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and Bruce McClure’
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Plants have many ways to regulate the type of pollen that arrives on the stigma surface. Once there,
further control mechanisms regulate compatibility. The latter controls are largely based on biochemical
interactions that support compatible pollination and prevent incompatible matings. S-RNase-based self-
incompatibility (SI) systems are the most phylogenetically widespread mechanisms for controlling polli-
nation. Studies of Nicoriana establish a firm link between SI and unilateral interspecific incompatibility.
Although implicated in both inter- and intraspecific compatibility, S-RNase operates through at least three
distinct genetic mechanisms that differ in their dependence on non-S-RNase factors. Identification and
characterization of these non-S-RNase factors is currently an area of active research. Searching for genetic
and biochemical interactions with S-RNase can identify candidate non-S-RNase factors. HT-protein is
one factor that is required for S-allele-specific pollen rejection in the Solanaceae. Major style arabinogalac-
tan proteins such as TTS interact biochemically with S-RNase. These glycoproteins are known to interact
with compatible pollen tubes and have long been suggested as possible recognition molecules. Their
binding to S-RNase implies a link between stylar systems for compatibility and incompatibility. Thus,
genetic and biochemical studies suggest a highly networked picture of pollen—pistil interactions.

Keywords: Nicotiana; pollination; self-incompatibility; interspecific incompatibility;

unilateral incompatibility

1. INTRODUCTION

In flowering plants the pistil serves to catch pollen, pro-
vide an environment for it to germinate and then guide
the pollen tube to the ovule where fertilization takes place.
Plants have many strategies to control the type of pollen
that arrives on the stigma. A flower’s colour or the time
of day when it is open can affect interactions with pollina-
tors and, hence, the type of pollen received. Once pollen
arrives on the stigma, however, biochemical interactions
are the main avenues for controlling fertilization. These
interactions are, therefore, crucial to a species’ success.
There is a need to discriminate between undesirable pol-
len and desirable pollen that is likely to generate successful
progeny. Then, there is a need to inhibit the growth of
undesirable pollen or support the growth of desirable pol-
len. The pollen—pistil interactions that address these needs
allow plants to control their mating and, hence, their evol-
utionary success.

It is useful to consider the window of genetic relatedness
for optimum mating. For plants that are susceptible to
inbreeding depression, it is important to avoid selfing and
crosses between very closely related individuals. At the
other end of the spectrum, it is also necessary to avoid
crosses that are too wide. Interspecific crosses can lead to
inviable zygotes or sterile offspring. Thus, the functions of
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the pistil are to recognize and reject pollen from plants
that are too closely related, support the growth of pollen
from more distantly related plants of the same species, and
reject pollen from other species. All these functions are
facets of the overall function of the pistil, which is to con-
trol mating.

The interactions that control mating take place in the
extracellular matrix of the pistil. In Nicotiana, pollen ger-
mination takes place near an oil-aqueous interface in the
secretory zone of the stigma (Lush ez al. 1998). Pollen
tubes grow towards the ovary through the matrix secreted
in the transmitting tract (Cheung 1996). Thus, these
secretions are likely to contain the factors necessary for
supporting compatible pollen and for recognizing and
rejecting incompatible pollen.

There are two main paradigms for understanding the
action of these factors. The incongruity paradigm focuses
on coadaptation between the pollen and the pistil
(Hogenboom 1984). There is clearly intense selection for
a productive interaction between partners. Compatibility
occurs when multiple pistil factors interact productively
with multiple pollen factors. Pollination fails, or is incon-
gruous, when these factors are not well matched
(Hogenboom 1984). This paradigm is useful for under-
standing failure of pollinations between unrelated species.
Incompatibility is an alternative paradigm that describes
the failure of pollinations as the result of an active process
that interferes with an otherwise compatible cross (de
Nettancourt 1997, 2001). The critical distinction is that
incongruity is regarded as a passive process and
incompatibility is regarded as active rejection. Incompati-
bility is clearly the more useful paradigm for pollen rejec-
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tion within species. As the genetic distance between
mating partners increases either incompatibility or incon-
gruity (or both) may operate.

This review describes the relationship between SI and
Ul in Nicotiana. Both SI and UI rely on ribonuclease-
based pollen rejection. Ribonuclease-based pollen rejec-
tion occurs in diverse plants and the mechanism is one
of the better understood pollen—pistil interactions. Thus,
research on specific ribonuclease-based systems may
contribute to a general understanding of compatibility
in many flowering plants. By far, the most progress has
been made towards understanding ribonuclease-based
SI. However, insights from SI will inform studies of
ribonuclease-based UI. In addition, as more is learned
about these incompatibility systems, it is likely we can gain
insight into the incongruity mechanisms that control even
wider crosses.

