






dated-rock unit is the Late Proterozoic to Lower Cambrian, pre-
dominantly siliciclastic sedimentary rocks that are generally very
low permeability except where strongly fractured (Winograd and
Thordarson, 1975; Belcher et al., 2004). The approximately 4-km
thick section of Lower Cambrian to Mississippian predominantly
carbonate rocks, with relatively minor interbedded shale and sand-
stone formations, is considered to be the major consolidated-rock
aquifer (Winograd and Thordarson, 1975; Belcher et al., 2004).
The deeper parts of the Cenozoic basin fill, the Artist Drive and
Furnace Creek Formations, are heterogeneous, but are generally

of low permeability as a result of structural disruption of the few
thin permeable beds and the abundance of fine-grained sedimen-
tary rock and presence of volcanic ash (Fig. 3). The deeper Cenozoic
section as a whole can therefore be generally treated as a confining
unit. The poorly consolidated alluvium that forms the uppermost
part of the Cenozoic section can be an excellent aquifer, both in
the Furnace Creek basin where the Furnace Creek springs are seen
to discharge from the Funeral Formation, and in the Amargosa
Desert, where it is the major water producer in the Amargosa
Farms area.
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Fig. 1. Geographic and physiographic features of vicinity of Furnace Creek, Death Valley, and the southern Funeral Mountains, California.
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Conceptual model of regional interbasin flow

Interbasin flow in the Great Basin was suggested almost
100 years ago by Mendenhall (1909). Since then, studies of interba-
sin flow in the Great Basin have progressed as investigators have
studied specific cases of interbasin flow based on site and regional
data. Carpenter (1915) was among early investigators who thought
the Paleozoic rocks enclosing the basins were impermeable, but
was later convinced of interbasin flow by his study of closed basins
that receive recharge in the bounding ranges but have no discharge
within the basin.

Maxey and Eakin (1949) proposed an empirical method for
evaluating the water budgets of closed basins. The method esti-
mated recharge to the basin as a percentage of precipitation in alti-
tude classes and estimated ground-water discharge as a function of
phreatophytes and depth to ground-water. The Maxey–Eakin
method was useful in the early delineation of regional ground-
water flow, which required balancing recharge and discharge,
requiring the presence of interbasin flow where the two were
not equal. The method was used over the next several decades to
quantify water budgets for basins in Nevada and Utah.

Regional ground-water flow systems composed of many basins
were first recognized and defined in the carbonate-rock province of
the Great Basin. Winograd (1963) inferred interbasin flow through
the Paleozoic carbonate rocks using a potentiometric map that in-
cluded the Ash Meadows area. Eakin (1966) used water budgets of
several basins in southeastern Nevada to hypothesize an interbasin
flow system designated as the White River system. Estimates of re-
charge and discharge for each basin were used to derive the
amount of ground-water flow that was contributed to the down-

gradient basins. The direction of the regional hydraulic gradient
was recognized from the altitude of shallow water levels in adja-
cent basins (Eakin, 1966).

Harrill et al. (1988) used topographic and shallow water-level
differences between basins to define the regional ground-water
potential and direction of interbasin flow in the Great Basin. Other
early studies that contributed to the understanding of interbasin
ground-water flow include Eakin and Winograd (1965), Eakin
and Moore (1964), Mifflin (1968), and Mifflin and Hess (1969).

Major hydrogeologic investigations were conducted at the Ne-
vada Test Site (NTS) in Nye County, Nevada beginning in the
1960’s. These studies included drilling, hydraulic testing, and
hydrogeochemical and isotopic studies in conjunction with de-
tailed geologic mapping and supporting geophysical surveys. Data
from these detailed studies enabled Winograd and Thordarson
(1975) to present a compelling view of interbasin flow based on
continuity of the potentiometric surface from basin to basin, signif-
icant permeability and in rock sequences separating the basins,
and similarity of hydrogeochemical and isotopic ground-water
characteristics. Winograd and Thordarson (1975) were able to
show that interbasin flow occurred through the carbonate-rock
ridges that separate Yucca Flat, Frenchman Flat, Mercury Valley,
and Ash Meadows in the NTS region (Fig. 1). Winograd and Thord-
arson (1975) were also able to identify rock sequences of low per-
meability and areas of restricted interbasin flow in the NTS region.

This geologic and hydrologic work in the Great Basin region
over several decades led to the conclusion that ground-water flow
is composed of an interconnected, complex ground-water flow sys-
tem. Several ground-water flow models have been constructed by
various workers using this conceptual model of interbasin flow;

Fig. 2. Generalized geology for the study area with regional potentiometric contours. (See above-mentioned references for further information.)
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Belcher et al. (2004) present a review of ground-water modeling in
the Death Valley region. Most recently, regional ground-water flow
in the Death Valley regional ground-water flow system (DVRFS)
has been simulated by Belcher (2004). As a part of this work, the
potential on the regional ground-water flow system (Fig. 2) was
mapped (Bedinger and Harrill, 2004), and used to define the
boundary conditions of the DVRFS. Nelson et al. (2004, p. 349) pos-
tulate that ground-water flow models that incorporate the interba-
sin flow conceptual model may be incorrect or incompletely
conceptualized. However, the interdisciplinary nature of these
modeling activities and their successful integration of geologic,
hydrologic, and geochemical data, lends credibility to the interba-
sin flow concept because of their explanatory power.

A number of studies have provided values for components of the
ground-water mass balance of the basins in the Death Valley region
and quantitatively define the interbasin flows (Belcher, 2004;
Bedinger and Harrill, 2007). Pistrang and Kunkel (1964) are among
the few early investigators that expressed the view that the source
of the Furnace Creek springs is derived from local recharge.

