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for Dvv_Gr1 and Dvv_Gr3 genes (Fig.  3a, b). However, 
Dvv_Gr2 was highly expressed in the head as compared 
to fat body, integument, and midgut (Fig. 3c). The higher 
expression of Dvv_Gr2 in the head may suggest localiza-
tion of the receptor to chemosensory organs associated 
with mouthparts and a specific role for this gene as a 
carbon dioxide receptor in D. v. virgifera larvae. Similar 
expression patterns from the two CO2 receptor genes 
from Drosophila where expression is localized in olfac-
tory receptor neurons of the sensilla on the antennae 
have been previously noted [13]. Similarly, all three CO2 
receptor genes in mosquitoes are expressed on the maxil-
lary palps [13, 15, 16].

Erdelyan et al. [16] reported that in Aedes aegypti and 
Culex pipiens quinquefasciatus, the Gr1 and Gr3 genes 
were expressed at higher levels in adults than in lar-
vae and pupae. For blood-feeding mosquitoes, CO2 is a 
chemical stimulus emitted in the breath of animal hosts 
and produces host-seeking behaviors in adult mosquitos 
[33, 34]. In contrast, CO2 is used by D. v. virgifera larvae 
to locate the roots of growing corn plants for feeding [6, 
35]. Therefore, the relatively high expression of Dvv_Gr2 
gene in the head might indicate a possible role for this 

gustatory receptor gene that mediates CO2 detection in 
D. v. virgifera larvae.

The level of expression of the Dvv_Gr2 gene in eggs 
and first instar larvae was higher than in other develop-
ment stages (Fig.  4c). CO2 is given off by growing corn 
roots in the soil or potentially other sources of CO2 that 
are associated with plant growth, and neonate larvae that 
hatch in the spring from overwintering eggs must crawl 
through the soil to locate the roots on which they feed 
[6]. Higher expression of Dvv_Gr2 gene in eggs and first 
instars is consistent with a possible role in host finding, 
which is different from mosquitoes that need to orient 
to hosts in the adult stage [16]. Interestingly, for D. pon-
derosae, the two Gr genes (Gr1 and Gr3) were identified 
from an antenna-specific transcriptome but Gr2 was only 
identified from a draft genome (Keeling et  al., in press) 
and from larval RNAseq data [17]. The specific expres-
sion of Gr2 in larvae further suggests a role in orientation 
of neonates to CO2 detection in D. v. virgifera.

Conclusion
Specific genes potentially involved in CO2 perception in 
D. v. virgifera have been identified and were differentially 

Fig. 3  Expression of CO2 receptors (a Dvv_Gr1, b Dvv_Gr3, c Dvv_Gr2) in different tissues of Diabrotica v. virgifera. For qRT-PCR, relative expression 
of Dvv_Gr genes in different tissues was measured and normalized to an endogenous control (EF1a) as described in the “Methods” section. Values 
represent the means and the standard deviation of three analytical replicates on samples that contain tissue from five 3rd instar larvae. Different 
letters above the bars reflect significantly different expression levels (ANOVA of Tukey Test, P < 0.050)
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expressed among development stages and tissues. Based 
on expression results, Dvv_Gr2 may be more important 
in host orientation of neonates. It should be noted that 
these results contrast those from mosquitoes and fruit 
flies where Gr1 and Gr3 have been identified as playing 
a more important role in CO2 perception. Differences in 
receptors between adults and larvae may explain such 
results. Additional studies to validate the relative impor-
tance of these genes in larval host orientation will provide 
insight into the relative roles for these gustatory receptors 
in rootworm larvae. Previous success with RNA interfer-
ence in both adult and larval rootworms [36–38] should 
provide an effective tool for validating functions for these 
putative receptors through loss of function assays.

The importance of CO2 as an orientation cue for neo-
nates is well documented in rootworm larvae [6] and 
may provide a potential mechanism to protect corn 
plants from rootworm damage. The identification of spe-
cific genes responsible for CO2 perception may provide 
important information for designing rootworm specific 
management approaches that disrupt rootworm host 
finding.

Availability of supporting data
The data sets supporting the results of this article are 
included within the article.

Authors’ contributions
TBR performed experiments, data acquisition, analysis and interpretation, 
statistical analysis, participated in the design of the study, and manuscript 
drafting. ENM performed bioinformatic experiments, contributed to data 
acquisition, analysis and interpretation, and manuscript drafting. HW contrib-
uted to experiments, data acquisition, analysis and interpretation, participated 
in the design of the study, and critical revision of the manuscript. CK contrib-
uted to data analysis and interpretation, statistical analysis and participated in 
the design of the study. BDS contributed to data interpretation, directed and 
designed the study, and critical revision of the manuscript. All authors read 
and approved the final manuscript.