2. S-RNase

SI systems are the best-studied mechanisms for con-
trolling pollination. The most phylogenetically widespread
SI system uses ribonucleases expressed in the pistil to
recognize and reject self-pollen or pollen from closely
related plants. The specificity of pollen rejection is con-
trolled by a multiallelic S-locus (de Nettancourt 1997,
2001). SI species in the Solanaceae, Rosaceae and Scro-
phulariaceae have ribonuclease-based systems (Igic &
Kohn 2001). The system is classified as gametophytic SI
because pollen is rejected when its single S-allele is the
same as one of the S-alleles in the diploid pistil (de Net-
tancourt 2001). The S-locus encodes at least two different
genes that, by definition, determine the specificity of pol-
len rejection. S-RNase is the product of the S-locus that
is expressed in the pistil. Lai ez al. (2002) and others have
identified an excellent candidate that fulfils important cri-
teria expected of pollen S (Dowd ez al. 2000). However,
at this point, the results are not definitive, and this review
focuses on the activities of the style in pollen rejection.

S-RNases were originally identified simply as abundant
stylar proteins that co-segregated with a pollen rejection
phenotype (Bredemeijer & Blaas 1981; Anderson ez al.
1986). Bredemeijer & Blaas (1981) used isoelectric focus-
ing of style extracts from Nicotiana alata to show that
plants that rejected S, pollen always displayed a unique
protein. Similar results were obtained for other genotypes.
The S-allele-specific proteins focused in the basic region
of the gel and accumulated late in the pistil development.
Anderson et al. (1986) sequenced the N-terminus of the
S, glycoprotein and cloned the cDNA. Similar S-glyco-
proteins were subsequently cloned from many other spec-
ies, genera and families (Igic & Kohn 2001). The proteins
showed many characteristics expected of recognition pro-
teins involved in pollen rejection. They were expressed in
the stigma, style and ovary, and accumulated to high levels
in the extracellular matrix where they could interact with
pollen tubes. Sequence analysis showed short conserved
regions flanked by extensive variable regions (Ioerger ez al.
1991). Kawata ez al. (1988) noted that two of the con-
served regions were similar to active site regions of
RNaseT, from Aspergillus oryzae. McClure et al. (1989)
tested five S-glycoproteins from N. alata and showed that
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each possessed intrinsic ribonuclease activity. These pro-
teins are now known as S-RNases.

The cytotoxic model is now widely accepted as the basis
for S-RNase-based pollen rejection. In this model, S-
RNases function as both the specificity determinants in
the pistil and as cytotoxins that directly inhibit growth of
undesirable pollen.

The most straightforward predictions from this model
are that pollen rejection is associated with a cytotoxic
action against pollen and that ribonuclease activity is
required for pollen rejection. Both these predictions have
been experimentally confirmed. McClure ez al. (1990) lab-
elled pollen RNA i vivo by growing plants in the presence
of [*2Plorthophosphate. The radioactive pollen was used
in controlled pollinations, RNA was isolated at various
times post-pollination and detected by autoradiography.
Pollen RNA recovered from compatible pollinations
appeared normal. However, pollen RNA from incompat-
ible pollinations was degraded. This was interpreted as
direct evidence that S-RNases act as S-allele-specific cyto-
toxins (McClure et al. 1990; Gray et al. 1991). Huang ez
al. (1994) showed that ribonuclease activity is required
for pollen rejection. Using site-directed mutagenesis, they
converted one of the histidine residues required for enzy-
matic activity of S;-RNase from Perunia inflata to either
asparagine or arginine. The inactive S-RNases were not
able to cause the rejection of S; pollen even when
expressed at high levels (Huang er al. 1994).

Together, these results strongly support the major
tenets of the cytotoxic model. However, Lush & Clarke
(1997) reported that pollen tubes can recover from inhi-
bition by S-RNase, suggesting that the cytotoxicity is
reversible. In addition, an electron microscopy study of
ribosome and polysome distribution was interpreted as
being inconsistent with a straightforward cytotoxic model
(Walles & Han 1998; de Nettancourt 2001). Thus,
although most evidence supports the cytotoxic model,
further discoveries may require its revision.

3. S-RNase AND INTERSPECIFIC Ul

Far less is known about interspecific pollination barriers
than about intraspecific barriers. One reason for this is the
difficulty of performing genetic analyses of interspecific
systems. Normal chromosome segregation, recombination
and fertility cannot be assumed in interspecific crosses.
Also, there are likely to be many different reasons why
interspecific pollinations fail. The stigma may be chal-
lenged with pollen from many different species and there
is no reason to expect a single rejection mechanism will
protect against all of them. As the genetic distance
between species increases, the failure of pollination is
likely to be better explained by incongruity rather than
incompatibility.