Interbasin flow and the Furnace Creek springs

The Furnace Creek springs in Death Valley, California are an
example of large volume springs that are widely accepted as being
the discharge points of regional interbasin flow. The flow path has

been interpreted historically to be through consolidated Paleozoic
carbonate rocks in the southern Funeral Mountains. Such a concep-
tualization is supported by a variety of geologic, hydrologic, and
geochemical evidence.

Geologic factors affecting flow at the Funeral Mountains

Detailed hydrogeologic mapping of the southern Funeral Moun-
tains (Fridrich et al., 2003a,b,c) and the adjacent Furnace Creek ba-
sin (McAllister, 1971; Greene, 1997) establishes the hydrogeologic
environment permissive of the ground-water flow through the
Paleozoic carbonate rocks of the Funeral Mountains and north-
westward movement of the ground-water along carbonate rocks
in the Furnace Creek fault zone. Mapping of the southeastern Fun-
eral Mountains by McAllister (1971) and Fridrich et al. (2003b) has
shown that many major faults and much of the bedding within this
range (Fig. 3) are oriented parallel to the presumed direction of
ground-water flow, much as Winograd and Thordarson (1975)
showed for basins in the NTS region. Brittle deformation formed
a network of closely spaced secondary faults that transect bedding
and strike in every direction, creating a fault-fracture mesh that is
well connected (Fridrich et al., 2003a). The few siliciclastic and
shale interbeds that are present within the Paleozoic carbonate
rocks are cut by numerous faults with offsets that exceed the thick-
nesses of these interbeds. The dismemberment of these units cre-
ates insufficient continuity in the siliciclastic rocks to effectively

Fig. 3. Geologic map and generalized stratigraphic column of the Furnace Creek basin.

34 W.R. Belcher et al. / Journal of Hydrology 369 (2009) 30–43



block or interrupt ground-water flow through the carbonate-rock
aquifer (Bredehoeft et al., 2005a, p. 6).

Carr (1988) emphasized the importance of regional tectonic
extension to ground-water flow which has produced northeast-
striking open faults within the Paleozoic carbonate rocks. For
example, Devils Hole, a fissure with passageways up to 2 m wide
extending to a depth of at least 130 m below the water table,
developed entirely along a single northeast-striking fault plane,
despite the fact that it cuts joints, bedding planes and older north-
west-striking faults (Riggs et al., 1994). The existence of Devils
Hole demonstrates that fractures and faults in this region of exten-
sion can be, and are, important conduits for ground-water rather
than barriers as implied by Anderson et al. (2006).

Faunt (1997) further indicates that faulting in the Death Valley
region can both enhance and restrict the movement of ground-
water. By comparing the crustal stress field with fault trace orien-
tation, potential effects on the ground-water flow were analyzed.
Faunt (1997) indicates that northeast-striking faults in relative
tension provided the opportunity for being conduits, while north-
west-striking faults in relative compression or shear were more
likely to be ground-water barriers.

The common assumption of many investigators that the silici-
clastic rocks in the Death Valley region and specifically in the
southern Funeral Mountains always act as confining units of very
low permeability is incorrect and can be counterproductive to a
complete understanding the flow system. Deep burial of the silici-
clastic rocks of the Death Valley region cause them to lose most, if
not all, original interstitial porosity through metamorphism. How-
ever, Bedinger and Harrill (2007) have pointed out that pervasive
fracture-faulting may provide secondary permeability in these
brittle rocks where not deeply buried, as in the southern Funeral
Mountains. Belcher et al. (2001) report a transmissivity of the
Stirling Quartzite of 300 m2/day from a well test in the southern
Funeral Mountains. This is the greatest known estimate of trans-
missivity for the siliciclastic rocks in the Death Valley region, but
even with smaller transmissivity, significant flow would be possi-
ble through both the carbonate and the siliciclastic rocks of the
southern Funeral Mountains.

Hydraulic evidence of flow at the Funeral Mountains

The Death Valley region provides an important example of the
influence of consolidated-rock permeability on regional heads
and flow paths (Fig. 2). Exposures of relatively low permeability
Proterozoic metamorphic and siliciclastic rocks in the Funeral
Mountains are associated with a steep hydraulic gradient along
the east side of Death Valley (D’Agnese et al., 1997; Bedinger and
Harrill, 2004). In addition to low-permeability rocks, steep gradi-
ents are produced through the carbonate rocks in the Funeral
Mountains as a result of the topographic relief of Death Valley
(Bredehoeft et al., 1982; Bedinger and Harrill, 2004). Large volume
springs are present in Death Valley only adjacent to the northern
part of the Grapevine Mountains and the southern part of the Fun-
eral Mountains (Steinkampf and Werrell, 2001), where relatively
permeable Paleozoic carbonate rocks allow ground-water flow;
no large volume springs are present where the low-permeability
consolidated-rock units are exposed (Fig. 2). Grapevine, Staininger
and Surprise Springs appear to result from interbasin flow to Death
Valley though carbonate rocks of the Grapevine Mountains (Fig. 2).
The springs at both Ash Meadows and Furnace Creek are spatially
located near outcrops of Paleozoic carbonate rock (Fig. 2).

Bredehoeft et al. (2005b) and Bedinger and Harrill (2006) assim-
ilate information from historic and recent studies (including Frid-
rich et al., 2003a,b,c) to describe and illustrate the geologic and
hydrologic conditions of spring occurrence at Furnace Creek. The
route of the ground-water to the springs is through the carbonate

rocks in the southeast part of the Funeral Mountains, and then con-
veyed in the Furnace Creek fault zone or in adjacent carbonate rocks
to Nevares Spring and to permeable gravel in the upper part of the
Funeral Formation. The upper gravels are underlain by fine-grained
playa deposits revealed by geophysical surveys and test holes
(Machette et al., 2000; Bredehoeft et al., 2005a). Flow to Travertine
and Texas Springs (Fig. 2) is ultimately through the upper gravel
beds of the Funeral Formation, discharging where the formation is
terminated by erosion. Flow to Nevares Spring is in the Bonanza
King Formation (part of the regional carbonate aquifer), flowing
northeast parallel to the strike of the Furnace Creek fault zone to
the spring outlet where the formation is terminated by faulting.