Author details
1 CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040‑020, 
Brazil. 2 Federal University of Lavras, Lavras, Minas Gerais, Brazil. 3 School 
of Biological Sciences and Center for Plant Science Innovation, University 
of Nebraska-Lincoln, Lincoln, NE 68583, USA. 4 Department of Entomology, 
University of Nebraska-Lincoln, Lincoln, NE 68583, USA. 

Acknowledgements
This work was partially supported by CAPES Foundation (Ministry of Education 
of Brazil, Brasília—DF 70040-020, Brazil) for TBR’s scholarship.

Competing interests
The authors declare that they have no competing interests.

Fig. 4  Expression of CO2 receptors (a Dvv_Gr1, b Dvv_Gr3, c Dvv_Gr2) in different development stages of Diabrotica v. virgifera. For qRT-PCR, rela-
tive expression of Dvv_Gr genes in different stages was measured and normalized to an endogenous control (actin) as described in the “Methods” 
section. Values represent the means and the standard deviation of three analytical replicates on samples that contain tissue from five 3rd instar 
larvae. Different letters above the bars reflect significantly different expression levels (ANOVA of Tukey Test, P < 0.050)

proyster2
Highlight



Page 7 of 7Rodrigues et al. BMC Res Notes  (2016) 9:18 

Received: 29 May 2015   Accepted: 10 December 2015

References
	1.	 Bowen MF. The sensory physiology of host-seeking behavior in mosqui-

toes. Ann Rev Entomol. 1991;36:139–58.
	2.	 Thom C, Guerenstein PG, Mechaber WL, Hildebrand JG. Floral CO2 reveals 

flower profitability to moths. J Chem Ecol. 2004;30(6):1285–128830.
	3.	 Kleineidam C, Tautz J. Perception of carbon dioxide and other “air condi-

tion” parameters in the leaf cutting ant Atta cephalotes. Naturwissenschaf-
ten. 1996;83:566–8.

	4.	 Bernklau EJ, Bjostad LB. Behavioral responses of first-instar western corn 
rootworm (Coleoptera: Chrysomelidae): to carbon dioxide in a glass bead 
bioassay. J Econ Entomol. 1998;91(2):445–56.

	5.	 Sappington TW, Siegfried BD, Guillemaud T. Coordinated Diabrotica 
genetics research: accelerating progress on an urgent insect pest prob-
lem. Am Entomol. 2006;52(2):90–7.

	6.	 Short DE, Luedtke RJ. Larval migration of the western corn rootworm. J 
Econ Entomol. 1970;63:325–6.

	7.	 Sato K, Touhara K. Insect olfaction: receptors, signal transduction, and 
behavior. Results Probl Cell Differ. 2009;47:121–38.

	8.	 Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel 
family of divergent seven-transmembrane proteins: candidate odorant 
receptors in Drosophila. Neuron. 1999;22(2):327–38.

	9.	 Clyne PJ, Warr CG, Carlson JR. Candidate taste receptors in Drosophila. 
Science. 2000;287(5459):1830–4.

	10.	 Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect 
chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl 
Acad Sci USA. 2003;100(Suppl 2):14537–42.

	11.	 Robertson HM, Kent LB. Evolution of the gene lineage encoding the 
carbon dioxide receptor in insects. J Insect Sci. 2009;9(19):1–14.

	12.	 Suh GS, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, et al. A 
single population of olfactory sensory neurons mediates an innate avoid-
ance behaviour in Drosophila. Nature. 2004;431(7010):854–9.

	13.	 Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB. Two chemosensory recep-
tors together mediate carbon dioxide detection in Drosophila. Nature. 
2007;445(7123):86–90.

	14.	 Kwon JY, Dahanukar A, Weiss LA, Carlson JR. The molecular basis of CO2 
reception in Drosophila. Proc Natl Acad Sci USA. 2007;104(9):3574–8.

	15.	 Lu T, Qiu YT, Wang G, Kwon JY, Rutzler M, Kwon HW, et al. Odor coding 
by maxillary palp neurons of the malaria vector mosquito Anopheles 
gambiae. Curr Biol. 2007;17(18):1533–44.

	16.	 Erdelyan CNG, Mahood TH, Bader TSY, Whyard S. Functional validation 
of the carbon dioxide receptor genes in Aedes aegypti mosquitoes using 
RNA interference. Insect Mol Biol. 2012;21(1):119–27.

	17.	 Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MM, 
Li M, Hillbur Y, Bohlmann J, Hansson BS, Schlyter F. Antennal transcrip-
tome analysis of the chemosensory gene families in the tree killing bark 
beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: 
Curculionidae: Scolytinae). BMC Genom. 2013;14(198):1–16.