UI systems have much to offer in studies of interspecific
pollen rejection. Pollination failure is unlikely to be due
to gross differences in the requirements for pollen tube
growth because crosses are compatible in one direction.
In addition, there are instances where Ul closely parallels
SI. Here, knowledge of SI systems can provide insight into
the control of pollen flow between species.

The parallel between SI and Ul was clearly described
by Lewis & Crowe (1958). They described several Ul sys-
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tems that follow the SI x SC rule whereby pollen from the
SI species is compatible on the SC pistil, but the recipro-
cal cross is incompatible. They noted some cases where
pollen from SC species was compatible on SI pistils, but
these involved SC species where SI races exist. The SI x
SC rule applied to families that display gametophytic SI
and families with sporophytic SI. Although it is not absol-
ute, the consistency of the SI X SC rule suggests a link
between inter- and intraspecific pollen rejection. The sug-
gested linkage is that the S-locus controls Ul as well as
SI. The pistil of the SI species (i.e. the partner with a fully
functional S-locus) typically rejects pollen from SC species
as well as its own pollen. Thus, the S-locus fulfils the func-
tion alluded to above; it defines a window of genetic
relatedness for compatible pollinations.

Genetic studies support a role of the S-locus in both
SI and Ul. Lycopersicon offers advantages for such studies
because it contains SI and SC species with the same chro-
mosome number. The S-locus has been implicated in Ul
between SC L. esculentum and SI L. hirsutum (Martin
1967; Bernacchi & Tanksley 1997) as well as L. pennellii
(Chetelat & DeVerna 1991). Pandey (1973) showed that
S-alleles behave differently in interspecific crosses in Nico-
tiana. Four S-alleles from N. bonariensis were tested for
interspecific compatibility. The S-alleles behaved differ-
ently; for example, S; and S, caused the rejection of SC
N. glauca pollen but S, and S; did not. Different patterns
were observed with pollen from different species (Pandey
1973). The differential response to different S-alleles
directly implicates the S-locus in interspecific pollen rejec-
tion. Hiscock & Dickinson (1993) found that most of the
crosses between SI and SC species in the Brassicaceae also
follow the SI x SC rule. They also showed that treatments
such as bud pollination, commonly used to overcome SI,
interfere with UI (Hiscock & Dickinson 1993). It is note-
worthy that SI in Brassica is totally different from S-
RNase-based SI (de Nettancourt 2001) and yet the SI X
SC rule still has predictive value. Thus, there is strong
genetic evidence that the S-locus is involved in some Ul
systems.

4. MULTIPLE MECHANISMS FOR S-RNase-
DEPENDENT Ul IN NICOTIANA

Plant transformation circumvents some of the difficult-
ies that are inherent in Ul studies. Murfett er al. (1994)
reported an efficient expression system for S-RNase.
Using a tomato chitinase promoter and the downstream
region of the N. alara S,,-RNase gene, they reported that
a high proportion of transformed plants gained the ability
to reject S,, pollen. S,,-RNase was active, correctly
processed and accumulated to levels comparable to
expression from the native promoter in SI N. alaza S,,S,,.
The ability of a single S-RNase gene to confer S-allele-
specific pollen rejection convincingly showed that S-
RNase contains all the information necessary for intras-
pecific pollen recognition. The same expression system
has been used to test hypotheses about the role of S-
RNase in Ul. This approach allows the effect of a single
gene, S-RNase, to be determined without complications
arising from other factors.

The analysis of the UI between SI N. alata and SC
Nicotiana species revealed the potential complexity of
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interspecific Ul (Murfett er al. 1996). Most accessions of
N. alata are SI. However, some horticultural accessions
are SC. The SC cultivar Breakthrough, which does not
express S-RNase, has proven useful for studies of the role
of S-RNase and other factors in pollen rejection. SC N.
tabacum and SC N. glutinosa are examples of species that
do not follow the SI x SC rule. Pollen from these species
is rejected by both SI and SC accessions of N. alata. How-
ever, pollen from SC N. plumbaginifolia is only rejected by
SI N. alata as predicted by the SI x SC rule. N. tabacum
and N. plumbaginifolia were transformed with S, ,- or S¢ -
RNase from N. alata to test whether S-RNase has a role
in these Ul systems. The results of these experiments were
complex and showed three distinct Ul mechanisms (i.e.
an S-RNase independent mechanism and two S-RNase
dependent mechanisms (Murfett ez al. 1996)). Together
with the intraspecific SI mechanism there are four differ-
ent pollen rejection mechanisms operating even in this
small group of species. If this is representative of the
mechanistic diversity of interspecific pollen rejection the
potential for complexity is staggering.