Geochemical controls on ground-water flow to Furnace Creek springs

Water discharging at Furnace Creek springs chemically and
isotopically resembles water discharging from springs at Ash
Meadows (Steinkampf and Werrell, 2001). Anderson et al. (2006)
attempt to refute this by stating (p. 283) that ‘‘. . .solute analyses
and chemical modeling for waters from the basin-fill aquifers in
the Amargosa Desert indicate flow toward Franklin Lake playa,
not west toward Furnace Creek”. Their argument does not address
the concept of flow of ground-water from Ash Meadows through
the carbonate-rock aquifer beneath the basin-fill deposits of the
Amargosa Desert. Franklin Lake Playa (Figs. 1 and 2) is an interme-
diate area of discharge in the southern Amargosa Desert and flow
toward Franklin Lake Playa does not preclude other flow paths to
Furnace Creek springs. Additionally, they do not identify the waters
used to represent the basin-fill deposits in the Amargosa Desert for
solute analysis and chemical modeling, despite pronounced spatial
differences in water chemistry throughout the basin.

Winograd and Thordarson (1975) suggested that the source of
water discharging from springs in the Furnace Creek area may be
a mixture of water from Oasis Valley and Ash Meadows. They
noted that the chemical quality of water in the basin-fill deposits
varied greatly from place to place within the central Amargosa
Desert. Water in the area west of the Ash Meadows spring line
(Fig. 1) was of a calcium magnesium, sodium bicarbonate facies.
Water from the west-central and northwestern parts of the Amarg-
osa Desert resembled the sodium sulfate bicarbonate water dis-
charging at the Furnace Creek springs. Water of mixed character
from shallow wells in the Death Valley Junction area was described
as a playa facies, which was limited to wet playas and shallow
wells in areas of ground-water discharge. Winograd and Thordar-
son (1975) conclude that water enters the Amargosa Desert from
the east across the spring line in Ash Meadows, from the north in
the Jackass Flats area, and from the northwest in the Oasis Valley
area. As a result, ground-water in the central Amargosa Desert is
probably derived from at least three different sources and exhibits
different chemical qualities dependent on location in the basin.

The unique behavior of the rare earth elements (REE) makes
them suitable as tracers of geochemical processes. Studies have
shown that ground-water and some surface waters can inherit
their REE signatures from the rock through which the water has
flowed (Smedley, 1991; Fee et al., 1992). Johannesson et al.
(1997) used REE signatures to evaluate ground-water flow-paths
and mixing in the carbonate aquifer of southern Nevada. Johannes-
son et al. (1997) point out that the water discharging at Furnace
Creek and Ash Meadows springs have similar REE signatures,
whereas water from wells in the Amargosa Desert basin-fill aquifer
is quite different. Johannesson et al. (1997) conclude that, based on
REE data, the primary component of water discharging at Furnace
Creek springs appears to be through-flow Ash Meadows ground-
water, which may or may not contain a smaller component of
shallow basin-fill ground-water from the Amargosa Desert. This
work supports the theory of ground-water flow through the frac-
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tured carbonate rocks beneath Ash Meadows and the southern
Funeral Mountains.

Evaluating the source of waters for the Furnace Creek Springs

In contrast to the generally accepted interbasin hydrologic
regimen, Nelson et al. (2004) and Anderson et al. (2006, pp. 285,
286 and their Figs. 5–7) propose that the source of the springs is
derived from an aquifer in the Furnace Creek drainage basin. They
suggest that the current discharge is from ground-water recharged
during the recent pluvial (13,000 years b.p.) augmented by a small,
but unspecified, percentage of modern recharge. They propose that
ground-water is transmitted to the Furnace Creek springs in sand
and gravel units of the Furnace Creek and Funeral Formations.
The sand and gravel beds are interbedded with beds of fine-grained
sediments, evaporite beds and volcanic deposits that would act as
‘‘. . .confining units. . .” and ‘‘. . .probably restrict upward leakage
from depth, thereby limiting the rate at which the system drains
via spring discharge” (Anderson et al., 2006, p. 185). They further
suggest that the sodium bicarbonate dominance of the Furnace
Creek waters indicate a local water source from basin-fill deposits.
The great thickness of the basin-fill deposits is also postulated to
be sufficient to explain the temperatures of the discharge waters,
allowing for deep flow of locally recharged waters. Spring hydro-
graphs, according to Anderson et al. (2006) indicates fluctuations
corresponding to modern climate states. They further assert that
the catchment basin of the Furnace Creek springs could support
these large-flow springs. Both articles also state that the
hydrogeology of the southern Funeral Mountains and the Amarg-
osa Desert do not support interbasin flow through a fractured
carbonate rock system. Anderson et al. (2006) suggest that, while
the potential measurements and chemical mass balance models
can support an interbasin flow interpretation, other geochemical
indicators do not. According to Anderson et al. (2006) carbon
isotope data preclude flow paths from Ash Meadows to Furnace
Creek, as do strontium and uranium isotopes.

In evaluating the relative contributions of interbasin flow and
local recharge to the Furnace Creek springs, we separate our
discussion below into hydrologic and geochemical arguments.
Hydrologic considerations include the hydraulics, permeability,
and storage of aquifers within the Furnace Creek basin, the temper-
ature of the Furnace Creek springs and resulting requirements for
depth of circulation, the implications of constancy of spring
discharge, and the quantity of modern recharge available in this
extremely arid watershed to provide springs with a local source
of water. Geochemical arguments include the implications of the
low sulfate content of the spring waters, interpretation of stable
isotope data relative to modern recharge, and evaluation of mass
balance modeling studies to evaluate flow paths.

