2014

Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems

Susan J. Cheng
University of Michigan, chengs@umich.edu

Gil Bohrer
The Ohio State University

Allison L. Steiner
University of Michigan

David Y. Hollinger
USDA Forest Service

Andrew E. Suyker
University of Nebraska - Lincoln, asuyker1@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers

Cheng, Susan J.; Bohrer, Gil; Steiner, Allison L.; Hollinger, David Y.; Suyker, Andrew E.; Phillips, Richard P.; and Hadelhoffer, Knute J., "Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems’ (2014). Papers in Natural Resources. 518.
http://digitalcommons.unl.edu/natrespapers/518

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems

Agricultural and Forest Meteorology

ARTICLE INFO

Article history:
Received 15 May 2014
Received in revised form 28 October 2014
Accepted 1 November 2014
Available online 2 December 2014

Keywords:
Net ecosystem exchange
Diffuse PAR
Carbon cycling
Land–atmosphere interactions

ABSTRACT

The carbon storage potential of terrestrial ecosystems depends in part on how atmospheric conditions influence the type and amount of surface radiation available for photosynthesis. Diffuse light, resulting from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. However, the magnitude of the diffuse light effect is unclear because existing studies use different methods to derive above-canopy diffuse light conditions. We used site-based, above-canopy measurements of diffuse light and gross primary productivity (GPP) from 10 temperate ecosystems (including mixed conifer forests, deciduous broadleaf forests, and croplands) to quantify the GPP variation explained by diffuse photosynthetically active radiation (PAR) and to calculate increases in GPP as a function of diffuse light. Our analyses show that diffuse PAR explained up to 41% of variation in GPP in croplands and up to 17% in forests, independent of direct light levels. Carbon enhancement rates in response to diffuse PAR (calculated after accounting for vapor pressure deficit and air temperature) were also higher in croplands (0.011–0.050 μmol CO₂ per μmol photons of diffuse PAR) than in forests (0.003–0.018 μmol CO₂ per μmol photons of diffuse PAR). The amount of variation in GPP and carbon enhancement rate both differed with solar zenith angle and across sites for the same plant functional type. At crop sites, diffuse PAR had the strongest influence and the largest carbon enhancement rate during early mornings and late afternoons when zenith angles were large, with greater enhancement in the afternoons. In forests, diffuse PAR had the strongest influence at small zenith angles, but the largest carbon enhancement rate at large zenith angles, with a trend in ecosystem-specific responses. These results highlight the influence of zenith angle and the role of plant community composition in modifying diffuse light enhancement in terrestrial ecosystems, which will be important in scaling this effect from individual sites to the globe.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Forests are estimated to remove up to 27% of human-emitted CO₂ annually (2.6 ± 0.8 Gt C yr⁻¹), with temperate forests responsible for about half of this uptake globally (Le Quéré et al., 2013; Sarmiento et al., 2010). It is uncertain how this amount of carbon uptake will change in the future because forest carbon processes are affected by complex interactions driven by changes in climate and natural- and human-caused shifts in plant species composition and canopy structure. Isolating and quantifying the impacts of individual drivers of land–atmosphere CO₂ exchange could improve these calculations of the future terrestrial carbon sink.

One important factor influencing photosynthesis and hence forest CO₂ uptake is light availability. Rates of leaf-level CO₂ uptake increase with solar radiation until leaves are light saturated (Mercado et al., 2009). This implies that forest CO₂ uptake is greater on sunny days when leaves are fully exposed to direct light. However, increases in diffuse light, which is produced when clouds and aerosols interact with and scatter incoming solar radiation, may be even more beneficial than equal increases in direct light. At the
ecosystem level, key processes related to photosynthesis, including gross primary productivity (GPP), net ecosystem exchange (NEE), and light-use efficiency (LUE), can increase in magnitude when the proportion of light entering a forest canopy is more diffuse (Gu et al., 1999; Hollinger et al., 1994; Jenkins et al., 2007; Oliphant et al., 2011; Urban et al., 2012; Zhang et al., 2011). In addition, global simulations from 1960 to 1999 indicate that increases in the proportion of diffuse light reaching plant canopy surfaces may have amplified the global land carbon sink by 24% (Mercado et al., 2009).

Several mechanisms have been proposed to explain how diffuse light increases ecosystem CO₂ uptake and LUE. First, diffuse light can penetrate deeper into a forest canopy and reach lower canopy leaves that would normally be light-limited on clear days when light is mostly direct (Hollinger et al., 1994; Oliphant et al., 2011). Second, the same amount of light is distributed across more leaves when diffuse light is dominant, which can minimize light saturation and photo-inhibition of upper canopy leaves and increase canopy LUE or photosynthesis (Gu et al., 2002; Knohl and Baldocchi, 2008). Third, diffuse light can create conditions favorable for photosynthesis by reducing water and heat stress on plants (Steiner and Chameides, 2005; Urban et al., 2012). Finally, a fourth hypothesis suggests that diffuse light has a higher ratio of blue to red light, which may stimulate photochemical reactions and stomatal opening (Urban et al., 2012).

There is no consensus regarding the magnitude of effect that diffuse light has on ecosystem carbon processing. Studies using derived values of diffuse light suggest that LUE is higher when most incident light is diffuse and can result in maximum carbon uptake under moderate cloud cover (Gu et al., 2002; Min and Wang, 2008; Rocha et al., 2004). However, studies using a three-dimensional canopy model and a land surface scheme predict that diffuse radiation will not lead to significant increases in carbon uptake on cloudy days as compared to clear days because of reductions in total shortwave radiation (Alton et al., 2005, 2007). If clouds decrease surface radiation enough to lower total canopy photosynthetic activity, this could offset any potential GPP gain resulting from increased LUE under diffuse light conditions (Alton, 2008).