The mechanisms for rejecting N. tabacum and N.
glutinosa pollen are the simplest. Because the SC cultivar
of N. alata retains the ability to reject their pollen, it is
clear that an S-RNase-independent mechanism contrib-
utes (Murfett er al. 1996). However, transgenic N.
tabacum and N. plumbaginifolia plants expressing either
Sa,-or S¢;,-RNase gained the ability to reject pollen from
these two species. Thus, N. tabacum and N. glutinosa are
also sensitive to S-RNase-dependent pollen rejection. Two
totally different mechanisms contribute to UI between
these SC species and SI N. alata. This is an important
lesson. It cannot be assumed that pollination failure is
caused by a single mechanism. It is also noteworthy that
the S-RNase-dependent pathway does not depend on
other factors from N. alata. This type of pollen rejection
is, therefore, referred to as ‘factor independent’ (McClure
et al. 2000). As research into this mechanism has pro-
gressed it is apparent that it may be more accurate to state
that factors expressed in N. tabacum and N. plumbaginifolia
can substitute for N. alata factors in S-RNase-dependent
rejection of pollen from N. rabacum and N. glutinosa.

The rejection of N. plumbaginifolia pollen is more com-
plex (Murfett ez al. 1996). As the SC cultivar of N. alata
accepts N. plumbaginifolia pollen, it is clear that the S-
RNase-independent mechanism does not contribute to this
type of UI. Transgenic N. tabacum and N. plumbaginifolia
plants expressing S-RNase also remain compatible with N.
plumbaginifolia pollen. Thus, S-RNase alone is not suf-
ficient to cause N. plumbaginifolia pollen rejection. How-
ever, when transgenic N. plumbaginifolia plants are crossed
with SC N. alata the resulting hybrids did reject N.
plumbaginifolia pollen. These transgenic hybrids also reject
pollen from SI N. alata; whereas, the primary trans-
formants did not. Furthermore, antisense experiments
showed that when S-RNase expression was suppressed, S-
allele-specific pollen rejection and the ability to reject N.
plumbaginifolia pollen were always affected in parallel
(Murfett er al. 1996).

There are clearly several distinct pathways for S-RNase-
dependent pollen rejection in N. alata (McClure et al
2000). Pollen from SC N. tabacum and N. glutinosa is
sensitive to ‘factor-independent’ rejection. The N. alara X
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N. plumbaginifolia Ul system requires both S-RNase and
other non-S-RNase factors. The intraspecific SI system
shows a similar requirement for both S-RNase and non-
S-RNase factors. The latter mechanisms are referred to as
‘factor dependent’ to emphasize their dependence on non-
S-RNase factors from N. alara. The nature of the ‘factors’
is currently an area of active research. It is likely that sev-
eral factors are required.

Factor-dependent SI and UI are distinguished by their
specificity (McClure ez al. 2000). SI is S-allele-specific; a
single S-RNase causes rejection of a single pollen S geno-
type. Ul with N. plumbaginifolia is less specific. With one
exception every N. alata S-allele tested causes rejection of
N. plumbaginifolia pollen. S,g,,-RNase functions normally
in SI but does not cause rejection of N. plumbaginifolia
pollen (Beecher & McClure 2001).

Together, the transgenic plant studies demonstrate a
definite connection between SI and UI. Transforming
plants with a single cloned S-RNase gene can cause rejec-
tion of pollen from SC species. The interactions between
the S-RNase transgene and the genetic background show
that there are at least three different S-RNase-dependent
pollen rejection mechanisms. In addition, an S-RNase-
independent mechanism contributes to UI between N.
alata and N. tabacum and N. glutinosa. This conclusion
has important implications for understanding interspecific
pollen rejection.

One implication is that products of the S-locus function
in multiple genetic pathways. Discrimination between
inter- and intraspecific pollen may be regarded as separate
functions. S-RNase is clearly capable of functioning
efficiently in pollen rejection, and its recruitment to fulfil
both functions may be an example of parsimonious use of
the genetic tool kit. Perhaps it is not surprising that it
requires different non-S-RNase factors to function against
pollen from different species. However, insofar as inter-
and intraspecific pollen rejection mechanisms share fac-
tors (i.e. S-RNase and possibly other factors), they are net-
worked.

Another implication is that pollen from a single species
may be susceptible to more than one rejection mechanism.
For instance, N. rabacum pollen is susceptible to S-RNase-
dependent and S-RNase-independent rejection. Redun-
dant pollen rejection mechanisms probably explain many
exceptions to the SI x SC rule. For example, N. alata cv.
Breakthrough is SC because it does not express S-RNase.
However, it retains Ul with N. tabacum because it retains
the S-RNase-independent rejection mechanism. The
existence of multiple, sometimes redundant, pollen rejec-
tion mechanisms operating between species explains the
difficulty of genetic approaches to understanding interspe-
cific pollen rejection.