Hydrologic considerations

Aquifer permeability and depth of circulation
Geologic information indicates the absence of water-bearing

strata in the Furnace Creek Formation of sufficient permeability
and continuity to provide the flow to the Furnace Creek springs.
Geophysical and geologic information provide no indication of a
continuous or interconnected system of permeable beds in the Fur-
nace Creek basin that would convey significant quantities of
ground-water. Fridrich et al. (2003a) describe the basin-fill depos-
its of the Furnace Creek basin as generally of low permeability, but
locally with some thin, highly permeable beds that can only be
traced over short distances. They conclude that the permeable beds
probably lack sufficient continuity to have a significant impact on
regional ground-water flow (Fridrich et al., 2003a; Bredehoeft

et al., 2005a). Hunt et al. (1966) describe the Furnace Creek Forma-
tion as containing playa deposits and indicate that the low-perme-
ability beds of the Furnace Creek Formation are uplifted in the floor
of Death Valley north of Cottonball Basin, resulting in emergence of
springs up gradient of these basin-fill deposits, implying generally
low permeability in these rocks. On the basis of single-well aquifer
tests, the hydraulic conductivity of the basin-fill deposits of the
Furnace Creek basin range from 0.01 to 0.4 m/day, roughly an order
of magnitude less than that of unconsolidated alluvial aquifers or
fractured carbonate-rock aquifers (Belcher et al., 2001).

The maximum temperature of ground-water in transit to the
Furnace Creek springs requires circulation to a depth of about
1300 m beneath and near the mouth of Furnace Creek, based on
silica geothermometer calculations. According to Hunt et al.
(1966, p. B45), the temperature of the spring discharge in the
Furnace Creek area is approximately 35 �C. The maximum
temperature of the ground-water in transit to the spring outlets
is 58 �C, calculated on the basis of silica geothermometers by
Anderson (2002, their Table 7, mean of six calculations). Pluvial re-
charge occurred in the higher parts of the basin, as does modern re-
charge. Inferring from the modern relation of altitude to recharge
and assuming the average altitude of recharge to be 1220 m in
the Furnace Creek basin, the average temperature of the recharge
water should be 14.6 �C (Rowlands, 1993). Disregarding that the
temperature of the water recharged during the pluvial was proba-
bly less than present, the water recharging Anderson et al.’s (2006)
conceptual aquifer would need to undergo an increase in temper-
ature of about 43 �C. Geothermal gradients in the Death Valley re-
gion of about 33 �C/km are reported by Mase et al. (1979) and
Steinkampf and Werrell (2001). This geothermal gradient would
require the ground-water to circulate to an average depth of
1300 m. Geophysical studies of Blakely and Ponce (2001) and Bred-
ehoeft et al. (2005a) indicate that this depth is known to be present
in a limited area of the Cenozoic deposits near the mouth of the
Furnace Creek drainage. Given the geophysical estimate of maxi-
mum depth of Cenozoic deposits and the calculated maximum
temperature of the ground-water supplying the springs, it is ques-
tionable that the Cenozoic deposits could yield the spring flow
with the observed geothermal characteristics. Another implication
of the depth of ground-water circulation is the requirement for a
mechanism to bring the ground-water to the surface from this
great depth.

Spring conduits and head necessary to support spring flows
Based on the geology of the Furnace Creek basin, there is no evi-

dence of a natural conduit through confining beds, nor sufficient
hydraulic head to bring ground-water from a depth of 1300 m to
the Furnace Creek springs. The configuration of the Furnace Creek
flow system as proposed by Nelson et al. (2004) and Anderson et al.
(2006) does not explain why the Furnace Creek springs occur in
their topographic and geologic location. The confining units in
the section would not simply ‘‘restrict upward leakage” (Anderson
et al. 2006, p. 285), but would effectively prevent spring discharge
because of their extremely low hydraulic conductivities and low
hydraulic gradient from depth in the aquifer to above the spring
outlets. In addition, such a discharge mechanism, were it to occur,
would require a barrier or termination of the basin-fill aquifer to
prevent the ground-water from discharging farther down valley
on the floor of Death Valley at lower elevation that the spring out-
lets and along paths of less resistance to flow. Also, if the ground-
water emerged by upward cross bed leakage, the discharge would
occur at the lowest surface elevation, which would be along the
channel of Furnace Creek at lower elevation than the springs. The
emergence of the springs from their proposed basin-fill aquifer
would require a permeable conduit through the confining units
to bring ground-water from a depth of approximately 1300 m,
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based on the temperature of the emerging waters. Neither detailed
geologic mapping nor geophysical studies in the Furnace Creek
springs area have detected pathways in the subsurface that would
convey ground-water from great depth in the Furnace Creek For-
mation (McAllister, 1970; Blakely and Ponce, 2001; Bredehoeft
et al., 2005a).

Aquifer hydraulics and storage considerations
The pluvial ground-water storage in the ground-water basin

proposed by Anderson et al. (2006) would not sustain the pres-
ent-day flow of the Furnace Creek springs. The hydraulics and
storage capability of the Furnace Creek basin to provide the flow
of the springs from ground-water storage derived from the re-
cent pluvial, 13,000 years b.p. was evaluated in the context of
the flow system proposed by Nelson et al. (2004) and Anderson
et al. (2006). The characteristics of the Furnace Creek basin and
aquifer proposed by Nelson et al. (2004) and Anderson et al.
(2006) are given in Table 1. The ground-water storage in the flow
system available for flow to the springs was calculated from
dimensions and properties given by Anderson et al. (2006) in Ta-
ble 1. Nelson et al. (2004) and Anderson et al. (2006) describe a
confined aquifer, but specify a specific yield of 0.25, a value char-
acteristic of an unconfined aquifer. The drainable storage would
be the volume of the aquifer above the spring outlets to the level
of the potentiometric surface, given as 500 m (Table 1). We
calculate a lesser volume because: (1) the Cenozoic deposits do
not underlie about 40% of the Furnace Creek basin and (2) an
aquifer in the Cenozoic deposits would be confined. The head
in the proposed aquifer would be above the land surface near
the springs and for a distance up gradient from the springs. A
confined coefficient of storage would apply near the springs.
Over the long term slow drainage as the potentiometric surface
is lowered would contribute to the spring flow but over the long
term the storage coefficient would be less than the proposed
specific yield of 0.25.

