Silkworm TFIIIA requires additional class III factors for commitment to transcription complex assembly on a 5S RNA gene

Timothy P.L. Smith
University of Oregon, tim.smith@ars.usda.gov

Lisa S. Young
University of Oregon

Laurel B. Bender
University of Oregon

Karen U. Sprague
University of Oregon

Follow this and additional works at: http://digitalcommons.unl.edu/hruskareports

http://digitalcommons.unl.edu/hruskareports/435

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Roman L. Hruska U.S. Meat Animal Research Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Silkworm TFI11A requires additional class III factors for commitment to transcription complex assembly on a 5S RNA gene

Timothy P. L. Smith1,3,+, Lisa S. Young1, Laurel B. Bender1,§ and Karen U. Sprague1,2,*

1Institute of Molecular Biology and Departments of 2Biology and 3Chemistry, University of Oregon, Eugene, OR 97403, USA

Received October 13, 1994; Revised and Accepted January 25, 1995

ABSTRACT

We find striking similarities in promoter structure and requirements for template commitment on 5S RNA and tRNA genes from silkworms. The promoters are nearly the same size (~160 bp) and include flanking as well as internal sequences. To analyze the factor requirements for 5S RNA transcription complex assembly in a completely homologous system, we have isolated a silkworm fraction that is highly enriched for the 5S RNA-specific transcription factor, TFI11A. Using this fraction, together with the other silkworm fractions, TFI11B, TFI11C, TFI11D and RNA polymerase III, we demonstrate that the requirements for 5S RNA transcription complex assembly are very similar to those previously established for a tRNA** gene. Specifically, no individual factor fraction is sufficient for commitment of silkworm 5S RNA genes to transcription complex assembly. Rather, combinations of at least three factor fractions are required. Our observation that more than one subset of factors is competent for commitment suggests that silkworm 5S RNA genes further resemble tRNA** genes in their ability to use multiple pathways for transcription complex formation.

INTRODUCTION

Transcription of tRNA and 5S RNA genes by RNA polymerase III involves the formation of stable complexes between transcription factors and sequences within the genes. Until recently, transcription of both classes of genes was thought to depend entirely on relatively short internal sequences: the A and B boxes in tRNA genes, and the A and C boxes in 5S RNA genes [reviewed in (1)]. In the case of tRNA genes, however, there is now considerable evidence for the promoter function of sequences outside the A and B boxes [reviewed in (2)]. In the case of tRNA genes, the A and C boxes in 5S RNA genes contain important promoter elements (21-23). Furthermore, analysis of the interactions of the single transcription factor, TFI11A, as well as the multi-factor fractions, TFI11B and TFI11C, with template DNA. These experiments have led to the idea that transcription factors assemble on both 5S RNA and tRNA genes in a strict, linear order, initiated by the stable or metastable interaction of a single factor with the promoter (18-20).

Analysis of tRNA gene transcription in the silkworm system has demonstrated that sequences outside the canonical A and B boxes contain important promoter elements (21-23). Furthermore, fractionation of the silkworm transcription machinery shows that at least three factor fractions are required, in addition to RNA polymerase III, for transcription of tRNA genes. These fractions are designated TFI11B, TFI11C and TFI11D (24). An additional component composed of RNA, TFI11R, is required to reconstitute silkworm class III transcription in vitro (25). The RNA with activity has been identified as a particular isoleucine tRNA (26), but since it has recently been shown to play an indirect, protective, role in transcription (27), we no longer consider it a true transcription factor. The other three factor fractions, though resolved from one another, still contain multiple polypeptides, some or all of which may act in class III transcription. Thus, the silkworm system displays complexity in both its cis- and its trans-acting elements. Moreover, the formation of active transcription complexes on silkworm tRNA genes is not restricted to the single, linear pathway reported in other systems. Instead, transcription complex assembly on a
silkworm tRNA_c^{Ala} gene can proceed by at least two pathways, and neither of them is initiated by the stable or metastable interaction of a single factor fraction with the gene. Rather, a combination of two factor fractions is required (24).