Several studies using measurements of diffuse light support the hypothesis that LUE is higher under diffuse light, consistent with studies using derived diffuse light data (Dengel and Grace, 2010; Jenkins et al., 2007). In addition, total carbon uptake can be greater under cloudy, diffuse light conditions compared to clear skies in three forest types (Hollinger et al., 1994; Law et al., 2002). Aerosol-produced diffuse light also leads to an increase in the magnitude of NEE in forests and croplands (Niyogi et al., 2004). Additional observation-based analyses indicate that diffuse light increases carbon uptake when compared to the same level of direct light, but also when total light levels decrease (Hollinger et al., 1994; Urban et al., 2007, 2012).

The magnitude of the diffuse light effect on terrestrial carbon uptake may depend on ecosystem type or canopy structural characteristics. A regional modeling study suggests that diffuse light can increase net primary productivity (NPP) in mixed and broadleaf forests, but has a negligible effect on croplands (Matsui et al., 2008). Another study using derived diffuse light data suggests that LUE increases with diffuse light, and that differences among ecosystems are potentially dependent on vegetation canopy structure (Zhang et al., 2011). The influences of ecosystem type and vegetation structure are also supported by an observation-based study showing that under diffuse light, CO₂ flux into a grassland decreased, but increased by different amounts in croplands depending on the species of crop planted (Niyogi et al., 2004). However, another study using derived diffuse light data found no difference in the effect of patchy clouds on LUE among 23 grassland, prairie, cropland, and forest ecosystems in the Southern Great Plains (Wang et al., 2008). Inconsistencies among these studies may be due to differences in the methods and models used to obtain diffuse light or sky conditions and assess their impacts on ecosystem carbon processing (Gu et al., 2003).

Climate modelers have begun incorporating the influence of diffuse light on ecosystem carbon uptake into land surface schemes as more details of canopy structure are added to models (Bonan et al., 2012; Dai et al., 2004; Davin and Seneviratne, 2012). Our study provides insight into the importance of diffuse light on ecosystem carbon processing for improving projections of the terrestrial carbon sink. We seek here to (1) quantify how much variation in ecosystem GPP is explained by diffuse light, independent of direct radiation levels, (2) compare the influence of diffuse light on GPP among temperate ecosystems differing in canopy structure and species composition, and (3) determine the strength of diffuse light enhancement of GPP while accounting for its correlation with zenith angle, vapor pressure deficit (VPD), and air temperature. Unlike many previous studies (Alton, 2008; Butt et al., 2010; Gu et al., 1999; Min and Wang, 2008; Zhang et al., 2010), we drive our analyses only with direct field measurements of diffuse light, rather than with derived values from radiation partitioning models, which may be biased by incorrect representations of clouds and aerosols. Finally, our paper highlights the changes in the diffuse light effect across the diurnal cycle and the role of time of day on the diffuse light enhancement in terrestrial ecosystems, which will be important in scaling this effect from individual sites to the globe.

2. Materials and methods

2.1. Data sources

All analyzed data were collected and processed by investigators participating in the AmeriFlux program (http://ameriflux.lbl.gov/), a network of meteorological towers in the United States (U.S.) that measures net fluxes of water vapor and CO₂ between the land surface and the atmosphere and corresponding meteorological, soil, and vegetation conditions (Baldocchi, 2003). Data collection, analysis, and metadata are standardized, reviewed, and quality controlled by AmeriFlux for all sites. GPP is calculated by subtracting the modeled ecosystem respiration from observed NEE. Respiration is modeled empirically based on NEE observations during the night, when GPP is assumed to be zero. We focus our study on GPP instead of another measure of carbon processing because it describes ecosystem CO₂ uptake, is affected directly by radiation, and is the first step in processing atmospheric CO₂ into long-term storage in ecosystems.

2.2. Site selection

We selected temperate AmeriFlux sites within the contiguous U.S. with at least three years of Level 2 (processed and quality controlled) NEE and GPP. Among these, we specifically selected sites that contain equipment to measure above-canopy total and diffuse photosynthetically active radiation (PAR, 400–700 nm) and report at least three years of diffuse PAR values to AmeriFlux. For the University of Michigan Biological Station (UMBS), we obtained updated total and diffuse PAR data from site coordinators that were not yet available on the AmeriFlux website at the time of our analyses. After separating sites with crop rotations by species, there were sufficient data for ten sites covering three ecosystem types, including mixed forest (Howland Logged, Howland N Fertilized, Howland Reference), deciduous broadleaf forest (Morgan Monroe and UMBS), and cropland (Mead Irrigated Maize, Mead Irrigated Rotation: Maize, Mead Irrigated Rotation: Soybean, Mead Rainfed...
<table>
<thead>
<tr>
<th>Site (SiteID)</th>
<th>Lat, Lon (°)</th>
<th>Years of data</th>
<th>Canopy height (m)</th>
<th>Vegetation community</th>
<th>Management</th>
<th>LAI (m² m⁻²)</th>
<th>Climatic annual precipitation (mm)</th>
<th>Mean growing season temperature (°C)</th>
<th>Mean growing season VPD (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Howland Logged (US-Ho3)</td>
<td>45.207, −68.725</td>
<td>2006–2008</td>
<td>20b</td>
<td>Dominated by red spruce (Picea rubens) and eastern hemlock (Tsuga canadensis). Also contains balsam fir (Abies balsamea), white pine (Pinus strobus), white cedar (Thuya occidentalis), red maple (Acer rubrum), and paper birch (Betula papyrifera)</td>
<td>Selected logging and harvest (2001)</td>
<td>2.1 to −4c</td>
<td>1000b</td>
<td>16.7</td>
<td>0.83</td>
</tr>
<tr>
<td>Howland Reference (US-Ho1)</td>
<td>45.204, −68.740</td>
<td>2006–2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howland N Fertilized (US-Ho2)</td>
<td>45.209, −68.747</td>
<td>2006–2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mead Irrigated Maize (US-Ne1)</td>
<td>41.165, −96.476</td>
<td>2001–2012</td>
<td>2.9c</td>
<td>Maize (Zea mays)</td>
<td>Center-pivot irrigationd</td>
<td>5.7f</td>
<td>887f</td>
<td>27.0</td>
<td>1.33</td>
</tr>
<tr>
<td>Mead Irrigated Rotation: Soybean (US-Ne2)</td>
<td></td>
<td>2002, 2004, 2006, 2008</td>
<td>1.0c</td>
<td>Soybean (Glycine max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morgan Monroe (US-MMS)</td>
<td>39.323, −86.413</td>
<td>2007–2010</td>
<td>27h</td>
<td>Dominated by sugar maple (A. saccharum), tulip poplar (Liriodendron tulipifera), sassafras (Sassafras albidum), white oak (Quercus alba), and black oak (Q. nigra)h</td>
<td>None</td>
<td>5i</td>
<td>1012i</td>
<td>24.3</td>
<td>1.12</td>
</tr>
<tr>
<td>UMBS (US-UMB)</td>
<td>45.559, −84.713</td>
<td>2007–2011</td>
<td>22i</td>
<td>Dominated by bigtooth aspen (Populus grandidentata) with red oak (Q. rubra), red maple (A. rubrum), and white pine (P. strobus), as co-dominants. Also contains trembling aspen (P. tremuloides), white birch (B. papyrifera), sugar maple (A. saccharum), red pine (P. resinosa), and American beech (Fagus grandifolia)i</td>
<td>None</td>
<td>−3.5j</td>
<td>817k</td>
<td>21.2</td>
<td>1.05</td>
</tr>
</tbody>
</table>