	18.	 Keeling CI, Yuen MMS, Liao NY, Docking TR, Chan SK, Taylor GA, et al. 
Draft genome of the mountain pine beetle, dendroctonus ponderosae 
Hopkins, a major forest pest. Genome Biol. 2013;14(3):R27.

	19.	 Eyun SI, Wang H, Pauchet Y, Ffrench-Constant RH, Benson AK, Valencia-
Jimenez A, et al. Molecular evolution of glycoside hydrolase genes in 
the western corn rootworm (Diabrotica virgifera virgifera). PLoS ONE. 
2014;9(4):e94052.

	20.	 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 
BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.

	21.	 Bernsel A, Viklund H, Hennerdal A, Elofsson A. TOPCONS: consensus pre-
diction of membrane protein topology. Nucleic Acids Res. 2009;37(Supp 
2):W465–8.

	22.	 Katoh K, Standley DM. MAFFT multiple sequence alignment software 
version 7: improvements in performance and usability. Mol Biol Evol. 
2013;30:772–80.

	23.	 Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New 
algorithms and methods to estimate maximum-likelihood phylogenies: 
assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.

	24.	 Felsenstein J. Confidence limits on phylogenies: an approach using the 
bootstrap. Evolution. 1985;39:783–91.

	25.	 Rodrigues TB, Khajuria C, Wang H, Matz N, Cunha Cardoso D, et al. 
Validation of reference housekeeping genes for gene expression stud-
ies in Western Corn rootworm (Diabrotica virgifera virgifera). PLoS One. 
2014;9(10):e109825.

	26.	 Livak KJ, Schmittgen TD. Analysis of relative gene expression data 
using real-time quantitative PCR and the 2−∆∆CT method. Methods. 
2001;25:402–8.

	27.	 Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topol-
ogy and heteromeric function of drosophila odorant receptors in vivo. 
PLoS Biol. 2006;4(2):e20.

	28.	 Zhang HJ, Anderson AR, Trowell SC, Luo AR, Xiang ZH, Xia QY. Topological 
and functional characterization of an insect gustatory receptor. PLoS One. 
2011;6:e24111.

	29.	 Howlett N, Dauber KL, Shukla A, Morton B, Glendinning JI, Brent E, et al. 
Identification of chemosensory receptor genes in Manduca sexta and 
knockdown by RNA interference. BMC Genom. 2012;13:211.

	30.	 Li KM, Ren LY, Zhang YJ, Wu KM, Guo YY. Knockdown of microplitis media-
tor odorant receptor involved in the sensitive detection of two chemicals. 
J Chem Ecol. 2012;38(3):287–94.

	31.	 Dong X, Zhong G, Hu M, Yi X, Zhao H, Wang W. Molecular cloning 
and functional identification of an insect odorant receptor gene in 
Spodoptera litura (F.) for the botanical insecticide rhodojaponin III. J Insect 
Physiol. 2013;59(1):26–32.

	32.	 Tribolium Genome Sequencing Consortium. The genome of the model 
beetle and pest Tribolium castaneum. Nature. 2008;452:949–55.

	33.	 Gillies MT. The role of carbon dioxide in host-finding in mosquitoes 
(Diptera: Culicidae): a review. Bull Entomol Res. 1980;70(4):525–32.

	34.	 Takken W, Knols BG. Odor-mediated behavior of Afrotropical malaria 
mosquitoes. Annu Rev Entomol. 1999;44:131–57.

	35.	 Strnad SP, Bergman MK, Fulton WC. First-instar western corn rootworm 
(Coleoptera: Chrysomelidae) response to carbon dioxide. Environ Ento-
mol. 1986;15:839–42.

	36.	 Khajuria C, Vélez AM, Rangasamy M, Wang H, Fishilevich E, Frey ML, et al. 
Parental RNA interference of genes involved in embryonic development 
of the western corn rootworm, Diabrotica virgifera virgifera LeConte. 
Insect Biochem Mol Biol. 2015;63:54–62.

	37.	 Li H, Khajuria C, Rangasamy M, Gandra P, Fitter M, Geng C, et al. Long 
dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and 
adults. J Appl Entomol. 2015;139:432–45.

	38.	 Rangasamy M, Siegfried BD. Validation of RNA interference in west-
ern corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: 
Chrysomelidae) adults. Pest Manag Sci. 2012;68:587–91.

	39.	 Kim HS, Murphy T, Xia J, Caragea D, Park Y, Beeman RW, Lorenzen MD, 
Butcher S, Manak JR, Brown SJ. BeetleBase in 2010: revisions to provide 
comprehensive genomic information for Tribolium castaneum. Nucleic 
Acids Res. 2010;38:D437–42.