Spring discharge at the end of the pluvial, 13,000 years b.p.,
would initially be large and decline with time during the simula-
tion as the storage in the system was depleted. Based on the poten-
tial range of transmissivity of the aquifer, as discussed under
permeability, below, we conclude the aquifer is not permeable en-
ough to support the present-day flow of the springs. However,
assuming as proposed, that the initial spring flow were
5 � 106 m3/year, the storage is as great as proposed, and that flow

rate could be maintained, the aquifer would be completely emp-
tied in 12,800 years.

Estimating the quantity of modern recharge
Modern recharge is not sufficient to provide the flow of the Fur-

nace Creek springs. Anderson et al. (2006, their Table 3, p. 289)
estimate the catchment basin of Furnace Creek to be approxi-
mately 513 km2. Anderson et al. (2006) believe that enough water
was recharged in this relatively small catchment basin during the
Pleistocene to provide the current discharge rate of 5000,000 m3/
year (9500 L/min) to the Furnace Creek springs. By this logic,
springs contained in larger catchment basins should have had even
greater amounts of water recharged during the Pleistocene, result-
ing in greater present-day discharges. Ash Meadows is about
50 km east of Furnace Creek, so it should experience about the
same climatic and recharge conditions through time. Springs in
Ash Meadows currently discharge about 21,000,000 m3/year
(Winograd and Thordarson, 1975) and lie in a catchment basin
with an area of 11,700 km2. The current discharge of Ash Meadows
springs is about 4 times greater than that in Furnace Creek springs,
yet it lies within a catchment basin over 20 times as large. If spring
discharge at Ash Meadows, like that at the Furnace Creek springs, is
mostly from local recharge, why is not greater discharge seen at
the springs of Ash Meadows?

Anderson et al. (2006, p. 298) assert that the discharge rates of
mountain springs can be used as surrogates of modern local re-
charge. By using a water balance approach, the estimate the
amount of recharge that supports the mountain springs. This re-
charge estimate is then applied over the entire basin to indicate
that the ‘‘current climate is producing at least 20% and up to
300% of the recharge required to sustain flows at Furnace Creek”
(Anderson et al., 2006, p. 298). Applying a single recharge rate
for high-elevation mountain springs over the entire basin is not a
valid approach and could overestimate the amount of recharge
available to the Furnace Creek springs. Precipitation, the source
of recharge to ground-water in the Great Basin, increases with alti-
tude, whereas the potential evapotranspiration concomitantly de-
creases. This inverse relation is the basis for an empirical relation
where no precipitation becomes recharge at altitudes below
1500 m and the potential for recharge increases rapidly at higher
altitudes (Maxey and Eakin, 1949). It should be noted that the
Maxey and Eakin (1949) relationship is valid only for current
climatic conditions, not pluvial conditions. The total extent of area

Table 1
Hydrologic characteristics of the Furnace Creek Basin from Nelson et al. (2004), Anderson (2002), and Anderson et al. (2006).

Characteristic Valuea Comment

Area 513 km2 Area of the surface outcrop of the Cenozoic rocks composing the
Nelson–Anderson aquifer is less than total basin area

Transmissivity Not given
Storage coefficient 0.25 The specific yield would be an unconfined aquifer, however, system

as described by Anderson et al. (2006) would be confined. The
storage coefficient for a confined aquifer system would be in the
order of 0.001or less.

Spring discharge rate 9.5 m3/min or 5 � 106 m3/year
Average height of ground-water level

above spring outlets
500 m

Drainable volume of ground-water above
spring outlets

6.4 � 1010 m3 calculated based on basin area, specific
yield and height of water level above springs as
specified by Anderson et al. (2006)

The storage above the spring outlets available for spring flow because
of the smaller area of Cenozoic deposits in the basin and the smaller
effective storage coefficient of the deposits

Average maximum temperature of
ground-water

58 �C from silica geothermometer data in Anderson
(2002)

Depth of ground-water circulation in
route to springs

Not given About 1300 m required to heat ground-water to maximum
temperature, 58 �C.

Path of ground-water from depth to spring
outlets

Vertical leakage across confining beds Springs would emerge from permeable pathways, see discussion in
text.

a Values are from Nelson et al. (2004), Anderson (2002) and Anderson et al. (2006).
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of Furnace Creek basin that lies above 1500 m and has the potential
for significant recharge is about 44 km2 or less than 10% of the
basin. Contrary to Anderson et al.’s (2006) interpretations of
published recharge estimates, present-day recharge rates are
inadequate to supply the present-day discharge of Furnace Creek
springs.

Relation between precipitation and spring discharge
Monthly mean spring discharge at Travertine and Texas Springs

and monthly precipitation recorded at the station in Death Valley
were evaluated to identify possible correlation (Fig. 4). Precipita-
tion data from the National Climate Data Center (NCDC, 2007)
weather station located in Death Valley, California were evaluated
for the period from 1990 through 2005. Mean annual precipitation
for the period 1990–2005 was 6.9 cm per year, with great variabil-
ity from year to year. The driest year during this period was 1994,
and the wettest year was 2005. Periods of two or more years of
greater than average precipitation occurred in 1992–1993, 1997–
1998, and 2003–2005. Monthly discharges from Travertine and
Texas Springs exhibit no apparent trend and varied less than 10
percent of the mean between 1990 and 2006 (Fig. 4). Similar re-
cords in Pistrang and Kunkel (1964) illustrate the extended periods
of relatively constant discharge from the springs at Furnace Creek.
In sum, no apparent correlation was observed between monthly
precipitation and spring discharge.