To determine the generality of our findings with the silkworm tRNA_c^{Ala} gene, we asked whether they could be extended to a different kind of polymerase III template. We therefore analyzed the promoter and factor requirements for transcription of a silkworm 5S RNA gene. Transcription of 5S RNA genes requires the gene-specific factor, TFIIIA, which had not previously been isolated from insects. Since we wished to avoid the potential complications of a heterologous system, we isolated a fraction that is highly enriched for silkworm TFIIIA. 5S RNA transcription activity was reconstituted by combining the TFIIIA fraction with the previously described fractions of the silkworm transcription machinery: polymerase III, TFIIIB, TFIIIC and TFIIID.

We show that the transcription factor and promoter requirements for transcription of silkworm 5S RNA genes are remarkably similar to those for silkworm tRNA genes. The maximum extents of both promoters are nearly equal (~160 bp), and both include flanking as well as internal sequences. Moreover, transcription complex assembly proceeds in a similar manner on both kinds of genes. Specifically, no factor fraction can independently commit a silkworm 5S RNA gene to transcription complex assembly. Combinations of at least three factor fractions are required. As with the silkworm tRNA_c^{Ala} gene, more than one subset of fractions is competent, however. Thus, there appear to be multiple pathways by which active transcription complexes can form on both 5S RNA and tRNA genes in the silkworm system.

MATERIALS AND METHODS

Cloned genes used for this work

The silkworm 5S RNA gene used in this work is a derivative of the one described previously (3) in which the vector M13 DNA has been modified to ensure efficient termination by RNA polymerase III. To modify the vector, the 452 bp HindII–EcoRI fragment of pBR322 was inserted into M13mp18 that had been cleaved with AvaII, treated with DNA polymerase I and Klenow fragment to generate blunt ends, and cleaved with EcoRI (designated M13mp18erm). Subsequently, the silkworm 5S RNA gene was inserted as a 292 bp TaqI fragment (from position -92 to +200 with respect to the transcription initiation site) into the AccI site of the modified vector, and designated 5′Δ–92. The orientation was such that the 5′ rather than the 3′ end of the 5S RNA gene is closest to the HindIII site in M13mp18. The resulting gene-containing BamHI–HindIII fragment was also inserted into M13mp19, creating a construct called 5SRO for reverse orientation. The silkworm alanine tRNA used for this work has been described (22).

Construction of deletion mutations

Deletions were produced by BAL31 exonuclease treatment of either BamHI-digested 5′Δ–92 in M13mp18 (downstream deletions), or HindIII-digested 5′Δ–92 in M13mp19 (upstream deletions), using established procedures (3,28).

Transcription assays with crude extracts

Extracts derived from Bombyx silkglands (29) or ovaries (30) were used to provide the in vitro transcription systems for testing the activity of mutant derivatives of 5S RNA and tRNA genes. Transcription reaction conditions and analysis of transcripts were as described (3,29). To maximize detection of mutant phenotypes, non-specific M13mp18 vector DNA was included in each reaction mixture along with a sub-saturating concentration of template (29).

Purification of silkworm TFIIIA

TFIIIA assay. Bioxex chromatography of crude extracts from posterior silk glands was used to generate a concentrated source of the class III transcription components used to complement TFIIIA. 40 ml of crude extract (29) was dialyzed against 25 vol of ice-cold Buffer BRX (10 mM MgCl2, 50 mM Tris–HCl (pH 7.9), 20% glycerol, 1 mM DTT) plus 150 mM KCl for 1 h. The dialyzed extract was loaded onto a 30 ml column (2.5 cm diameter) of Bioxex 70 (Biorad) equilibrated in Buffer BRX plus 150 mM KCl, and run at a flow rate of 0.5 ml/min. The column was washed with 1.5 column volumes of the same buffer, followed by successive washes with 1.2 column volumes of Buffer BRX plus 280 mM KCl and Buffer BRX plus 600 mM KCl. 1.5 ml fractions were collected, dialyzed against 50 mM Tris–HCl (pH 7.5), 4 mM MgCl2, 20% glycerol, 1 mM DTT, 125 mM KCl, and assayed for protein content and the ability to direct transcription of a silkworm tRNA gene. Aliquots of the protein peak resulting from the Buffer BRX plus 600 mM KCl eluate were frozen and stored at -70°C. This fraction was designated BRX600. It was tested for the ability to transcribe tRNA genes but not 5S RNA genes. 5S RNA transcription required the addition of Xenopus TFIIIA, and was not stimulated by addition of any of the other fractions (TFIIIB, TFIIIC, TFIIID, or RNA polymerase III). TFIIIA assay mixtures contained 3.5–5 µl of the BRX600 fraction and 200 ng of clone 5SRO in a total reaction volume of 40 µl. Transcription was carried out at 22°C for 2 h using the conditions described for crude extracts.