a Values calculated from AmeriFlux data.
b Scott et al. (2004).
c Hollinger et al. (2004).
d AmeriFlux data.
e personal communication with site investigator.
f Yan et al. (2012).
g Verma et al. (2005).
h Dragoni et al. (2011).
i Oliphant et al. (2011).
j Curtis et al. (2012).
k Gough et al. (2013).
Rotation: Maize, Mead Rainfed Rotation: Soybean). Site characteristics and data availability are listed in Table 1.

2.3. Definition of analysis period

To determine the maximum effect of diffuse light on GPP, we limited our period of analysis to the portion of the year when ecosystems are most productive. We used a carbon-flux phenology approach, where NEE is the defining variable for phenological transitions and the peak-growing season is the time period when NEE is at its maximum magnitude (Garrity et al., 2011). To do this, we first calculated 5-day NEE means for each site and year. Climate, vegetation composition, and inter-annual weather variability lead to phenological variation among sites (Richardson et al., 2013). Therefore, we adjusted our definition for the beginning and end of the peak-growing season to uniformly capture a representative portion of the NEE peak across sites and years. We defined the start of the growing season as the first day when the 5-day NEE average was within 90% of the year’s fourth highest 5-day NEE average. The four-highest values was used to account for any extreme NEE values that may have occurred because of anomalous weather conditions. We set the end of the season as the last day within 75% of the year’s fourth-highest 5-day NEE average. The cutoff for the start of the peak-growing season is higher than the cutoff for the end of the season because canopy leaf-out and growth initiation typically occur quickly in seasonal sites, whereas canopy phenological changes are slower at the end of the season. While this approach cannot detect the exact beginning and end of the season, the criteria we used provide a uniform method for defining the period during which plants were at full seasonal growth and activity at our sites. We included only daytime values by excluding points with total PAR values <20 μmol m−2 s−1, assuming such low radiation levels are characteristic for nighttime.

2.4. Data analysis

For each site, we combined all available peak-growing season daytime data and removed observations with negative measurements of diffuse PAR, direct PAR, or GPP, as these were likely sensor errors or marginal weather conditions (e.g., rain events). We also excluded data points with missing air temperature and VPD. We divided the remaining data into nine categorical groups based on solar zenith angle and the time of observation. We chose to bin by zenith angle to account for the effect of the sun’s position on the amount of direct and diffuse PAR above a canopy, differences in radiation penetration through the canopy, and changes in plant hydraulics throughout the day. Zenith angle was calculated as the following:

\[
\cos \varphi = \sin \phi \sin \delta + \cos \phi \cos \delta \cos [15(t - t_0)]
\]

where \(\varphi \) is the zenith angle, \(\phi \) is the latitude, \(\delta \) is the solar declination angle, \(t \) is time, and \(t_0 \) is the time of solar noon (Campbell and Norman, 1998). Given the latitudes of the sites, we defined mornings to begin at zenith angles between 76°–100° , noon to occur at the minimum calculated zenith angles of 16°–30°, and the end of daylight to occur around 76°–100°.

The effect of diffuse PAR on GPP may depend on total light conditions. For example, little scattering occurs under clear skies, which results in low diffuse and high direct PAR levels. As a result, small increases in diffuse PAR are unlikely to have a strong impact on canopy photosynthesis due to large amounts of direct PAR available for photosynthesis. If direct PAR levels are low, however, such as on cloudy days or during the morning and evening, the increase in diffuse PAR will have a larger effect because canopy leaves are below light-saturation. To calculate direct PAR, we subtracted the observed diffuse PAR from the observed total PAR. Because GPP and PAR are known to have a strong relationship that can be empirically described by a rectangular hyperbola, we used the non-linear regression function in the R program (R Development Core Team, 2012) to fit the following relationship:

\[
\text{GPP}_{\text{fitted}} = \frac{\alpha y \text{PAR}_{\text{diff}}}{\gamma + \alpha \text{PAR}_{\text{diff}}}
\]

where \(\text{GPP}_{\text{fitted}} \) is the value of GPP predicted by total PAR using a rectangular hyperbola model (Eq. (2)). \(\alpha \) is the canopy quantum efficiency, \(\gamma \) is the canopy photosynthetic potential, and \(\text{PAR}_{\text{diff}} \) is direct PAR (Gu et al., 2002). The \(\alpha \) and \(\gamma \) are the fitted parameters and are solved iteratively. We used the initial conditions of 0.044 μmol CO2 per μmol photons and 23.7 μmol CO2 m−2 s−1 for \(\alpha \) and \(\gamma \), respectively (Ruimy et al., 1995). The resulting empirical relationships for each site are presented in Appendix 1.

