storey and Storey 1988). Ice formation can be controlled by cry-

oprotectants, such as glycerol (Storey 1990), or thermal hysteresis proteins (Storey and 

Storey 1988, Block 1990) and can be induced by ice-nucleating agents (INAs) (Duman et al. 

1991c) such as food particles (Block 1990, Duman et al. 1991b, Storey et al. 1993, Zachari-

assen 1992, Klok and Chown 1997) or bacteria in the gut (Duman et al. 1991a, Sinclair 1997). 

Freeze-avoiding insects can reduce ice formation by producing antifreeze compounds such 

as glycerol (Block 1990, Storey 1990, Duman et al. 1991b), ethylene glycol, sorbitol and 

mannitol (Zachariassen 1985, Duman et al. 1991b), trehalose (Storey 1990, Storey et al. 1993) 

or antifreeze proteins (Block 1990, Duman et al. 1991b). These compounds lower the su-

percooling point (SCP), the temperature at which a liquid spontaneously freezes (Lee 

1991), so that freezing occurs at much lower temperatures than in freeze-tolerant insects. 

Removal or inactivation of ice-nucleating proteins and INAs (Zachariassen 1985) or void-

ing of gut contents (Zachariassen 1985 and 1992, Duman et al. 1991b) can also enhance 

supercooling. 

Insect overwintering has been extensively researched (Lee 1991), but relatively few 

studies have involved termites. The eastern subterranean termite, Reticulitermes flavipes 

(Kollar), is found in areas within its endemic range, such as Wisconsin (Esenther 1969) and 

Ontario, Canada (Husby 1980, Strack and Myles 1997), where sub-zero temperatures occur 

during the winter. Thus, it must have both physiological and behavioral adaptations for 

surviving long-term exposure to low temperatures. Esenther (1969) and Husby (1980) re-

ported R. flavipes retreating deep underground or into large pieces of wood during the 

winter, most likely to avoid freeze mortality. 

One characteristic of lower termites (species other than those in the family Termitidae), 

such as R. flavipes, is the presence of symbiotic protozoa and bacteria in the hindgut that 

contribute to the host’s energy requirements (Bignell 2000). Is it possible these organisms 

could initiate ice crystal formation in the hindgut if they froze at a higher temperature than 

their hosts? Klok and Chown (1997) found that starved Pringleophaga marioni Viette cater-

pillars, a species with a well-developed gut flora, had lower SCPs than fed caterpillars, 

leading them to conclude that gut contents function as INAs. 

In the present study, we investigated how several factors, including the presence or ab-

sence of the hindgut fauna, water content, body mass, starvation, and caste might affect 
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supercooling in R. flavipes. We also compared the SCPs of field-collected and laboratory-

maintained R. flavipes soldiers and workers. 

 

Materials and Methods 

 

Termites 

Two different groups of termites were used in this study: laboratory and field termites. 

Termites from the first group were collected in Lincoln, Nebraska, and maintained in the 

laboratory at approximately 23°C in a 57-L glass container with moist soil and sand. A 

glass plate covering the container reduced moisture loss; ash blocks and pine stakes on the 

soil surface served as a food source. The termites had been kept under these conditions for 

at least 9 months prior to beginning the experiments. Field termites were collected from 

five different sites in Lincoln on 24 June, 28 July, 20 August, 15 September, and 27 Septem-

ber of 1999 from in-ground traps consisting of damp, corrugated cardboard rolls inside 

covered, 3.8-L plastic buckets with the bottoms removed. Field termites were transferred 

to covered plastic containers (30 × 15 × 10 cm) containing damp paper toweling and taken 

to the laboratory where SCPs were usually determined within 3 d after they were collected. 

 

Supercooling point determination 

Nine thermocouples (Type T, Kapton, Cole Parmer Instrument Company, Vernon Hills, 

Illinois) were threaded through nine hollow glass rods (≈ 6 cm long) inserted through rub-

ber stoppers. Nine termites were individually weighed to the nearest 0.1 mg and attached 

to the thermocouples by coating the tips with a small amount of petroleum jelly and press-

ing them gently to the termites’ dorsum. After attaching the termites, the stoppers were 

fitted onto nine 30-ml glass tubes in a test tube rack so that the termites were suspended 

inside and approximately midway down the center of each tube. The rack was placed in a 

water bath (model RTE-210, Neslab, Portsmouth, New Hampshire) filled with 12-L of a 1:1 

(vol:vol) mixture of distilled water and ethylene glycol. The temperature was lowered at a 

rate of 0.2 to 0.5°C/min; termite temperatures were recorded and stored every 4 s with a 

scanning digital thermometer (bench model 692-0000, Barnant Company, Barrington, Illi-

nois). The SCP was identified as the lowest temperature recorded before the exotherm pro-

duced by the latent heat of crystallization occurring in the termite. The exotherm was 

clearly visible on the scanning thermometer program’s on-screen graphics display as a 

spike in temperature increase. None of the termites survived the SCP determination pro-

cedure. 