Purification methods. All procedures were carried out at 4–10°C. 0.5 ml of crude extract (20–25 mg/ml protein) from Bombyx pupal ovaries (3) was filtered through a 0.2 µ filter (Millipex GV) and applied to a 25 ml Superose 12 gel filtration column (Pharmacia) equilibrated in Buffer C (5 mM MgCl2, 50 mM Tris–HCl (7.5), 2 mM DTT, 10% glycerol) with 0.125 M or 1.0 M KCl, and run at a flow rate of 0.3 ml/min. The column was washed with 25 ml of the same buffer, and 0.35 ml fractions were collected. The fractions from columns run in 0.125 M KCl buffer were assayed for TFIIIA with no further manipulation. The fractions from the columns run in 1.0 M KCl buffer were dialyzed against 50 vol of ice-cold Buffer C with 100 mM KCl for 2 h before being assayed for TFIIIA activity. Fractions with TFIIIA activity in the excluded volume from a Superose 12 gel filtration column equilibrated in 0.125 M KCl were pooled, and 4–7 ml of the pool (0.3–0.5 mg/ml protein) were applied to a 1 ml Mono S analytical column (Pharmacia) equilibrated in Buffer C with 0.125 M KCl (flow rate of 0.5 ml/min). The column was washed with the same buffer until the OD₂₈₀ of the eluate had returned to the baseline level, and then washed with Buffer C containing 0.38 M KCl (usually 8–12 column volumes). TFIIIA activity was eluted with a linear gradient of KCl in buffer C at a rate of increase
of 85 mmol/ml from 0.38 to 1.0 M KCl. Fractions were collected in tubes containing BSA (final concentration 0.4 mg/ml), and were then dialyzed against Buffer C plus 75 mM KCl until the conductivity was equal to that of the dialysis buffer. The fractions were assayed for TFIIIA activity, frozen, and stored at -70°C. For footprinting reactions, TFIIIA-containing fractions from multiple Mono S column runs were concentrated 10-fold by Amicon pressure filtration, assayed for TFIIIA activity, and stored at -70°C.

SDS-PAGE analysis of proteins. The proteins in the fractions from Mono S chromatography (0.35 ml each) were precipitated in 10% trichloroacetic acid (TCA), and fractionated on a discontinuous SDS-PAGE gel. After electrophoresis, the gel was fixed, and stained with 0.1% silver nitrate (31). The concentration of silkworm TFIIIA in the Mono S fractions with peak transcriptional activity was estimated at 1 x 10^-10 M, based on the intensity of silver staining of gel-fractionated protein, in comparison with known amounts of *Xenopus* TFIIIA run in parallel. The amounts of either silkworm or *Xenopus* TFIIIA used in particular experiments correspond to total TFIIIA, without correction for the fraction of protein that was active.

Other class III transcription factor fractions

Preparation of transcription factor fractions designated TFIIIB, TFIIIC, TFIIID, TFIIIR and RNA polymerase III have been described (24,25,27). Protein concentrations for the fractions used for these experiments were: TFIIIB, 0.6 μg/ml; TFIIIC, 80 μg/ml; and TFIIID, 10 μg/ml.