To remove the confounding effect of direct PAR, we first calculated the residuals between observed GPP and \(\text{GPP}_{\text{fitted}} \). We then compared those residuals against diffuse PAR for ten sites and nine zenith angle bins. For each zenith angle category, we estimated the variation in GPP residuals that can be explained by diffuse PAR alone using the following simple linear regression:

\[
\text{GPP}_r = \text{GPP} - \text{GPP}_{\text{fitted}} = \beta_0 + \beta_1 \text{PAR}_{\text{diff}} + \epsilon
\]

and a combination of diffuse PAR, VPD, and air temperature using the following multiple linear regression:

\[
\text{GPP}_r = \text{GPP} - \text{GPP}_{\text{fitted}} = \beta_0 + \beta_1 \text{PAR}_{\text{diff}} + \beta_2 \text{VPD} + \beta_3 T_a + \epsilon
\]

where GPP represents the residuals between the observed GPP and \(\text{GPP}_{\text{fitted}} \) and \(\text{PAR}_{\text{diff}} \) is diffuse PAR. \(T_a \) is air temperature measured at the eddy covariance tower and \(\beta_0, \beta_1, \beta_2, \beta_3 \) are the fitted parameters estimating the model intercept and the linear slopes of the effects of diffuse PAR, VPD, and air temperature at each solar zenith bin, respectively. The \(\epsilon \) is the error term.

ANOVA comparisons between the simple (diffuse PAR only) and multiple linear regressions (including VPD and air temperature) showed that the multiple linear regression model (Eq. (4)) was significantly better (\(p < 0.05 \)) than the simple regression model, with the exception of nine site/bin combinations. We did not include interactions in the multiple linear regression because ANOVA tests indicated that the interaction terms did not improve the model consistently, and improvements to the residual sum of squares averaged only 3.5% in cases where interaction terms were significant. We also accounted for multiple testing over solar zenith angle bins and different sites by using the Bonferroni correction to calculate a new critical \(p \)-value. Light-response curves could not be fit to all scenarios, reducing the final number of comparisons to 83. Thus, for the simple and multiple linear regression comparisons, we consider a relationship significant if \(p < 6.02 \times 10^{-4} \) (\(= 0.05/83 \)).

3. Results

3.1. Relationship between diffuse PAR and GPP

We found significant positive relationships between diffuse PAR and GPP throughout the day, except in a few cases where diffuse PAR was not a significant predictor of GPP. (Figs. 1 and 2, black bars). Exceptions to these relationships occurred mainly at the Mead crop sites during mid-day and to a lesser extent at the UMBS forest during early mornings and late afternoons (Fig. 2, black bars). In addition, a rectangular hyperbola could not be fit to the direct PAR and GPP data in the afternoon at large zenith angles at the Mead sites and Morgan Monroe (Appendix 1). Overall, the linear fits between diffuse PAR and GPP, indicate that across sites and zenith angles, diffuse PAR explains 3–22% of variation in GPP, in the morning and 3–41% of variation in GPP, in the afternoon (Fig. 2, black bars).
Fig. 1. Simple linear regressions (Eq. (3)) between diffuse PAR and GPP, for observations around 10:00–14:00 standard time (zenith angles from 16° to 30°, other zenith angle bins not shown). Regression lines are only plotted for models with \(p < 6.02 \times 10^{-4} \) (Bonferroni-corrected critical value).

3.2. Diffuse PAR cross-correlation with VPD and air temperature

Concomitant with changes in the partitioning of PAR into direct and diffuse streams, clouds and aerosols change surface VPD and air temperature. These two environmental factors influence stomatal conductance and photosynthesis, and thus affect rates of ecosystem GPP. When including the effects of these two variables on GPP, with diffuse PAR (Eq. (4)), the amount of variation in GPP explained increases up to an additional 31% during mornings and up to 32% during afternoons (Fig. 2, white bars). This increase with VPD and air temperature is greatest across the most zenith angles at the Howland sites, where the multiple linear regression

The amount of variance in GPP attributable to diffuse PAR varied considerably between forests and crop sites (Fig. 2, black bars). At the deciduous broadleaf and mixed conifer forests, diffuse PAR accounts for more of the variance in GPP at the smallest zenith angle bins (mid-day) and less at larger zenith angles in the early mornings and late afternoons (Fig. 2a–e, black bars). However, the opposite pattern occurs at the Mead crop sites, where more of the variance in GPP is associated with diffuse PAR at larger zenith angles (Fig. 2f–j, black bars). Diffuse PAR accounted for the largest portion of GPP variance at crop sites during afternoon zenith angles of 61–75°, corresponding to approximately 17:00–18:00 standard time.
increases explanatory power of \(GPP_e \), by an additional 9–27% and 11–30% in the mornings and afternoons, respectively. VPD and air temperature also account for a relatively larger fraction of the variation of Mead Rainfed Rotation: Soybean \(GPP_e \), during the mid-day. Although we expected an increase in explanatory power with more variables in the regression, the increase in the explanation of \(GPP_e \) with the addition of these correlated environmental variables is small for the deciduous forests (Morgan Monroe and UMBS). This suggests that the effect of diffuse PAR at the deciduous forests is due to changes in light availability and not from indirect effects driven by the cross-correlation between diffuse PAR and other environmental conditions. Overall, the multiple linear regressions indicate that diffuse PAR is a significant predictor of \(GPP_e \) (except for the sites and zenith angle bins noted in Table 2). In addition, VPD and air temperature could not account for significant amounts of \(GPP_e \) variation under some conditions (Table 2).