 

Untreated termites 

Laboratory termite workers were taken directly from the glass container and their super-

cooling points were immediately determined. These termites did not undergo any kind of 

treatment nor were they manipulated in any way. 

 

Antibiotic treatment 

Several antibiotics have proved effective in killing bacteria in the termite hindgut (Eutick 

et al. 1978, Mauldin and Rich 1980). Based on these studies and preliminary testing, we 
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found that a 0.5% tetracycline/kanamycin (1:1) solution was the most effective in removing 

the hindgut bacteria and was not acutely toxic to R. flavipes. Thirteen drops (approximately 

4 to 5 ml) of this solution, were applied to filter paper disks (Whatman No. 1, 90 mm diam.). 

After air-drying, the disks were placed in plastic Petri dishes (100 × 15 mm), moistened 

with 3 drops of distilled water. Twenty-five R. flavipes workers were added to each dish. 

The dishes were sealed with Parafilm (American National Can, Chicago, Illinois), wrapped 

in foil, kept at ambient room temperature (≈ 23°C) and water added as needed to maintain 

adequate humidity. After 7 d, the termites were removed for SCP determination. After 

several trials using filter paper, the antibiotic treatments were repeated using paper tow-

eling (Georgia Pacific Inc., Atlanta, Georgia) to see if differences in paper type might affect 

the results (Cook and Gold (2000) found the source of cellulose affected hindgut flagellate 

communities in R. virginicus). Controls for antibiotic treatments on filter paper and paper 

toweling consisted of approximately 4 to 5 ml of distilled water applied to the paper and 

the termites held under the same conditions as the treatments. 

 

Defaunation 

A technique similar to that of Holmes (1970) was used to defaunate termites. The de-

faunation chamber was a 0.95-L pressure cooker with a pressure gauge fitted to the lid. 

Oxygen from a cylinder was introduced into the cooker through Tygon tubing connected 

to the cylinder regulator and the steam vent on the lid. An open 237-ml canning jar, con-

taining several damp paper towel disks and approximately 20 to 25 termites, was placed 

inside the cooker. A stiff paper baffle was placed in front of the jar to deflect the flow of 

oxygen coming in through the vent. The cooker was loosely covered and flushed with ox-

ygen for approximately 2 min. After flushing, the lid was locked, and the pressure was 

gradually increased to and maintained at 77.55 mm Hg for 6 h (preliminary tests revealed 

this was the minimum time needed for complete defaunation). After treatment was com-

pleted, the pressure in the cooker was released gradually to avoid rapid decompression. 

The termites were removed, weighed, and their SCPs determined within 24 h of de-

faunation. Controls consisted of termites held concurrently for 6 h under ambient room 

conditions in an open 237-ml canning jar provisioned with damp filter paper disks. 

 

Air pressure treatment 

Termites were given the same pressure treatment with air instead of oxygen to see if in-

creased atmospheric pressure had an effect on the SCP. This treatment does not cause de-

faunation. The corresponding controls were termites kept under the same conditions as 

the controls for the defaunation treatment. 

 

Ethyl acetate treatment 

To determine if supercooling might simply be due to the biochemical properties of body 

fluids, termites were maintained for 10 min in an insect kill jar charged with ethyl acetate 

and immediately weighed. The SCPs of these dead termites were recorded while SCPs of 

live laboratory termites were determined and served as controls. 
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Starvation 

Twenty to 25 termites were placed in an empty, 100-mm plastic Petri dish. The bottom and 

lid were roughened with sandpaper, the former to provide traction for the termites and 

the latter to improve adherence of water droplets added to maintain a high relative hu-

midity inside the dish. Twenty to 25 termites placed in a dish provisioned with filter paper 

served as a control. The dishes were sealed with Parafilm, wrapped in foil, and kept at 

ambient room temperature (≈ 23°C) for 7 d. At the end of this period, SCPs were deter-

mined for both starved and control termites. 