Gel retardation analysis and DNAase I footprinting

Gel retardation assay. Gel retardation analysis was carried out essentially as described (32). A 340 bp DNA fragment (EcoRI–PstI fragment of clone 5SRO) containing the silkworm 5S RNA gene was labeled using [α-32P]dATP and the Klenow fragment of *E.coli* DNA polymerase I to a specific activity of 1–2 x 10^3 c.p.m./fmol. Binding reactions using the silkworm TFIIIA fraction contained 5 μl fraction, 1–5 x 10^-10 M DNA fragment, 50 μg/ml poly(d–dC), and 40 μg/ml BSA, in a total volume of 15 μl Buffer B [20 mM Tris–HCl (pH 7.5), 7 mM MgCl2, 50 mM KCl, 10% glycerol, 4 mM DTT, 10 mM ZnCl2]. Binding reactions with purified Xenopus TFIIIA were carried out under the same conditions, except that no poly(d–dC) was added to the reaction. The binding reactions were incubated for 20 min at 22°C, and loaded onto a 6% polyacrylamide gel. The gel and running buffer contained 0.025 M Tris–base, 0.2 M glycine; 5% glycerol (v/v). The gel was pre-run at 4°C and 300 V for 60 min, and electrophoresis was at 4°C and 250 V for 3–5 h. Bound and free DNA were visualized by autoradiography of wet or dried gels. To test specificity, specific (340 bp EcoRI–PstI fragment of 5SRO) or non-specific (375 bp EcoRI– BamH1 fragment of pBR322) competitor fragments were mixed with the labeled probe in the indicated molar ratios, before addition of TFIIIA.

DNase I protection (footprinting) assay. Binding reactions and analysis were as described for gel retardation, except that the reaction mixture was doubled and, before loading on a gel, it was incubated with 10 ng Dnase I for 60 s. DNA in the bound and free positions on the gel was eluted, freed of protein by phenol extraction and ethanol precipitation and fractionated on a 5% sequencing gel (28).

Template commitment assays

The protocol for measuring template commitment is shown schematically in Figure 7A, and has been described in detail (24). Conditions for binding were as for transcription, except that the reaction was carried out for 20 min at 22°C in a total volume of 8–28 μl containing 10 μM unlabeled UTP, 75 ng (15 fmol) of 5SRO (gene 1) and the appropriate factor or mock buffers. The second incubation period (60 min, 22°C) was initiated by the addition of 75 ng of 3’Δ+118 (gene 2) plus the remaining fractions and appropriate buffer components. Transcription was measured during a final incubation period (60 min, 22°C) initiated by the addition of 10 μCi of [α-32P]UTP 800 Ci/mmol) to a total volume of 43–50 μl. An amount of each fraction that just saturated 5 μl TFIIIA, was used: 5 μl each TFIIIB, TFIIIC, TFIIID, TFIIIR; 3 μl RNA polymerase III.

RESULTS

The silkworm 5S RNA promoter

The promoter of the silkworm tRNA_{Ab} gene includes at least 161 bp (29). To compare the extent of the silkworm 5S RNA gene promoter, we constructed a series of deletions that resected the 5S RNA gene from either the 5' or the 3' side. We determined the ability of the resulting mutant genes to direct transcription in unfractionated extracts. To maximize detection of subtle phenotypes, we avoided saturating the transcription machinery with template (29). As shown in Figure 1A, deletions from the 5' side establish the existence of an essential upstream promoter element whose upstream boundary is between -32 and -26. Thus, under conditions that detect mutant phenotypes more sensitively, we have confirmed our previous results (3). Deletions from the 3' side show that the downstream boundary of the 5S RNA promoter is between +134 and +128. Thus, the silkworm 5S RNA promoter is approximately the same size as the silkworm tRNA_C promoter, including at least 156 bp. The previously published deletion analysis of the silkworm tRNA_C promoter (29) is plotted in Figure 1A to facilitate comparison of tRNA and 5S RNA promoters in the silkworm system. Both promoters clearly extend beyond the classical promoter elements indicated by black rectangles. They also resemble each other in the distribution of transcriptionally important sequences. In both cases, sequences that are essential for transcription are located upstream, whereas sequences that are stimulatory, but not essential, are downstream.