3.3. Magnitude of the effects of diffuse PAR on \(GPP_e \)

Howland Forest Reference, Morgan Monroe, and UMBS have not undergone any experimental manipulation (e.g., selective logging, N addition). At these sites, the sign of the significant parameter estimates indicate that in mornings and afternoons, \(GPP_e \) increased with diffuse PAR (Table 2). The predicted increases in \(GPP_e \) in the morning were calculated to be 0.004–0.010, 0.008–0.011, and 0.010–0.018 \(\mu \text{mol} \text{ CO}_2 \text{ per } \mu \text{mol} \text{ photons of diffuse PAR at Howland Forest Reference, Morgan Monroe, and UMBS, respectively (Fig. 3). } \) In the afternoon, the increases in \(GPP_e \) were similar in magnitude, and ranged from 0.005 to 0.011, 0.008 to 0.009, and 0.009 to 0.018 \(\mu \text{mol} \text{ CO}_2 \text{ per } \mu \text{mol} \text{ photons of diffuse PAR at Howland Forest Reference, Morgan Monroe, and UMBS, respectively (Fig. 3). } \)

The effect of diffuse PAR on rates of \(GPP_e \) varied among forest sites. UMBS had the largest increases in \(GPP_e \) with increases

Fig. 2. Proportions of variation in \(GPP_e \) explained by environmental variables. Solid bars represent \(R^2 \) values from simple linear regressions that include only the effect of diffuse PAR (Eq. (3)). The total height of the bars (solid and white together) represents the \(R^2 \) from multiple linear regressions that include effects of air temperature (\(T_a \)) and vapor pressure deficit (VPD) with diffuse PAR (Eq. (4)). Only \(R^2 \) values with \(p < 6.02 \times 10^{-4} \) (Bonferroni-corrected critical value) are plotted. The minimum calculated zenith angle for these sites was ~16°.
in diffuse PAR, and Howland Forest Reference had the smallest increases in \(GP_{\text{Pr}} \). In addition, the calculated increases in \(GP_{\text{Pr}} \) with diffuse PAR appear to depend on zenith angle at two of the sites. At UMBS, the influence of diffuse PAR on \(GP_{\text{Pr}} \) is greatest in the early morning and late afternoon (zenith angles 61–75°) and decreases at mid-day (zenith angles 16–45°). At Howland Forest Reference, the response to zenith angle differs and the influence of diffuse PAR on \(GP_{\text{Pr}} \) generally increases as the day continues and is highest

![Fig. 3. Diurnal patterns in diffuse PAR \(\beta \) estimates for unmanaged forests across zenith angles from a multiple linear regression that includes VPD and air temperature as covariates (Eq. (4)). Error bars indicate one standard error. Only \(\beta \) estimates with \(p < 6.02 \times 10^{-4} \) (Bonferroni-corrected critical value) are plotted.](image-url)
in the late afternoon (zenith angles 76–100°). However, at Morgan Monroe, the influence of diffuse PAR on \(\text{GPPr} \) did not vary with zenith angle. When we compare across these ecosystems, deciduous forests (UMBS, Morgan Monroe) appear to differ from the mixed conifer forest, particularly in the morning, with differences diminishing in the afternoon.

At Howland Forest, one site underwent selective logging while a second site was fertilized with 18 kg N/ha on a 21-ha plot centered around the eddy covariance tower in five to six applications per growing season from 2001–2005 (David Dail, personal communication, 2013). Analysis of data at these manipulated sites indicates that the magnitude of increase in \(\text{GPPr} \) with diffuse PAR was similar to that of the un-manipulated Howland forest (Fig. 4). Differences among forest treatments are not apparent in the morning. In the afternoon, however, we observe a trend where diffuse PAR leads to the biggest \(\text{GPPr} \) increase in the forest fertilized with N and the smallest change in \(\text{GPPr} \) in the forest that has been selectively logged.

At the Mead Irrigated Rotation and Mead Rainfed Rotation sites, soybean and maize are planted in different years, allowing us to examine variations in the effect of diffuse PAR on \(\text{GPPr} \) between crop types (Fig. 5). The increases in \(\text{GPPr} \) for maize were calculated to be 0.011–0.022 μmol CO₂ per μmol photons in the morning and 0.021–0.050 μmol CO₂ per μmol photons in the afternoon. For soybean, the increases in \(\text{GPPr} \) in the morning were 0.014–0.021 μmol CO₂ per μmol photons and in the afternoon were 0.011–0.028 μmol CO₂ per μmol photons. Diffuse PAR led to increases in \(\text{GPPr} \) at large zenith angles, but had no effect on \(\text{GPPr} \) at small zenith angles for both crop species (values are only plotted in Fig. 5 if they are significant). In addition, we observed no difference in the magnitude of the effect of diffuse PAR on \(\text{GPPr} \) between soybean and maize in the morning. However, we did observe a greater effect of diffuse PAR on \(\text{GPPr} \) for maize than soybean in the afternoon for zenith angles 46–75°. Irrigation did not appear to influence the magnitude of the diffuse PAR effect on \(\text{GPPr} \).

Fig. 4. Diurnal patterns in diffuse PAR β estimate values for Howland Forest sites across zenith angles from a multiple linear regression that includes VPD and air temperature as covariates (Eq. (4)). Error bars indicate one standard error. Only values with \(p < 6.02 \times 10^{-4} \) (Bonferroni-corrected critical value) are plotted.

Fig. 5. Diurnal patterns in diffuse PAR β estimate values for Mead crop sites across zenith angles from a multiple linear regression that includes VPD and air temperature as covariates (Eq. (4)). Error bars indicate one standard error. Only β values with \(p < 6.02 \times 10^{-4} \) (Bonferroni-corrected critical value) are plotted.
4. Discussion

Diffuse light influences Earth’s climate by changing the amount and character of light available for photosynthesis, and thus, indirectly controls atmospheric CO₂ (Mercado et al., 2009). Depending on future anthropogenic emissions and their effects on atmospheric aerosols and clouds, the influence of diffuse light on the terrestrial carbon sink may increase. A more quantitative and mechanistic understanding of the link between diffuse light and land carbon uptake in different ecosystems would allow us to model how changes in diffuse light influence atmospheric and terrestrial carbon stocks, particularly as land-use change (e.g., deforestation, afforestation, and conversion of natural systems to cropland) continues (Arora and Boer, 2010).