 

Water content and desiccation 

Because we observed a wide variation in the SCPs of laboratory termites, the percentage 

water content was determined for 18 laboratory colony workers and their SCPs were de-

termined to see if there was a relationship between water content and supercooling. After 

SCPs were recorded, the termites were dried on filter paper and the percent water content 

was calculated according to Cabrera and Kamble (2001). Additionally, 36 more workers 

were weighed, placed individually in small, plastic Petri dishes (60 × 15 mm) and held in 

desiccators containing Drierite (W. A. Hammond Drierite Company Ltd., Xenia, Ohio) for 

6 to 6.5 h. At the end of this period, seven individuals were dead or moribund. The remain-

ing 29 workers were reweighed, and their SCPs were determined as described previously. 

Thirty-six workers held for 6 to 6.5 h in petri dishes provisioned with damp paper toweling 

served as controls. 

 

Field termites 

Supercooling points were determined for untreated termites brought directly in from the 

field, usually within two days after they were collected. Supercooling points were also de-

termined for field termites that were defaunated, treated with air pressure, or starved, and 

their corresponding controls. Percentage water content also was determined for 24 work-

ers. Because of the limited number of termites obtained during each collection trip, no field 

termites were treated with antibiotics. 

 

Soldiers 

Supercooling points were determined for untreated soldiers whenever they became avail-

able (soldiers are present in lower numbers than workers). A few were experimentally 

treated, but because there were not very many, their SCPs were not included in the statis-

tical analyses. 

 

Statistical analyses 

Differences in the SCP between untreated workers and experimentally treated laboratory 

workers for both laboratory and field workers were analyzed using the Kruskal-Wallis test 

and Wilcoxon rank-sum tests (SAS 2001, PROC NPAR1WAY). Differences between treated 

workers and their respective controls and between untreated workers and soldiers, for 

both laboratory and field termites, were compared using Wilcoxon rank-sum tests. Non-

parametric tests were used because the data were not normally distributed. Kendall rank 
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correlation coefficient analyses (Kendall’s Tau b) (PROC CORR) were conducted to meas-

ure the associations between mass and the SCP of untreated field and laboratory workers 

and percentage water loss and the SCP of laboratory workers. 

 

Results 

 

Laboratory colony 

Treatments applied to workers had a significant effect on SCP (df = 7; X2 = 96.28; P < 0.0001). 

Workers feeding on filter paper or paper toweling treated with antibiotics had the lowest 

SCPs while untreated workers and those held under 77.55 mm Hg air pressure for 6 h had 

the highest SCPs (table 1). Antibiotic-treated (on both filter paper and paper toweling), 

defaunated, starved, and desiccated workers had significantly lower SCPs than untreated 

workers (P < 0.0001, P < 0.0001, P = 0.0012, P = 0.0021, and P = 0.0011, respectively). The 

SCPs of untreated workers and those exposed to increased air pressure or freshly killed 

after exposure to ethyl acetate fumes were not significantly different (P = 0.1122; P = 0.0655, 

respectively). Workers which had been defaunated, desiccated, starved, or had fed on filter 

paper treated with antibiotics had significantly lower SCPs than their corresponding con-

trols (P = 0.0095; P = 0.0454; P = 0.0234, P < 0.0001, respectively). The SCPs of workers that 

fed on paper toweling treated with antibiotics did not differ significantly from those of 

workers fed on untreated paper toweling (P = 0.3442), but those feeding on antibiotic-

treated filter paper had significantly lower SCPs than those feeding on untreated filter pa-

per (P < 0.0001 ). There were no significant differences between the SCPs of workers killed 

by ethyl acetate or exposed to elevated air pressure and their respective controls (P = 0.0549 

and P = 0.1695, respectively). Soldiers had significantly lower SCPs than untreated workers 

(–11.60 ± 2.53°C vs –9.29 ± 2.38°C., P < 0.0001) (table 1). 