5. S-RNase HAS A UNIQUE ROLE IN
INTERSPECIFIC POLLEN REJECTION

The relative lack of S-allele-specificity in UI prompts
the question of whether S-RNase is uniquely adapted for
pollen rejection or whether it can be replaced by another
RNase. The ability to test the effects of recombinant
RNase expression on pollination allows this question to
be explored in detail.

Phil. Trans. R. Soc. Lond. B (2003)

Beecher er al. (1998) tested whether a non-S-RNase
could substitute for S,,-RNase in N. plumbaginifolia pol-
len rejection. RNasel from Escherichia coli was chosen
because it is an extracellular enzyme in the same family
as S-RNases and has similar charge and size characteristics
(Beecher et al. 1998). The E. coli RNasel gene was engine-
ered for expression in plants by replacing the bacterial
secretion signal with the S,,-RNase signal peptide. An
intron was engineered into the gene, and S,,-RNase gene
3’ untranslated regions were inserted downstream of the
coding sequence. Style-specific expression was obtained
with the tomato chitinase gene promoter. Constructs were
initially transformed into N. plumbaginifolia, screened for
expression and crossed with SC N. alaza.

Second generation transformed hybrids were tested for
the expression of RNasel and the pollination phenotype.
The bacterial gene was expressed only in the mature pistil.
The enzyme was active and accumulated in the extracellu-
lar matrix as expected. As the expression level is a critical
parameter, quantitative immunoblot analysis was perfor-
med to ensure that hybrids were expressing amounts of
RNasel that were comparable to the levels of S,,-RNase
expressed in controls. Six hybrids expressing RNasel at
between 19 and 33 pg mg~! of style protein were com-
pared with six hybrids expressing S,,-RNase at levels
ranging from 19 to 29 pug mg~!. As E. coli RNasel has a
higher specific activity than S,,-RNase, the ribonuclease
activities in the hybrids expressing RNasel were much
higher than in the S,,-RNase hybrids (i.e. 120 to 226 A,
U min~! mg™! in the RNasel hybrids versus 29 to 54 A,
U min~! mg™! in the S,,-RNase hybrids).

Style squashes were used to assess compatibility. All six
control hybrids expressing S,,-RNase rejected N.
plumbaginifolia pollen, none of the hybrids expressing
RNasel showed any rejection. Hybrids expressing S,,-
RNase accepted N. alata S¢ |, pollen (28 compatible in 30
pollinations), so rejection of N. plumbaginifolia pollen (0
compatible in 30 pollinations) could not be attributed to
other defects. The RNasel hybrids were fully compatible
with both S.,, pollen and N. plumbaginifolia pollen (i.e.
30 compatible in 30 pollinations).

These results add to our understanding of the role of
S-RNase in Ul As discussed in §4, UI between N.
plumbaginifolia and N. alata differs from SI in that the lat-
ter shows a much higher degree of specificity. However,
a non-S-RNase could not substitute for S-RNase in UI,
suggesting that S-RNases are uniquely adapted for pol-
len rejection.

This hypothesis has been tested more extensively in the
factor-independent system for N. tabacum pollen rejection
(Beecher 2001). The effects of four RNases on N. tabacum
pollen tube growth were compared. Three S-RNases with
a range of properties were tested: Sc,,-RNase, Sgq;,-
RNase and S¢,,5-RNase. S;;,-RNase from N. alata was
used as a positive control. Its behaviour is typical of most
S-RNases in that it is active in the intraspecific S-allele-
specific mechanism and in both factor-dependent and
factor-independent interspecific pollen rejection. Sgg;;-
RNase functions normally in SI but does not cause
factor-dependent rejection of N. plumbaginifolia pollen.
Scons-RNase is a chimera composed of sequences from
S,,-RNase and S¢;,-RNase (Zurek ez al. 1997; Beecher &
McClure 2001). It is an active ribonuclease and is
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Figure 1. The seed set in N. tabacum expressing
recombinant RNases. Each plant was pollinated 10 times
with pollen from untransformed N. tabacum. Data are shown
for a plant expressing Sog;;-RNase, S,,s-RNase or RNasel
from E. coli. Each of these plants is paired with a plant
expressing S;-RNase (left, hatched bars) at a comparable
level. Abbreviation: Untx, untransformed N. tabacum
expressing no recombinant RNase.

expressed normally in transgenic plants, but it does not
cause S-allele-specific pollen rejection. E. coli RNasel was
used as a non-S-RNase. All four RNases were engineered
for expression and constructs were transformed into N.
tabacum.