A sharp peak in discharge occurs at Nevares Spring on the day of
the Landers earthquake in 1992, and a second sharp peak occurs on
the day of the Hector Mine earthquake in 1999 (Fig. 4). Anderson
et al. (2006) attribute these sharp peaks to the relatively wet per-
iod of 1992–1993 and 1998 based on the Palmer drought severity
index for southern Nevada (Fig. 4). However, significantly more
amounts of precipitation fell during the period 2003–2005, with
a mostly negative Palmer drought severity index for the same time,
yet no increase in discharge was observed (Fig. 4). Similarly, all
three springs experienced an increase in discharge corresponding
to the time of the earthquakes. Similar increases in water levels
that correspond to the Landers and Hector Mine earthquakes are
evident in wells up gradient of the Furnace Creek springs in the
Amargosa Desert (Fenelon and Moreo, 2002).

An increase in post-seismic ground-water discharge through a
spring may be caused by an increase in fracture conductance
(Muir-Wood and King, 1993), or an increase in the subsurface fluid
pressure or permeability in the formation (Rojstaczer and Wolf,
1992; Roeloffs et al., 1995). The response of a spring to an earth-
quake is based on aquifer properties and the physical setting of
the spring. Nevares Spring, which exhibited the sharpest signals,
emerges from a travertine mound about 30 m from an outcrop of
Bonanza King Formation. Texas Spring, which exhibited the most
attenuated signal, emerges from Quaternary gravels underlain at
shallow depth by lacustrine deposits.

Geochemical considerations

Sulfate content of Furnace Creek springs
Ground-water in the Furnace Creek Formation typically con-

tains significant sulfate, which would be a prominent anion in
the waters of the Furnace Creek springs (Texas, Travertine, and
Nevares) if the Furnace Creek Formation was their source. McAllis-
ter (1970, map sheet) reports prominent gypsum units and com-
mon gypsiferous beds and anhydrite deposits in the sedimentary
sequences of the Furnace Creek Formation. The formation also con-
tains principal deposits of borate and beds of other evaporites,
including marl and limestone. Chemical analysis of ground-water
collected from a mine shaft in the Furnace Creek Formation (T.26
N., R. 2E, sec. 5) shows the ground-water to contain 2900 mg/L of
sulfate (Miller, 1977, his Table 3). Likewise, the chemical contents

of ground-water that is in contact with the Funeral Formation issu-
ing from McLean Spring and a series of springs (informally named
the Salt Creek springs) in the Salt Creek Hills north of Cottonball
Basin, exhibit high sulfate content (Miller, 1977; Hunt et al.,
1966. In contrast, the waters discharging at the Furnace Creek
springs contain only moderate concentrations of sulfate (Steink-
ampf and Werrell, 2001). Ground-water from an aquifer in the Fur-
nace Creek Formation would be high in sulfate content, a condition
not reflected in the chemical composition of the Furnace Creek
springs, suggesting the waters did not emanate from, or travel long
distances through this formation. According to McAllister (1970),
Texas, Travertine, and Nevares Springs, as well as Navel Spring,
all issue from the Funeral Formation.

Interpretation of stable isotope in the Furnace Creek springs
Nelson et al. (2004), citing Anderson (2002), indicate that

18O/16O and 2H/1H ratios (hereafter d18O and dD) of mountain
spring discharge in the Funeral and Black Mountains are more
positive than the values in the discharge of Nevares, Texas, and
Travertine Springs. Nelson et al. (2004) note that the d18O and dD
of the Furnace Creek springs (�13.3 and �101.9, respectively) are
similar isotopically to groundwaters in areas ‘‘up gradient,” (out-
side of Death Valley). Rather than conclude that the source of the
springs is outside the topographic basin, as indicated by their
similar isotopic composition to up gradient ground-water, they
argue instead that the waters discharging from the Furnace Creek
springs were recharged during the late Pleistocene, a time when
the isotopic composition of precipitation was lower (more nega-
tive) than today.

Winograd et al. (2005) point out that 7 of the 10 carbon-14 ages
presented by Anderson (2002, her Table 8) for waters discharging
from Nevares, Texas, and Travertine Springs indicate Holocene ages
(the range of these numbers is 5000–14,500 years with a median of
11000 years). The remaining ages could reflect waters recharged
during Holocene climatic conditions. Climatic studies of ice core
in Greenland (North Greenland Ice Core Project Members, 2004)
and Antarctica (Petit et al., 1999) and paleoclimate records from
spring deposits in the southern Great Basin (Winograd et al.,
2006; Thomas, 1996; Morse, 2002) indicate that Holocene climatic
conditions existed during earlier times in some areas of the DVRFS.
Winograd et al. (2006) indicate that several independent lines of
evidence indicate that the Furnace Creek spring waters are of Holo-
cene age (or the result of Holocene climatic conditions) and hence
their d18O and dD content can only be explained by interbasin flow
of ground-water into Death Valley.

Isotopic values (d18O and dD) at Furnace Creek springs, and also
at springs located at the base of the Grapevine Mountains, are sig-
nificantly more depleted than local precipitation (Anderson et al.,
2006). dD values range from about �102 to �101 per mil at the
Furnace Creek springs, and from about �111 to �110 per mil at
springs in the Grapevine Springs area. In contrast, dD values in lo-
cal precipitation, collected in the mid-1980’s at the station referred
to as Andy, ranged from about �116 to �15.5 per mil (Milne et al.,
1987). The cumulative dD for the period between 1991 and 1997
was �75 per mil for the station at Death Valley (Friedman et al.,
2002).