 

Table 1. Mean supercooling points (± SD) of laboratory-maintained and field-collected R. flavipes 

workers and soldiers subjected to various treatments 

Treatment 

Supercooling point (°C) 

Laboratory colony  Field collected 

n Treated n Control  n Treated n Control 

None 111 –9.29 ± 2.38 — NA  130 –6.06 ± 0.79 — NA 

Air pressure 70 –9.09 ± 2.94 65 9.54 ± 31.0  — — — — 

Antibiotics on 

filter paper 35 –13.27±1.31 34 –11.91±1.96  — — — — 

Antibiotics on 

paper toweling 26 –12.56 ± 1.74 27 –12.69 ± 1.57  — — — — 

Desiccation 29 –10.39 ± 2.38 36 –9.89 ± 1.94  — — — — 

Ethyl acetate 58 –9.82 ± 2.46 67 –9.20 ± 2.57  50 –7.36 ± 14.0 44 –6.21 ± 0.48 

Defaunation 68 –10.34 ± 2.38 66 –9.48 ± 1.85  27 –6.20 ± 0.57 25 –5.92 ± 0.39 

Starvation 70 –10.38 ± 2.70 68 –9.87 ± 2.11  45 –7.08 ± 1.44 35 –6.06 ± 0.56 

Soldier 27 –11.60 ± 2.53 — NA  16 –7.39 ± 2.01 — NA 
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Field-collected termites 

Treatment had some significant effects on SCPs (df = 3, X2 = 93.3, P < 0.0001). Ethyl acetate-

killed workers had the lowest and starved workers had the highest SCPs (table 1). De-

faunated worker SCPs were slightly, though significantly lower than the SCPs of untreated 

workers (P = 0.0475). Soldiers had significantly lower SCPs than untreated workers (P < 

0.0001). Defaunated, acetate-killed, and starved worker SCPs were significantly lower than 

their corresponding controls (P = 0.0444; P < 0.0001; P < 0.0001, respectively). 

 

Laboratory vs. field termites 

Both untreated workers and soldiers from the laboratory colony had significantly lower 

SCPs (–9.29 ± 2.38°C and –11.60 ± 2.53°C, respectively) than untreated workers and soldiers 

collected from the field (–6.06 ± 0.79°C and –7.39 ± 2.01°C, respectively) (P < 0.0001 and P 

< 0.0001) (table 1). 

 

Effect of mass and water loss on supercooling 

Live mass and SCP were slightly associated for laboratory workers (N = 111, P = 0.0523, τ 

= 0.1301) (fig. 1) but there was no significant association for field workers (N = 130, P = 

0.6242, τ = –0.0306) (fig. 2). There was no significant association between percentage water 

loss and SCP (N = 35, P = 0.1425, τ = 0.1765) (fig. 3). 

 

 
 

Figure 1. Plot of live laboratory maintained R. flavipes worker masses versus their corre-

sponding supercooling points showing a very slight association (Kendall’s rank correla-

tion coefficient, N = 111, P = 0.0523, τ = 0.1301). 
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Figure 2. Plot of live field-collected R. flavipes worker masses versus their corresponding 

supercooling points showing no significant association (Kendall’s rank correlation coeffi-

cient; N = 130, P = 0.6242, τ = 0.0306). 

 

 
 

Figure 3. Plot of percentage water loss of laboratory-maintained R. flavipes workers and 

their corresponding supercooling points (Kendall’s rank correlation coefficient; N = 35, 

P = 0.1425, τ = 0.1765). 

 

Discussion 

 

Factors affecting supercooling in other insects include the presence of ice-nucleating bac-

teria (Strong-Gunderson et al. 1990), gut contents (Shimada 1989, Klok and Chown 1997, 

Hart and Bale 1998, Worland et al. 1998), field versus laboratory origin, size, and life stage 

(Kim and Kim 1997), acclimation (Sinclair 1997), and time of year (Ramlov et al. 1992, 
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Layne and Medwith 1997, Sinclair 1997). However, the effects of these factors appear to be 

species specific. Moreover, differences in individual factors can affect the SCP. For exam-

ple, Gillyboeuf et al. (1994) suggested that differences in the SCP between two populations 

of pink maize stalk borer, Sesamia nonagrioides Let, were due to the amounts of INAs in the 

two corn cultivars the borers fed on. Acclimation to low temperature has resulted in both 

increased (Tursman et al. 1994, Gehrken and Southon 1996, Sinclair 1997) and decreased 

(Ramlov et al. 1992, Worland et al. 1998) SCPs while others found no effect (Miller 1978, 

Gillyboeuf et al. 1994, Kim and Kim 1997). Davis and Kamble (1994) observed lower SCPs 

in R. flavipes workers acclimated at 10°C for 30 d and then exposed to 0°C for 30 d than in 

workers acclimated for shorter periods. However, they also suffered high mortality sug-

gesting that enhanced cold tolerance occurred in only a few individuals. In contrast, 

Cabrera and Kamble (2001) found 87% survival of R. flavipes workers held at temperatures 

gradually decreasing from 25° to 0°C over 6 wks, including 1 wk at 0°C. Beard (1974) ob-

served that R. flavipes inhabiting logs outdoors, where ambient air temperatures were as 

low as –17°C, resumed activity after being brought indoors and warmed to indoor temper-

atures. Thus, it appears R. flavipes can survive long-term exposure to low temperatures. 