All four RNases were expressed normally and were
active enzymes, but only the S-RNases caused pollen
rejection. Quantitative immunoblot analyses were used to
select plants expressing comparable amounts of recombi-
nant protein, and the pollination phenotypes were moni-
tored by both style squashes and seed set. Figure 1 shows
a generalized comparison of the pollen rejection abilities
of the four RNases. The figure presents seed-set data for
plants expressing S,5,,-RNase, S.,,;-RNase or RNasel
compared with a plant expressing a comparable amount
of S¢io-RNase (i.e. the positive control). The general
comparison between the S-RNases and the non-S-RNase
is clear. Although their pollen rejection abilities vary
widely, the S-RNases were all capable of causing rejection
of N. tabacum pollen. By stark contrast, plants expressing
E. coli RNasel behaved exactly as untransformed controls,
and full seed set was observed in every cross.

The overall conclusion from these experiments is that
S-RNases possess some special feature that allows them
to function in pollen rejection. Clearly, ribonuclease
activity per se is not sufficient for any of the RNase-depen-
dent mechanisms. This is obvious in the S-allele-specific
SI system where pollen tubes are susceptible to only one
of the two S-RNases expressed in a diploid style. How-
ever, even for the interspecific Ul systems, where rejection
shows a lower level of specificity, a non-S-RNase could
not replace S-RNase.

6. NON-S-RNase FACTORS IN POLLEN REJECTION

S-RNase is the determinant of SI specificity in the pistil
and is implicated in interspecific pollen rejection. How-
ever, it is only one component of a complex mechanism.

Phil. Trans. R. Soc. Lond. B (2003)

S-RNase-based pollen rejection occurs normally only in
the complex extracellular matrix of the pistil. Identifying
and characterizing the factors in this matrix that are
required for pollen rejection is an area of current research.
Much effort has also been devoted to identifying factors
that function on the pollen side (Dowd ez al. 2000).
Although candidate pollen genes have been suggested (Lai
et al. 2002), as yet, none have been definitely implicated.

As more factors (i.e. non-S-RNase factors) are ident-
ified in the pollen and pistil, it may be possible to con-
struct an in vitro pollen rejection system or devise another
approach to investigate the physiology of RNase-based
pollen rejection. At this point, there is inadequate knowl-
edge to predict whether soluble components will suffice
or whether it will be necessary to construct an artificial
matrix analogous to the adhesion system developed to
support lily pollen tube growth (Jauh ez al. 1997). How-
ever, efforts to reconstruct S-RNase-based pollen rejection
with soluble components have had limited success
(Jahnen er al. 1989). This suggests that the factors
required for pollen rejection are either not soluble, func-
tion only at high concentration or function only when
assembled into a matrix.

There is considerable genetic evidence that non-S-
RNase factors are required for pollen rejection in Nicotiana,
Lycopersicon and Petunia (Anderson & de Winton 1931;
Mather 1943; Martin 1968; Bernatzky er al. 1995).
Although most studies address factors required for SI
rather than interspecific incompatibility, they do provide
useful insights into the nature of the factors involved. It
is possible that some of the same factors will function in
both SI and interspecific pollen rejection. Some non-S-
RNase factors will be simply required for the proper
expression of S-RNase. We refer to these as group 1 fac-
tors (i.e. factors required for expression of specificity
determinants; McClure et al. 2000). Tsukamoto er al
(1999) described a Uruguayan population of P. axillaris
that segregates for SI and SC. The defect is attributable
to a group 1 factor that affects the expression of S;;-
RNase. The gene is clearly a non-S-RNase factor because
it is not closely linked to the S-locus. Bernatzky er al.
(1995) showed that S-RNase from SI L. hirsutum was
expressed in backcrossed progeny with SC L. esculentum.
Despite this, the progeny were SC, demonstrating a
requirement for a different kind of non-S-RNase factor.
Such factors that are required for pollen rejection but not
for S-RNase expression per se are referred to as group 2
factors.

The transgenic plant studies discussed here provide evi-
dence that group 2 factors are required for SI and UI in
Nicotiana (Murfett ez al. 1996). N. plumbaginifolia plants
expressing S-RNase from N. alaza do not display S-allele-
specific pollen rejection and fail to reject N. plumbaginifolia
pollen. However, both types of pollen rejection function
normally when the transgene is expressed in conjunction
with factors from SC N. alaza.

Loss of a group 1 or a group 2 factor leads to failure of
pollen rejection and results in a SC phenotype. Such
factors are, therefore, not required for pollen tube growth
per se and are readily amenable to genetic analysis. Group
3 factors are required for pollen rejection, but also have
other roles such as forming a structural component of the
extracellular matrix or pollen tube nutrition. Thus, they


http://rstb.royalsocietypublishing.org/

Downloaded from rstb.royalsocietypublishing.org on October 25, 2010

1138 C. N. Hancock and others

S-RNase and unilateral incompatibiliry

are less amenable to genetic analysis because their effects
are pleiotropic.