Anderson et al. (2006, p. 287) state that the Furnace Creek
springs respond to modern climate in terms of discharge rate
and minor fluctuations in isotopic composition. Anderson et al.
(2006, p. 287) discuss monthly stable isotope data collected from
Texas, Travertine, Nevares, Staininger, and Surprise Springs and
suggest correlation between Texas and Nevares Springs, Staininger
and Surprise Springs, and Nevares and Staininger Springs. The
depletion of these isotopic components indicates, to Anderson
et al. (2006), that some of the water discharging at the Furnace
Creek springs is from modern recharge.
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Anderson et al. (2006, p. 287) state that ‘‘Texas and Nevares
Springs track each other most closely” and both became isotopically
depleted in September 2000 and then again in March 2001. Be-

tween early and late September, depletion in dD at the two springs
ranged from 0.11 per mil at Texas Spring to 0.23 per mil at Nevares
Spring. The only rainfall recorded during this period at the NCDC
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station in Death Valley was about 0.6 cm at the end of August. As
indicated by Anderson et al. (2006), mountain springs, which are
indicative of local recharge and local climatic conditions, are signif-
icantly more enriched than Nevares, Texas, Travertine, or Staininger
Springs. If local precipitation affected spring discharge, isotopic val-
ues should become more enriched following precipitation events,
not more depleted. Therefore, local recharge cannot cause relatively
depleted spring discharge to become even more depleted and local
precipitation is not likely to be the cause of the small fluctuation in
isotopic values in September 2000 or March 2001.

Isotopic variations of 0.2 per mil for d18O and 1.2 per mil for dD
of the time-series data (Anderson et al., 2006, their Fig. 10) are very
near the analytical precision of 0.05–0.2 and 0.2–1.0 per mil for
d18O and dD, respectively (Kendall and McDonnell, 1998), raising
doubts about the strength of the relationship. Anderson et al.
(2006) attempt to address this issue by stating that replicate sam-
ples were analyzed repeatedly to better infer the central tendency
of specific samples. However, repeated analysis of a sample pro-
vides a measure of the instrument precision, not the central ten-
dency of the sample. In addition, the actual values and standard
deviation of the replicate samples are not shown, only the mean
value is reported. Therefore, it is difficult to come to any conclusion
about the robustness of the time-series data. Anderson et al. (2006)
do not consider the possibility that some other sampling or labora-
tory bias, or other physically based bias was introduced to the sam-
ples. The very small change in value of dD at the three springs and
the lack of consistent response to rainfall events does not support
local recharge as a cause for the fluctuations.

d18O values from Texas and Nevares Springs are, in fact, not well
correlated. A simple comparison of whether d18O values increase or
decrease concordantly at both springs reveals that roughly half the
time the trend is in the same direction and the other half the trend
is in the opposite direction. A statistical analysis was performed to
test this observation. A correlation coefficient was computed and
confirmed that there is little or no correlation (Pearson correla-
tion = 0.044, P-Value = 0.861). In contrast, dD values from Texas
and Nevares Springs do show evidence for a statistically significant
correlation (Pearson correlation = 0.691, P-Value = 0.002). Similar
results are obtained for statistical analyses of the d18O and dD val-
ues of Nevares and Staininger Springs. Despite Anderson et al.’s
(2006) assertion that both d18O and dD values track one another
at Nevares and Staininger Springs, the statistical analysis shows
that no correlation is apparent between the d18O values, but corre-
lation is observed in the dD values.

The observation that dD is correlated between springs and d18O
is not well correlated suggests that secondary fractionation has oc-
curred. Graphical analysis of the isotopic values of the springs from
Anderson (2002) plotted with the meteoric water line (Fig. 5)
strongly suggests isotopic enrichment in spring samples due to
evaporation. Secondary fractionation during evaporation results
in enriched isotopic values that plot below the meteoric water line
(Clark and Fritz, 1997). Hershey and Mizell (1995) and Steinkampf
and Werrell (2001) both reported d18O values ranging from 0.2 to
0.6 per mil lighter than the spring data reported by Anderson
(2002).

The amount of isotopic enrichment that occurs is largely depen-
dent on humidity (or soil moisture), and in arid environments, iso-
topic enrichment due to evaporation can be significant. A line
drawn through the data on a d18O – dD plot would theoretically
intercept the meteoric water line at a point that reflects the origi-
nal isotopic composition of the water. The slope of an evaporation
line drawn with the data in Fig. 5 would be very shallow, perhaps
as low as 2.

It is important to note that the spring outlets for the Furnace
Creek springs have all been altered to some extent to provide water
supply for the park, concessioner, and Timbisha tribe at Furnace

Creek. Nevares Spring issues from several points around a traver-
tine mound overlying the Quaternary alluvium. French drains were
constructed to form a collection gallery and plumbed using polyvi-
nyl chloride pipes to carry water downslope to a concrete box
where discharge is measured. The pipeline from the collection gal-
lery to the concrete measurement box is about one mile. Travertine
Springs is actually a group of springs that discharge from Quater-
nary alluvium overlying the Funeral and Furnace Creek formations.
Four of the spring outlets in this group have been modified by
French drains and plumbed to a common discharge line that car-
ries water through a concrete trough to a measurement box. Line
1 is the longest pipeline, carrying water approximately 2800 feet
between the collection gallery and the measurement box. Texas
Springs discharge is collected by two French drains nearly 200 feet
inside an adit dug into the alluvium. Water is conveyed through a
concrete channel that runs through the adit. In 1999, a second line
was added to convey water inside the adit due to fecal coliform
contamination in the open concrete channel. The contamination,
due to recurring problems with rodents entering the adits and col-
lection boxes, point out the difficulty in obtaining a representative
sample. Researchers are currently not able to enter the Texas
Spring adit due to safety concerns, and therefore must obtain sam-
ples at the measurement box. Secondary fractionation in the sam-
ples may be the result of sampling several hundred feet from the
spring collection boxes after spring discharge has come in contact
with the atmosphere. The collection galleries, the multiple springs
and seeps that make up each spring group, and the diffuse areas of
discharge near the spring outlets represent a sampling challenge
and may result in slight differences in isotopic values reported
by different investigators.