The underlying mechanisms responsible for the large differences in supercooling we 

observed between laboratory and field-collected termites are unknown. Environment may 

be a factor because the two populations came from completely different habitats. The la-

boratory colony had been kept at ambient room conditions at ≈ 23°C for at least 9 months, 

while the field termites were probably exposed to greater variations in temperature as they 

foraged under different soil conditions. Davis and Kamble (1994) reported different SCPs 

in R. flavipes workers collected from May through November, although the mean SCP was 

actually higher in workers collected later in the year when average daily temperatures 

were decreasing. However, they did observe a decrease in lower lethal temperatures 

(LLLs) in termites collected in November. 

The lower SCPs of soldier versus those of workers may not be surprising, given the 

differences in morphology and physiology between these two castes. Sponsler and Appel 

(1991) found the critical thermal minimum of R. flavipes soldiers to be 1.2°C lower than that 

of workers. The greater muscle mass and the more heavily sclerotized head capsule of sol-

diers may be a contributing factor. Another possible explanation may be differences in 

hindgut contents. Soldiers, with their specialized mandibles, are unable to feed on wood 

and instead are fed by the workers via trophallaxis. Thus, they may have fewer solids and 

lower relative numbers of protozoa in their hindgut to act as INAs. 

The lower SCPs with a wider variation seen in laboratory termites compared with the 

higher SCPs with lower variation in field termites could be due to differences in cryopro-

tectant synthesis or thermotolerance. A lowering of the SCP sometimes, though not al-

ways, corresponds with higher cryoprotectant levels in the hemolymph (Duman 1979, 

Gehrken and Southon 1996). Husby (1980) concluded that R. flavipes workers collected dur-

ing the winter lacked cryoprotectants based on the low hemolymph osmolalities he meas-

ured. Qualitative identification of cryoprotectants and ice nucleators in R. flavipes is needed 

to gain a complete understanding of supercooling in this species and the underlying fac-

tors producing the large difference in supercooling observed between the laboratory and 

field colonies. 
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Defaunation significantly lowered the SCP in laboratory workers compared with their 

corresponding controls, untreated workers, and workers held at 77.55 mm Hg air pressure 

suggesting hindgut protozoa affect supercooling in R. flavipes. The lower SCPs of starved 

workers could also be due to a decrease in protozoa numbers (although we did not exam-

ine gut contents of starved workers). Perhaps the symbiotic protozoa have a higher SCP 

than the termites. Freezing protozoa could act as INAs in the hindgut, thus causing the 

termites to spontaneously freeze at a temperature that is higher than their natural SCP. 

Defaunated termites do not have the protozoa to act as ice nucleators so they freeze at the 

SCP of their body fluids. The SCP of the body fluids in field termites may be greater than 

or similar to the SCPs of the protozoa which may explain the similarity in the observed 

SCPs of defaunated and untreated field workers. 

Kim and Kim (1997) attributed a higher SCP in field-collected beet armyworm larvae, 

compared with laboratory-reared larvae, to the presence and ingestion of ice-nucleating 

bacteria in the field. In our study, antibiotic-treated R. flavipes workers had the lowest SCPs 

of all indicating the hindgut bacteria may function as INAs. The mean SCPs of workers 

feeding on filter paper or paper toweling treated with antibiotics was, respectively, 4 and 

3.3°C lower than that of untreated workers. Interestingly, the mean SCPs of workers feed-

ing on untreated filter paper or paper toweling were also very low (–10.81 and –11.91, re-

spectively). These two different materials may not provide adequate nutrition for R. 

flavipes and their hindgut fauna. Cook and Gold (2000) found that different cellulose 

sources, including filter paper, had significant effects on relative abundances of flagellate 

species in R. virginicus. The low SCPs in the termites feeding on the two types of paper in 

our study could be a result of decreased numbers of protozoa and/or bacteria in the hind-

gut. Unfortunately, time constraints and availability of termites did not allow us to treat 

field workers with antibiotics nor did we treat laboratory workers with both oxygen and 

antibiotics to make workers devoid of both protozoa and bacteria. Nonetheless, our results 

suggest that both bacteria and protozoa have ice-nucleating activity in the termite hindgut. 