Silkworm TFIIIA

We anticipated that analysis of 5S transcription complex assembly would require TFIIIA, in addition to the factors that allow tRNA transcription. Since none of the fractions previously resolved from silkgland nuclear extracts contained TFIIIA activity, we developed a method for isolating this factor from extracts of silkworm oocytes. We chose oocytes because, although oocyte and silkgland extracts are about equally active in tRNA transcription, oocyte extracts are much more active than silkgland extracts in 5S RNA transcription. To assay TFIIIA activity during purification, we took advantage of the natural inefficiency of 5S RNA transcription in silkgland extracts, and
Figure 1. The promoters of silkworm 5S and tRNA^\text{ Alb } genes are similar in size and position. (A) The transcription activities of deletion mutants of a silkworm 5S RNA gene (transcribed in crude extracts), relative to that of a full-length gene are plotted in boldface (squares) against the deletion endpoint, along with comparable data for mutants of a tRNA^\text{ Alb } gene (circles) previously published in (29). Deletions entering the genes from the upstream end (5'A) are shown as closed symbols, whereas deletions entering the genes from the downstream end (3'A) are shown as open symbols. Numerical data for the 5S deletion mutants are: 5'A-49, 104 ± 7% (n = 4); 5'A-4, 99 ± 6% (n = 5); 5'A-36, 107 ± 6% (n = 4); 5'A-26, 88 ± 4% (n = 4); 5'A-24, 90 ± 8% (n = 5); 5'A-21, 76 ± 7% (n = 4); 5'A-17, 9 ± 4% (n = 5); 5'A-6, 2 ± 2% (n = 4); 3'A+193, 93 ± 9% (n = 5); 3'A+174, 104 ± 6% (n = 7); 3'A+135, 93 ± 13% (n = 16); 3'A+128, 83% (n = 2); 3'A+118, 67 ± 11% (n = 15); 3'A+104, 63 ± 12% (n = 16); 3'A+97, 49 ± 16% (n = 4); 3'A+93, 31 ± 12% (n = 12); 3'A+91, 19% (n = 2); 3'A+86, 10 ± 10% (n = 4); 3'A+76, 10 ± 10% (n = 3); 3'A+68, 2 ± 4% (n = 4). The transcriptional phenotype of each mutant is indicated parenthetically after the deletion endpoint.

In designing a purification protocol for silkworm TFIIIA, we exploited our observation that TFIIIA activity in unfractionated extracts migrates anomalously during gel filtration chromatography in the presence of 5 mM MgCl_2 and relatively low concentrations of KCl (125 mM). Specifically, under these conditions, most of the TFIIIA activity appears in the void volume, in contrast to its position in the included volume when chromatographed in 5 mM MgCl_2 plus 1 M KCl. Presumably, the anomalous migration in low concentrations of KCl reflects aggregation or association of TFIIIA with other components in the extracts. This unusual elution position is useful because it reduces this activity still further by ion exchange chromatography on Biorex 70. Figure 2 shows the differential transcription of tRNA and 5S RNA genes by a step-elution fraction from such a column. Figure 2 also demonstrates the utility of this fraction as a TFIIIA assay, by showing that SS RNA transcription is specifically stimulated by highly purified Xenopus TFIIIA (the generous gift of David Setzer).

In designing a purification protocol for silkworm TFIIIA, we exploited our observation that TFIIIA activity in unfractionated extracts migrates anomalously during gel filtration chromatography in the presence of 5 mM MgCl_2 and relatively low concentrations of KCl (125 mM). Specifically, under these conditions, most of the TFIIIA activity appears in the void volume, in contrast to its position in the included volume when chromatographed in 5 mM MgCl_2 plus 1 M KCl. Presumably, the anomalous migration in low concentrations of KCl reflects aggregation or association of TFIIIA with other components in the extracts. This unusual elution position is useful because it separates TFIIIA from other class III transcription factors that contaminate TFIIIA chromatographed in 1 M KCl (principally, TFIIIB and TFIIID). Accordingly, we used gel filtration chromatography in 5 mM MgCl_2 and 125 mM KCl as the first step in TFIIIA purification. The material obtained from the void volume was further purified by gradient elution from a cation exchange (Mono S) column. TFIIIA eluted from this column as a single peak of 5S RNA gene-specific transcription activity at 0.68 M KCl, and was free of detectable RNA polymerase III, TFIIIB, TFIIIC or TFIIID.

The protein content and transcriptional activity of the TFIIIA fraction purified in this manner is shown in Figure 3. Individual fractions from the Mono S column contain a prominent 33.5 kDa polypeptide (indicated by an arrow), whose abundance correlates with 5S-specific transcription activity. The size of this polypeptide is within the range (25–50 kDa) we had previously estimated for silkworm TFIIIA activity by density gradient sedimentation of extracts (data not shown). To determine whether these fractions
Figure 2. Specificity of the assay for TFIIIA activity. The 0.6 M KCI step fraction from Biorex 70 chromatography of crude silkworm extract was used to transcribe a silkworm 5S RNA or a silkworm tRNA^k gene. The fraction was supplemented (+) or not (−) with 0.5 nM TFIIIA purified from Xenopus oocytes.