Past research has identified a positive correlation between diffuse light and ecosystem carbon uptake. However, this result may be due to a cross-correlation with total light availability, where diffuse light could more strongly influence photosynthesis when total light levels are low on overcast days as compared to high light levels on clear days (Gu et al., 1999; Oliphant et al., 2011; Zhang et al., 2010). The method we use in this paper addresses this confounding factor by removing the effect of direct light on ecosystem carbon uptake before calculating the rate of additional carbon uptake from diffuse light. Importantly, we tested for this potential independent effect using only direct field measurements of diffuse light, as opposed to deriving diffuse light levels with radiation partitioning models that make assumptions about aerosol and cloud conditions over terrestrial ecosystems. Our analysis of ten temperate ecosystems indicates that diffuse PAR correlates positively with GPP, and this relationship is independent of direct PAR levels. Specifically, diffuse PAR independently explained up to 22% of the variation in GPP in mornings and up to 41% of the variation in GPP in afternoons.

Prior research shows that morning and afternoon responses to diffuse light can differ for the same zenith angles (Alton et al., 2005) and that in multiple ecosystems, rates of carbon enhancement vary across zenith angles (Bai et al., 2012; Zhang et al., 2010). However, to our knowledge, no other studies have investigated full diurnal patterns of diffuse light enhancement. We accomplished this by separating data according to zenith angle and time of day. Our results indicate that in forests, the proportion of variation in GPP explained by diffuse PAR (evaluated through R^2) is greatest at mid-day, and decreases as the sun moves closer to the horizon. The opposite pattern occurs at crop sites, where diffuse PAR did not predict GPP, at small zenith angles (mid-day), but did correlate with variation in GPP at larger zenith angles (morning and afternoon). When we examined the magnitude of increase in GPP, in response to diffuse PAR (β_1), the greatest increases were at larger zenith angles in crop sites (0.028–0.050 mol CO₂ per µmol photons at 61–75° in the afternoon). In forests, however, diffuse PAR had the strongest influence (R^2) on GPP at small zenith angles when the sun is overhead (mid-day), but the largest carbon enhancement rate (β_1) at larger zenith angles (early mornings and late afternoons) when the sun is closer to the horizon.

In addition, some sites show a trend in an asymmetrical diurnal cycle of diffuse light enhancement, most notably in the crop sites. Although increases in GPP, with diffuse PAR at forest sites appear to be similar in magnitude throughout the day, some of the zenith angle bins differed between the morning and afternoon. For example, the largest difference in carbon enhancement rates from a morning zenith angle bin to the same bin in the afternoon were 0.005 µmol CO₂ per µmol photons for mixed conifer forests, 0.003 µmol CO₂ per µmol photons for deciduous forests, 0.017 µmol CO₂ per µmol photons for soy, and 0.028 µmol CO₂ per µmol photons for maize, though changes were usually within the standard error of the measurements. The response of GPP to diffuse light may differ in the morning and afternoon because environmental conditions influencing photosynthesis also vary during the day. For example, time lags between the effects of diurnal cycles of radiation and VPD on evapotranspiration (Zhang et al., 2014), stronger hydraulic stresses in the afternoon (Matheny et al., 2014), and morning and afternoon differences in leaf surface wetness that affect stomatal conductance (Misson et al., 2005) might explain the increased importance of diffuse light in the afternoon. These results can be used to evaluate ecosystem and global land surface models by testing if they capture the diurnal patterns we identified.

Our results indicate that there are ecosystem-specific responses of carbon uptake to diffuse light. The observed differences between crops and forests are consistent with Niyogi et al., 2004 who used measured diffuse shortwave data to show that a crop site with a corn and soybean rotation was more sensitive to increases in aerosol-produced diffuse light than broadleaf and mixed conifer forests. Previous studies have hypothesized that differences in canopy structure among forests, grasslands, and croplands are responsible for differential responses of these ecosystems to diffuse light (Gu et al., 1999; Niyogi et al., 2004; Oliphant et al., 2011). However, they have not reported site-level canopy architectural measurements to test this potential modulator of land carbon uptake because they are difficult to collect and describe.

There are several hypotheses explaining why canopy structure may modify the effect of diffuse light on ecosystem carbon uptake. Canopy gaps, which interact with the angle of incident light, may influence how much light is distributed vertically through a canopy (Hutchison et al., 1980). For example, on clear days in a 30-m tall tulip poplar forest, the amount of radiation reaching the middle and lower parts of the canopy is lowest at large zenith angles (Hutchison et al., 1980). The authors attributed this to the low level of total radiation and reduced canopy gaps when the sun is near the horizon. Our analysis of UMBS gap fraction data derived from LAI-2000 measurements shows that as gap fraction decreases, carbon uptake with diffuse light increases (Fig. 6). Because gap fraction here is the ratio of below-canopy PAR to above-canopy PAR, this indicates greater light extinction at larger zenith angles. Greater light extinction in the canopy may increase light scattering, which could expose more leaves to diffuse light. Thus, the response of GPP to diffuse light may be greater at larger zenith angles because of more complete canopy participation in photosynthesis. However, more gap fraction data and canopy light profiles from across sites and collected with uniform methods are needed to test this idea, particularly in crop ecosystems. This would allow us to identify why crops and forests respond differently to diffuse PAR.