Mass balance modeling and the evaluation of ground-water flow paths
Flow paths evaluated by Anderson (2002) and Anderson et al.

(2006) do not adequately address possible flow paths and mixing
scenarios of water between Ash Meadows and the Furnace Creek
springs. Furnace Creek waters are generally thought to be a mix-
ture of waters from the Alkali-Flat/Furnace Creek subbasin (includ-
ing Jackass Flats, Crater Flat and parts of southeastern Oasis Valley)
and the Ash Meadows subbasin of the DVRFS (Steinkampf and
Werrell, 2001). Simple mixing calculations using Amargosa Desert
wells that were completed in tuff alluvium and a spring in the Ash
Meadows area resulted in a composite water similar to Travertine
and Nevares springs (Steinkampf and Werrell, 2001). The Alkali-
Flat/Furnace Creek subbasin was not evaluated by Anderson et al.
(2006).

Anderson et al. (2006, their Fig. 13) compare the 13C/12C ratio
(hereafter d13C) and percent modern carbon-14 (pmc) in the Fur-
nace Creek and Ash Meadows spring waters and conclude that
the differences between them precludes interbasin flow from Ash
Meadows to Furnace Creek. If Nelson et al. (2004, their Fig. 3) or
Anderson et al. (2006, their Fig. 13) had shown all the published
values for these parameters rather a subset of the data (depicted
by small black squares on their Fig. 13), readers would readily
see that the d13C and pmc for the two populations overlap. It
should also be noted that pmc data Pearson and Bodden (1975)
and from Hershey and Mizell (1995) are consistently lower for
Death Valley springs (for Nevares Spring, 4.8 pmc [Pearson and
Bodden, 1975] and 3.6 pmc [Hershey and Mizell, 1995]; for Texas
Spring, 5.6 pmc [Pearson and Bodden, 1975] and 3.4 pmc [Hershey
and Mizell, 1995]) than the values from Anderson (2002, her Table
3) (for Nevares Spring, 13.6 pmc and for Texas Spring, 17.1 pmc).
These historical data indicate that there may have been a little
modern contamination in the Anderson et al. (2006) samples, or
perhaps modern contamination during laboratory processing.

Carbon isotopic data, difficult to interpret even in far less com-
plex hydrogeologic settings, do not provide convincing evidence
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for or against interbasin movement of ground-water into Furnace
Creek. The Furnace Creek springs contain d13C as positive as �3.8
per mil and pmc as low as 3.00 (Steinkampf and Werrell, 2001,
their Table 2), while Crystal Pool (the largest spring at Ash Mead-
ows with about 28 percent of the total discharge) has a pmc of
about 11 (Winograd and Pearson, 1976). Comparisons of d13C
and pmc between the two springs is problematic, given the limited
carbon isotopic data, and the well documented non-conservative
behavior of these isotopes in carbonate-rock aquifers. The best data
for making comparisons, from Pearson and Bodden (1975) show no
major difference in d13C between the major springs in the two
areas and lower pmc in some Furnace Creek spring waters than
at Crystal Pool. Pearson and Bodden’s (1975) measurements repre-
sent the only known time that major springs in both Furnace Creek
and Ash Meadows were sampled at their source, by the same
geochemists, using identical sampling procedures and reagents,
and the analyses made in the same laboratory.

Conclusions

The hydrogeologic feasibility of interbasin flow through the
Paleozoic rocks of the Funeral Mountains to the Furnace Creek
springs has been shown through detailed geologic and hydrologic
studies over several decades. Although this paper is primarily con-
cerned with demonstrating that interbasin flow occurs through the
southern Funeral Mountains to supply the Furnace Creek springs,
historic site investigations and regional studies provide evidence
that interbasin flow in the Great Basin region is the norm rather
than the exception, even though many studies find local areas
where interbasin flow is restricted by low permeability bedrock.

A local source for the Furnace Creek springs derived from Pleis-
tocene recharge to a potential aquifer of the Furnace Creek Forma-

tion as proposed by Anderson et al. (2006), is not feasible for the
following reasons: (1) the deposits proposed do not constitute a
reservoir of sufficient continuity, hydraulic conductivity, or storage
to sustain discharge from the end of the Pleistocene to the present
time, (2) the proposed potential recharge area of the springs does
not receive sufficient recharge to supply the springs, and (3) the
chemical solute and isotopic signatures of the ground-water in
the Furnace Creek Formation is not compatible with the Furnace
Creek springs.

An understanding of the magnitude of interbasin ground-water
flow and hydrogeologic processes that control the rate and direc-
tion of ground-water flow in eastern and central Nevada is a nec-
essary part of regional ground-water management and water-
resource planning in the Great Basin of Nevada. Understanding
the ground-water flow paths and travel times in the vicinity of
the proposed high-level radioactive waste repository at Yucca
Mountain, Nevada and radioactive materials at the Nevada Test
Site also depends on the conceptualization of interbasin flow.
While many imaginative scenarios can be made to obscure this
commonly-accepted interpretation, it remains that interbasin flow
is the only readily apparent explanation for the large spring dis-
charges at Furnace Creek. The principle of parsimony demands this
conclusion. Solid and overwhelming evidence, deficient in the
analysis of Nelson et al. (2004) and Anderson et al. (2006) would
be required to overturn the interbasin flow conceptual model
for ground-water flow in the Death Valley region or the Great
Basin.
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