Figure 3. A 33.5 kDa protein co-elutes with TFIIIA activity from MonoS. Fractions from the 0.38 M-1.0 M KCI gradient applied to a Mono S column were assayed for TFIIIA activity, using the Biorex 600 fraction described in the legend to Figure 2 (see Methods), and for protein content by SDS–PAGE and silver-staining. Lane V was loaded with 30 μl of the pool of Superose 12 void fractions that was the input for the Mono S column. Lane S was loaded with 30 μl of the material that eluted from Mono S with 0.38 M KCl. Ten μl of each Mono S gradient fraction was used in the activity assay; 350 μl was used for the silver-stained gel. The position of the 33.5 kDa protein (arrow) and molecular weights and positions of marker proteins are indicated.

Figure 4. Formation of specific complexes between silkworm or Xenopus TFIIIA and the silkworm 5S RNA gene. (A) 5 μl of concentrated Bombyx mori silkworm TFIIIA, giving a final concentration of ~0.3 nM, (lane B) or 3 nM Xenopus TFIIIA (lane X) were used in binding reactions with 2 fmol of a 340 bp fragment containing a silkworm 5S RNA gene. The positions of the bound complex and the unbound fragment after electrophoresis on a nondenaturing gel are indicated. (B) Specificity of the silkworm TFIIIA-gene interaction was shown by determining the relative amount of bound radioactive probe fragment that remained when increasing amounts of unlabeled competitor fragments were included in a binding reaction that contained 7 fmol of probe. Competitor fragments used were the 340 bp gene fragment (specific) or a fragment of pBR322 of the same length (non-specific).

5S RNA gene. Gel retardation analysis revealed a protein–DNA complex that migrates more slowly than the DNA fragment itself (Fig. 4A). This is a specific complex, since it can be competed with unlabeled gene-containing DNA fragments in a concentration range in which non-specific DNA fragments have little effect (Fig. 4B). The protein–DNA complex formed with the silkworm protein migrates slightly faster than the complex formed with Xenopus TFIIIA, consistent with putative silkworm TFIIIA being smaller than Xenopus TFIIIA [33.5 kDa compared to 38–40 kDa (16,33–35)].

A footprint of the silkworm protein was obtained by treating the binding reaction mixture with DNase, and then separating bound from unbound DNA fragments by non-denaturing gel electrophoresis. Figure 5 compares footprints on the silkworm 5S RNA gene produced by purified Xenopus TFIIIA or by the silkworm fraction. The protection patterns are strikingly similar. Both proteins protect the same segment of the gene, positions +45 to +96 on the non-coding strand (compare lanes B and X in Fig. 5). The only differences in the protection patterns correspond to two DNase I hypersensitive sites, indicated by arrows. These are at position +61 for Xenopus TFIIIA, and at position +75 for the...
Figure 5. Silkworm TFIIIA binds to the same region of the 5S RNA gene as does Xenopus TFIIIA. Binding reaction mixtures identical to those of Figure 4 were prepared and treated with DNase I before loading onto a non-denaturing gel. DNA fragments were eluted from silkworm (Bombys TFIIIA) or Xenopus (Xenopus TFIIIA) TFIIA–DNA complexes, and from the unbound position (U). A gene fragment cleaved at G or C+T residues provided size standards. The extent of the coding region of the gene and the TFIIIA footprints is shown diagrammatically at the right, with the positions of hypersensitive sites indicated.

Figure 6. Five separate fractions are required for silkworm 5S RNA transcription in vitro. The silkworm 5S RNA gene was transcribed in the presence of all the transcription factor fractions (lanes ALL), or in the absence of the indicated factor. Silkworm TFIIIA was used in all cases. Thus, on the basis of the template specificity of its transcription activity and the location of its DNA binding site, we conclude that the transcriptional activity in this silkworm fraction corresponds to TFIIIA.