Second, the distribution of photosynthetic tissues within a canopy depends on the plant community at each site and may contribute to observed differences between crops and forests. Forests have more stratified layers of vegetation and are much taller than crops. This means that leaf area index (LAI) in a forest is distributed over a larger volume than in crop sites. When the sun is overhead, forest canopies shade leaves at lower layers and diffuse light has a greater potential of reaching leaves near the bottom of the forest canopy as compared to direct light. Thus, the opportunity for diffuse light to reach more leaves in the canopy is greater when the sun is overhead (larger R^2). This explanation is supported by a study in a Norway spruce forest, which showed that needles deeper in the canopy contribute more to overall net ecosystem production on cloudy days than on sunny days (Urban et al., 2012). However, the relative increases in GPP(β_1) may be smaller than those at crop sites because forest canopies are denser, which increases self-shading. On the other hand, crops are planted to minimize self-shading when the sun is overhead. In addition, β_1 may be higher at crop sites than at forests because multi-directional diffuse light at large zenith angles may reach deeper into crop canopies more effectively than
Fig. 6. The relationship at UMBS (data from 2007 to 2011) between (a) gap fraction and zenith angle and (b) diffuse PAR \(\beta \) (carbon enhancement rate) and zenith angles (same data as shown in Fig. 3). Error bars indicate one standard error.

direct light and increase light availability for crop stems, which are more photosynthetic than tree trunks.

Modeling studies have shown that species-dependent canopy characteristics, such as leaf clumping, LAI, and leaf inclination angle can affect the influence of diffuse PAR on carbon processing in ecosystems (Alton, 2008; Gu et al., 2002; Knohl and Baldocchi, 2008). This could be due to the penumbral effect, which occurs when the position and types of leaves (e.g., broadleaf and conifer) alter the amount and distribution of light to lower-level leaves (Denholm, 1981; Way and Pearcy, 2012). Although the arrangement of leaves in tall canopies with small leaves (e.g., forests) can increase shading of lower canopy leaves, it also increases the probability that leaves and branches scatter light, resulting in more distribution of light in the canopy. However, in shorter canopies with larger leaves (e.g., maize), there is less plant material that can scatter light and these sites may be more dependent on incident diffuse light. This may explain the higher carbon enhancement rates observed at crop sites compared to forests.

A few studies have measured how the distribution of light through plant canopies changes under diffuse light, but they are limited in their ability to test the influence of canopy structure on carbon enhancement from diffuse light because they have been conducted in a single ecosystem (Urban et al., 2012; Williams et al., 2014). Because site-level measurements of canopy structure are difficult to obtain, support for the mechanisms through which specific characteristics of canopy structure (e.g., leaf area distribution, leaf clumping) change ecosystem carbon uptake under diffuse light conditions has thus far depended on model assumptions (Alton et al., 2007; Knohl and Baldocchi, 2008). To test whether canopy structural differences in height, canopy gaps, or leaf distribution within a canopy facilitate a diffuse light enhancement, a uniform method of collecting canopy structural data is needed. Methods are available for capturing some of this information, including light detection and ranging (LIDAR) remote sensing (Hardiman et al., 2013). However, no standardized method of collecting data has been applied among sites to allow for inter-site comparisons of canopy structure. Future research should consider collecting data on canopy gaps, leaf distribution, and vertical light distribution to provide datasets that can be used to test whether gaps or leaf distribution within a canopy lead to an enhanced carbon uptake because of increased light distribution. Without this mechanistic connection, modelers cannot determine whether this missing biosphere-atmosphere connection results in a significant under- or over-prediction of the future terrestrial carbon sink. As scientists collect these canopy structural data, we suggest making these data publically available so they can be used to better interpret patterns seen using eddy covariance data.

We also observed differences in diffuse light effects among sites described as the same forest type (e.g., Morgan Monroe and UMBS). This argues for the consideration of site-specific responses to diffuse light because plant community composition of individual forest types (or ecosystems) determine unique canopy structures that can drive how strongly canopy gaps, leaf distribution, and penumbral qualities influence the effect of diffuse light on ecosystem carbon uptake. In particular, there were differences in afternoon carbon enhancement rates between the fertilized and formerly logged Howland Forest sites, which only differ in disturbance activity. Differences in nutrient availability for plants may explain why the N fertilized site correlated more strongly with diffuse light than the logged site. After two years of fertilization, foliage was one of the most N-enriched ecosystem pools (Dail et al., 2009). Increased soil N availability could lead to an increase in leaf N, which correlates with higher concentrations of RuBisCO and chlorophyll (Evans, 1989), implying an interaction between diffuse light and nutrient levels.

The effect of diffuse light on carbon uptake between maize and soybean also differed. This may be due to species differences in canopy structure as discussed above, but could also be due to the different photosynthetic pathways soy (C3) and maize (C4) use. Maize had a greater increase in carbon uptake with diffuse light than soy did, potentially because C4 plants have a higher light saturation point (Greenwald et al., 2006). Because maize would be farther away from light saturation than soy, an increase in diffuse light (after accounting for cross-correlation with direct light) would bring maize closer to light saturation and thus, increase photosynthesis. In addition, C4 plants are better adapted to warmer environments, which may cause environmental conditions, such as temperature and water availability, to change crop responses to diffuse light.

Finally, our results show that other environmental drivers that co-vary with diffuse PAR also contribute to GPP, at some sites. In mixed conifer forests (e.g., the Howland sites), VPD, air
temperature, and diffuse PAR together account for substantially more variation in GPP, than diffuse PAR itself does, implying a lesser role for radiation and a larger one for conditions that improve stomatal conductance under cloudy conditions at mixed conifer forests. In contrast, VPD and air temperature, within the ranges of values characteristic of measurement periods at the sites studied here, appear to have small effects on GPP, in the broadleaf forests. This implies that the diffuse PAR effect at the broadleaf forests is due to the effect of scattered light itself. At the mixed conifer forests, the peak growing season temperature ranges from 16.5–17.6 °C while the temperature is 21.2–24.3 °C in the broadleaf forests. Comparing these site temperatures to the optimum temperature range of temperate deciduous trees (20–25 °C) and evergreen coniferous trees (10–25 °C), broadleaf forests are closer to their optimum temperature range (Larcher, 2003). Considering that photosynthesis varies non-linearly with temperature, the same per unit change in temperature for a cooler site will lead to greater changes in GPP than in a warmer site. Increases in VPD in water-limited situations, on the other hand, should cause photosynthesis to drop because stomata will close to conserve water. However, VPD is actually lower in the mixed forests than in the deciduous broadleaf forests, implying that air temperature is a stronger driver of GPP than is VPD under our study’s field conditions.