Mutations in any critical factor required for SI will lead
to SC (Stone 2002). As SI is linked to interspecific pollen
rejection, such mutations could easily affect gene flow
between species as well. Moreover, RNase-based SI is
widespread but sporadic in the angiosperms, studying the
causes of loss of SI may be a useful approach to identifying
required factors (Igic & Kohn 2001; Stone 2002).

7. HT PROTEINS

Kondo ez al. (20024a) investigated the mechanisms caus-
ing loss of ST in Lycopersicon. SI is regarded as the ancestral
condition in the genus, and most of the SC taxa form a
distinct clade. The SC taxa showed little or no S-RNase
expression (Kondo er al. 2002a). However, different taxa
had distinct S-RNase genes and different underlying
reasons for low S-RNase expression. The absence of a sin-
gle type of defect suggests that changing S-RNase
expression was not the cause of the shift from SI to SC
in the ancestor of the SC taxa. However, all the SC
Lycopersicon taxa failed to express HT-B, a non-S-RNase
group 2 factor first identified in Nicotiana (Kondo ez al.
2002a; McClure ez al. 1999). SC Lycopersicon taxa possess
mutated HT-B genes and it is possible that these
mutations represent the principal route to SC in
Lycopersicon (Kondo et al. 2002a).

HT was originally identified in a differential screen to
identify sequences expressed in N. alata but not in SC N.
plumbaginifolia (McClure er al. 1999). The sequence
cloned from N. alata encodes a 101 residue polypeptide
with an unusual stretch of asparagine and aspartate resi-
dues (i.e. the ND domain) near the C-terminus. A
CXXCXC motif is present upstream of the ND domain,
and the sequence CXXXCC forms the extreme C-
terminus. The functions of these cysteine motifs are
unknown. Anti-HT antibodies detect several small poly-
peptides in style extracts. N-terminal sequencing shows
that the major band corresponds to the predicted signal
sequence cleavage site. Smaller bands correspond to
internal sequences, suggesting the protein is either pro-
cessed or degraded in style extracts.

HT expression was found to coincide very closely with
the developmental onset of SI (McClure ez al. 1999). In
SI N. alata S¢,0Sc,, flowers can be bud-selfed when they
are 2.5 cm long. At this stage S;,,-RNase has already
accumulated to ca. 60% of its maximal level but HT
expression is only ca. 5% of maximum. A day later, when
HT expression is about eightfold higher, bud-selfing is
never successful. Antisense suppression of HT prevents S-
allele-specific pollen rejection. Antisense plants with unde-
tectable levels of HT showed S.,,-RNase expression
within normal levels, but failed to reject S¢;, pollen.

HT-like genes have now been identified in many
Lycopersicon and Solanum species (Kondo er al. 2002b;
O’Brien er al. 2002). These plants possess two very tightly
linked HT-like genes, HT-A and HT-B. The Nicotiana
sequence is most similar to the HT-B type. There is no
evidence for an HT-A-like gene in N. alata (B. A.
McClure, unpublished data). HT7-4 and HT-B in Lycoper-
sicon and Solanum are more similar to each other than they
are to the N. alata sequence. This suggests a gene dupli-
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cation event in the lineage leading to Lycopersicon and
Solanum or loss of the HT-A gene in Nicotiana.

O’Brien ez al. (2002) used antisense and RNAI to test
whether HT-A and HT-B are required for pollen rejection
in S. chacoense. An antisense HT-A construct was intro-
duced into SI S. chacoense S,,S,, plants. Several trans-
formants showed reduced or undetectable levels of HT-A
transcript; all plants showed normal S-allele-specific pol-
len rejection. An HT-B RNAIi construct was also intro-
duced into SI S. chacoense S,,S,,. Two plants with low or
undetectable levels of HT-B transcript set seed when
tested with pollen from S,,S,, plants. The results were
similar to those obtained in Nicotiana where a change in
pollination phenotype was only observed when HT
expression was reduced to very low or undetectable levels
(McClure et al. 1999). The conclusion from the S. chacoense
study was that HT-B is required for S-allele-specific pollen
rejection but HT-A is not.

O’Brien et al. (2002) noted a negative correlation
between HT-B expression and floral longevity. They sug-
gest that HT-B expression may hasten floral senescence
after pollination. Suppression of HT-B could then allow
pollen tubes longer to reach the ovary. However, in the
HT-antisense experiment in Nicotiana, compatibility was
assessed by using style squashes at a fixed time after polli-
nation (McClure ez al. 1999). S¢,, and S,,5; pollen tubes
reached the base of the style at about the same time in
the antisense plants. Thus, though the HT protein may
affect senescence, this is not required to explain the
change in pollination behaviour.