Figure 7. Multiple silkworm transcription factor fractions are required to form stable or metastable complexes with the silkworm 5S RNA gene. The protocol employed in these experiments is capable of detecting stable or metastable complexes, and is diagrammed in (A). Gene 1 was the wild-type 5S RNA gene; gene 2 was a mutant 5S RNA gene that lacks the normal terminator and therefore produces a longer transcript. The fractions not present in the initial incubation mixture were added simultaneously with gene 2. (B) Silkworm TFIIIA was tested for the ability to form a stable or metastable complex with the silkworm 5S RNA gene. The positions of the transcripts from gene 1 and gene 2 are indicated, and the factors included in the pre-incubation mixture are shown above the lanes. (C) Various subsets of the transcription machinery were tested as in (B) for their ability to form stable or metastable complexes with the silkworm 5S RNA gene.

The formation of transcription complexes

Transcription complexes on 5S RNA genes have been proposed to assemble via a single, linear pathway that is initiated by the metastable interaction of TFIIIA with the A and C boxes. The resulting complex is thought to be stabilized by the addition of TFIIIC, and only then is TFIIIB able to join the complex (18,19). This pathway was deduced principally from template commitment assays, in which various subsets of transcription factors are exposed to a saturating amount of template. A second kind of template is then added, along with the remaining factors, and transcription from both templates is measured. If transcription is from the first template only, then one or more factors in the first incubation mixture must have become committed to the first template. Two levels of stability in such commitment assays have been distinguished operationally (18). Factor–template interactions are said to be metastable if they can withstand challenge by the second template only when the remainder of the transcription machinery is added simultaneously. They are called stable if the pre-incubated factors can remain sequestered when challenged with a second template in the absence of the other transcription components.
In this protocol, the remainder of the transcription machinery commitment of silkworm transcription fractions, either singly or the 5S RNA gene under these conditions (Figs 7 and 8). In Figure 7B and C, and a quantitative compilation of all of the assay detects the least stable interactions that have been described is added simultaneously with the second template. Therefore, this combination. The protocol we used is diagrammed in Figure 7A. In this protocol, the remainder of the transcription machinery is added simultaneously with the second template. Therefore, this assay detects the least stable interactions that have been described in other systems. Examples of the raw data we obtained are shown in Figure 7B and C, and a quantitative compilation of all of the data is given in Figure 8. None of the individual fractions, including the TFIIIA fraction, formed detectable complexes with the 5S RNA gene under these conditions (Figs 7 and 8).

Since no single fraction was able to form even a metastable complex, we tested various combinations to determine the minimum set, or sets, that could do so. Figures 7 and 8 show that two different combinations of factors (TFIIIA/C/D and TFIIIA/ B/D) are sufficient for a level of template commitment that is at least 80% that of the complete system. Both of these combinations contain three factor fractions. Combinations of two fractions alone give only modest levels of commitment (15–20%). It is clear that TFIIIA is absolutely required for commitment, since any combination of two or three fractions that lacks TFIIIA is also incapable of template commitment. TFIIID, while not essential, also makes a major contribution (compare the level of template commitment by TFIIIA/B/C with those of TFIIIA/B/D and TFIIIA/C/D in Fig. 8). The addition of either TFIIIB or TFIIIC to the combination of TFIIIA and TFIIID allows high levels of commitment. The simplest interpretation of this result is that there are at least two complexes that can efficiently commit silkworm 5S RNA genes to transcriptional activity. It is formally possible that although TFIIIB and TFIIIC differ in their content of required transcription components, they supply the same template commitment component, and thus yield indistinguishable committed complexes. In either case, it is clear that an effective complex requires combinations of factors, indicating that template commitment involves interactions among factors.

DISCUSSION

Our results show that the promoter for the silkworm 5S RNA gene includes sequences outside of the coding region and is similar in extent to the silkworm tRNA promoter (29). This is in contrast to the relatively simple picture of transcription by RNA polymerase III suggested by early work on both tRNA and 5S RNA genes. For tRNA genes, two short sequences (the A and B boxes), binding sites for two transcription factors (TFIIB and TFIIC), were thought to be the key promoter elements. For 5S RNA genes, the lack of a B box homolog was thought to necessitate a third factor, TFIID, to recruit TFIIC to the template.