However, although emptying of gut contents is one strategy used by some overwintering 

insects to avoid freezing, it is unlikely termites would do the same because the gut symbi-

onts are vital to their energy requirements. Spontaneous ice crystal formation in R. flavipes 

hindguts in the winter may be less likely because termite activity decreases and eventually 

stops as soil temperatures drop to 0°C (Strack and Myles 1997). This decrease and stoppage 

of feeding may result in fewer food particles in the hindgut. 

The wood species that subterranean termites feed upon can have a significant effect on 

hindgut protozoa species (Mannesmann 1974, Carter et al. 1981, Cook and Gold 2000). Per-

haps the food source the termites are feeding on in the field termites is affecting their hind-

gut fauna and consequently the SCP. Comparisons of absolute protozoan numbers and 

species assemblages in field-collected and laboratory termites could reveal differences in 

protozoan populations in termites living under natural and laboratory conditions, which 

may account for the marked differences in supercooling. 

Neither water content nor termite weight seemed to affect supercooling. These factors 

may be more important in larger insects. However, desiccated workers did have lower 

SCPs than untreated workers. This loss of water somehow affected supercooling perhaps 

by altering the concentration of particular compounds in the hemolymph. According to 
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Zachariassen (1985), a reduction in body water content increases the concentration of cry-

oprotectants, leading to changes in hemolymph osmolality and the SCP. 

There was no significant difference in SCP between live and dead laboratory workers 

although there was a difference of over 0.5° and dead field workers had lower SCPs than 

live field workers. The workers may have defecated some fluid upon exposure to ethyl 

acetate, thus reducing the number of INAs in the hindgut. Another possibility is that some 

water could have been lost through open spiracles of the dying termites. 

One crucial piece of information needed for understanding termite overwintering and 

their ability to survive long-term exposure to cold temperatures is the temperature range 

of the microhabitats where R. flavipes colonies overwinter. This would place all known in-

formation on R. flavipes cold tolerance in a meaningful context. However, because R. 

flavipes is believed to have a diffuse nest system (Strack and Myles 1997) rather than a cen-

tralized nest area, as do many other subterranean termite species (Weesner 1970), and be-

cause locating subterranean termites in the ground is difficult and painstaking work, 

obtaining exact temperatures would be a difficult task. Measuring the soil temperature at 

depths at which termites are likely to be found, however, may be sufficient. Mail (1930) 

stated that daily temperature fluctuations are nonexistent below a certain soil depth; thus, 

it is likely that termites deep in the ground during the winter are at a near constant tem-

perature. Both Esenther (1969) and Husby (1980) found R. flavipes at soil depths of ≥ 1 m in 

the winter. The lowest temperature recorded by Esenther (1969) in Wisconsin at a soil 

depth of 122 cm was –1.1°C. Soil temperature data collected in Lincoln, Nebraska, during 

the months of December, January, and February from 1894 to 1902 revealed a mean soil 

temperature of 3.9°C, at a depth of 91.4 cm, with a minimum and maximum of –1.2 and 

10.6°C, respectively (Swezey 1903). These temperatures are considerably higher than the 

SCPs of R. flavipes reported by Davis and Kamble (1994) (≈ 6.0°C), those of the field termites 

in this study (–6.1°C), and the lower lethal limits (the temperature at which irreversible 

knockdown occurs) of –3.0 and –2.9°C for workers and soldiers, respectively, reported for 

R. flavipes by Sponsler and Appel (1991 ). Thus it is very likely that successfully overwin-

tering R. flavipes colonies are seldom exposed to temperatures below 0°C. This may explain 

how colonies survive the winter in the mid to upper latitudes of the native range of R. 

flavipes. Thus, considerable winter mortality occurs only when colonies overwinter in sites 

where temperatures drop down to and below the lower lethal temperature. Termites may 

also overwinter in the soil adjacent to human dwellings that are heated artificially, thus 

providing temperatures that are not lethal to termites. Gillyboeuf et al. (1994) concluded 

that the overwintering microclimate is probably more important than freeze tolerance ca-

pacity for the survival of pink maize stalk borer and this probably also holds true for R. 

flavipes. 
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