As more HT-like gene sequences are determined,
sequence analysis may provide clues about function. All
the HT-like sequences identified so far possess an ND
domain near the C-terminus. However, apart from the
preponderance of asparagine and aspartate residues, the
ND sequences themselves are not conserved. This sug-
gests a structural role. The ND domains of all the HT-
like genes are flanked by the same pattern of cysteine resi-
dues (i.e. CXXCXC and CXXXCC) found in the original
N. alata HT-B sequence. Interestingly, the signal peptide
shows the greatest sequence conservation when HT-A and
HT-B proteins are compared across Lycopersicon, Solanum
and Nicotiana (Cruz-Garcia et al. 2003). This may suggest
that the processing of HT proteins is important. Finally,
as HT-B genes function in S-allele-specific pollen rejection
but HT-A genes apparently do not, the sequence differ-
ences between them may be informative. The most obvi-
ous difference is that HT-B proteins possess a sequence
similar to PSISLL near the N-terminus of the mature pro-
tein that is missing from the HT-A class.

8. STYLAR GLYCOPROTEINS AND POLLEN
REJECTION

Although S-RNase and HT-B proteins are the only fac-
tors directly implicated in RNase-based pollen rejection,
other factors are likely to be involved. One hypothesis is
that such factors may interact with S-RNase in the stylar
matrix. To test this hypothesis Si,,-RNase was immobil-
ized on Affigel and used as an affinity resin. When extracts
from SI N. alata Sc,,Sci, were analysed, transmitting-
specific glycoprotein (first characterized in N. tabacum)
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was identified as a major S-RNase binding protein
(McClure et al. 2000).

TTS is an AGP that accumulates in the stylar extra-
cellular matrix of N. zabacum and N. alata (Cheung et al.
1993, 1995; Wu ez al. 1995, 2000). The protein is thought
to support compatible pollen tube growth because it
enhances pollen tube growth in vitro, and antisense inhi-
bition of TTS expression in N. zabacum interferes with
pollen tube growth in vivo. Immunolocalization studies
show the polypeptide associated with the pollen tube cell
membrane. Antisense T'TS plants also show altered style
morphology, suggesting that TTS also plays a structural
role. The fact that TTS binds to S-RNase indicates that
it may have a third role in SI N. alata and act as a group
3 SI factor.

TTS is a member of a family of AGPs that interact with
pollen tubes. The mature TTS polypeptide consists of two
domains. The N-terminal domain is proline rich and is
decorated with arabinogalactan. The C-terminal 137
amino acids contain six cysteine residues and may form a
distinct globular domain. Similar C-terminal domains
occur in the 120 kDa glycoprotein from N. alata (Lind et
al. 1994; Schultz et al. 1997) and in the PELPIII from N.
tabacum (de Graaf 1999). The last two proteins are also
abundant stylar AGPs that interact with pollen tubes.
Immunolocalization studies show that the 120 kDa glyco-
protein is taken up into the pollen tube cytoplasm in N.
alata (Lind et al. 1996). Similar immunolocalization stud-
ies in N. tabacum show that PELPIII polypeptide associ-
ates with the pollen tube callose wall and callose plugs (de
Graaf 1999).

It has long been thought that AGPs may serve as recog-
nition molecules in the style (Harrison ez al. 1984). TTS,
the 120 kDa glycoprotein, and PELPIII are good candi-
dates for such a function because they form a major frac-
tion of the stylar matrix and they are known to interact
with pollen tubes. If these proteins are involved in pollen
recognition at species level they would be expected to
show sequence polymorphism. This hypothesis could be
tested by examining TTS (120 kDa) and PELPIII homo-
logues from different species. Polymorphisms that corre-
late with inter- or intraspecific pollination behaviour
would support the idea that these proteins play a part in
controlling pollination.

9. PROSPECTS

There is now a clear link between SI and UI. However,
it is also clear that Ul is complex. Not only is the S-locus-
implicated in different Ul systems in different ways, it is
also clear that S-locus-independent mechanisms also con-
tribute to UI. This complexity explains, at least in part,
the controversy over the role of the S-locus in Ul The
linkage between SI and UI offers opportunities to unravel
the molecular mechanisms of pollen rejection. Each sys-
tem offers different experimental approaches to identify
the functional components. Studies in one system will
help other studies, thus improving the prospects for a
detailed understanding.
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GLOSSARY

AGP: arabinogalactan protein

ND: asparagine/aspartate

PELPII: class III pistil-specific extension-like protein
SC: self-compatibility

SI: self-incompatibility

TTS: transmitting tract specific

UTI: unilateral incompatibility
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