Recent work, including the results reported here, suggests that this picture of the mechanism of transcription by RNA polymerase III is too simple. Considering 5S RNA genes in particular, there are now multiple examples (3,4,6–9,14,15) in which sequences outside the A and C boxes contribute to promoter function. Thus, the large silkworm promoter that we have analyzed may represent the general case for 5S RNA promoter structure. In addition, the number of factors known to be required for class III transcription has increased, as the complexity of the classical TFIIB and TFIIC fractions has become apparent.

In yeast, the TFIIB fraction contains at least two separable polypeptides that can be readily cross-linked to the template (36), and the most highly purified TFIIC fractions contain at least four such polypeptides (37). In addition, a fraction called TFIIE that is distinct from both TFIIB and TFIIC has been resolved in yeast (38). Finally, it is likely that the general class III transcription machinery includes factors previously recognized by their activity in class II transcription systems. TATA binding protein (TBP) is known to be such a factor (39–41), and TFIIB is an excellent candidate for another (42).

In the silkworm system, 5S RNA promoters resemble tRNA promoters in size, and also in the way they direct transcription complex assembly. In both cases, no single factor fraction forms a complex with the gene that can be detected in template commitment assays. This includes the fraction containing silkworm TFIIB. Our gel mobility shift and footprint results show that, although silkworm TFIIIA alone can bind a 5S RNA gene, the resulting interaction is either not stable enough, or does not proceed to a sufficient extent, to commit the template to transcriptional activity. Our results are similar to those in a yeast system, where template commitment assays revealed only a slight bias due to TFIIIA alone (43). Thus, the ability to bind template independently is not equivalent to the capacity to form stable or metastable complexes with the template. This behavior is shared with at least one other class III transcription factor fraction. Specifically, gel filtration experiments indicate that Xenopus TFIIC alone can associate with a 5S gene (44), and footprints show that human TFIIC alone binds a human 5S RNA gene (45,46), but in both of these systems, TFIIC fails to commit templates in the absence of TFIIIA.

In our experiments, TFIIIA is necessary, but not sufficient, for template commitment. What do the additional required components provide? Our data cannot distinguish between thermodynamic and kinetic roles, but they do indicate that the effect of the other components is roughly additive. The degree of template commitment increases as the number of factor fractions increases. A straightforward interpretation of the data is that different template commitment values correspond to the number of specific protein–DNA contacts that are possible with various...
combinations of fractions. We expect that the final, active transcription complex makes numerous contacts across a large area of DNA within and around the silkworm 5S gene. The similarity of the silkworm tRNA and 5S RNA promoter profiles, as delineated by mutagenesis, suggests that the 5S RNA transcription complex may resemble the complex described for a silkworm tRNA gene. DNase I footprinting (47) shows that a complex involving only fractions TFIIIC and TFIIID extends from -1 to +136 on a silkworm tRNA gene. The silkworm 5S RNA transcription complex may also resemble the complex described for a Xenopus oocyte 5S RNA gene (20).

The lack of template commitment by TFIIIA alone suggests a way of thinking about 5S RNA transcription complex assembly that has interesting regulatory implications. In the traditional model of linear assembly, TFIIIA binding is the critical determinant of ultimate transcriptional activation. In contrast, our results suggest that since 5S RNA transcription complexes can form in more than one way, and since a combination of transcription factors nucleates binding, variation in the concentration of any of several different factors has the potential to control 5S RNA transcription complex assembly. This possibility is supported by the observation that in vitro transcription of Xenopus oocyte 5S RNA genes is sensitive to changes in the concentration of TFIIIC, as well as TFIIIA (48,49), and that oocyte 5S RNA genes have a lower affinity for TFIIIA than do their somatic counterparts (50).

ACKNOWLEDGEMENTS

We are grateful to David Setzer and Sam Del Rio for providing advice and purified Xenopus TFIIIA, and to reviewers for improving the manuscript. This work was supported by an NIH Research Grant GM25388 to KUS, an NTH Research Grant GM25388 to KUS, an NIH Research Grant GM32851 to KUS and LSY, and an NIH Genetics Training Grant GM 07413 to TPLS.

REFERENCES