5. Conclusions

Field measurements show that diffuse PAR accounts for a substantial amount of variation in GPP once the quantity of direct PAR is removed. The observed changes in the diffuse PAR effect on GPP vary across zenith angles, ecosystem types, and plant functional groups, highlighting additional ways that ecosystem structural characteristics and the diurnal cycle influence ecosystem carbon cycling. In addition, observed site-level variation suggests that grouping forests together in regional or global models as the same plant functional type, without considering species composition or canopy structure, may lead to inaccuracies in assessing the impacts of radiation partitioning on modeled surface carbon fluxes.

To robustly extend these results, direct measurements of diffuse PAR and ecosystem flux data are needed from a wider range of ecosystems. Furthermore, research that can evaluate mechanisms (e.g., canopy gaps, leaf distribution, and species-specific characteristics) driving terrestrial carbon enhancement under diffuse light will remain stagnant without consistent field measurements of canopy structure at sites with diffuse light and eddy covariance measurements. The incorporation of standard methods for measuring canopy structure and within-canopy light distribution and the availability of these data in common formats from across networks of eddy covariance towers (e.g., AmeriFlux, NEON) would enable the development of better predictive models of carbon exchange in relation to direct and diffuse solar radiation.

The interactions between diffuse light and ecosystem productivity may be of increasing importance as the community composition of our terrestrial ecosystems continues to change because of human land use change, natural ecological succession, and climate change. Thus, a more refined understanding of how diffuse PAR modifies atmosphere-land carbon cycling and subsequent representations of this relationship in models will likely advance our understanding of how human management of ecosystems will influence the land carbon sink as well as improve future calculations of atmospheric CO₂ concentrations for global climate projections.

Acknowledgments

We thank the FLUXNET community for their dedicated efforts in collecting and providing quality-controlled eddy covariance data for ecosystem research. We also thank the University of Michigan Center for Statistical Consultation and Research (Dr. Corey Powell and Dr. Kerby Shedden) for input on statistical techniques, Dr. Christoph Vogel for providing updated PAR data for UMBS, and Alex Fotis for early discussions and data organization for this paper. Support for SJC was provided in part by the University of Michigan Graham Sustainability Institute. Funding for data collection at UMBS was provided by the National Science Foundation grant DEB-0911461, the U.S. Department of Energy’s (DOE) Office of Science Biological and Environmental Research (BER) project DESC0006708 and AmeriFlux National Core Flux Site award through Lawrence Berkeley National Laboratory contract #7006915, and National Oceanic and Atmospheric Administration Grant NA11OAR4310190. Research at the Howland Forest is supported by the DOE’s Office of Science BER. The Mead US-Ne1, US-Ne2, and US-Ne3 AmeriFlux sites were supported by the DOE Office of Science (BER; Grant Nos. DE-FG03-00ER62996, DE-FG02-03ER63639, and DE-EE0003149), DOE-EPSCoR (Grant No. DE-FG02-00ER45827), and NASA NACP (Grant No. NNX08AI75G). The Morgan Monroe team thanks the Indiana Department of Natural Resources for supporting and hosting the UM-MMS AmeriFlux site, and the U.S. DOE for funding operations through the Terrestrial Ecosystem Science program and the AmeriFlux Management Project.

Appendix 1.

Values of α and γ predicted by best-fit rectangular hyperbolas describing the response of GPP to direct PAR. The α represents the quantum yield and γ represents the maximum GPP value. All α and γ values listed have p < 6.02 × 10⁻⁴ (Bonferroni-corrected critical value), except for those in italics, which have p < 0.01 and those in bold, which were not significant because p > 0.05. NS indicates we were unable to fit a light response curve. The 16–30° interval includes AM and PM time points.

<table>
<thead>
<tr>
<th>Site</th>
<th>Zenith angle (°)</th>
<th>AM</th>
<th>PM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>76–100</td>
<td>61–75</td>
</tr>
<tr>
<td>Howland Forest Logged</td>
<td>α</td>
<td>1.16</td>
<td>2.64</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.39</td>
<td>0.37</td>
</tr>
<tr>
<td>Howland Forest</td>
<td>α</td>
<td>1.28</td>
<td>2.15</td>
</tr>
<tr>
<td>Reference</td>
<td>γ</td>
<td>4.74</td>
<td>9.89</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.23</td>
<td>0.34</td>
</tr>
<tr>
<td>Howland Forest N</td>
<td>α</td>
<td>1.81</td>
<td>2.85</td>
</tr>
<tr>
<td>Fertilized</td>
<td>γ</td>
<td>5.27</td>
<td>10.32</td>
</tr>
<tr>
<td></td>
<td>R²</td>
<td>0.25</td>
<td>0.32</td>
</tr>
</tbody>
</table>
site | zenith angle (°)
---+-----------------+-------------+-------------+-------------+-------------+-------------|
 | AM 76–100 | 61–75 | 46–60 | 31–45 | 16–30 | PM 31–45 | 46–60 | 61–75 | 76–100 |
---+-----------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------+-------------|
Morgan Monroe | α | 2.01 | 1.43 | 1.59 | 1.50 | 2.03 | 1.99 | 2.09 | 2.58 | NS
 | γ | 4.66 | 12.39 | 19.83 | 25.72 | 27.29 | 22.99 | 16.78 | 10.31 | NS
 | R | 0.06 | 0.13 | 0.23 | 0.32 | 0.29 | 0.31 | 0.22 | 0.25 | NS
UMBS | α | 1.05 | 3.57 | 4.06 | 3.08 | 2.99 | 3.96 | 1.59 | 1.43 | 3.00
 | R | 0.28 | 0.09 | 0.11 | 0.15 | 0.12 | 0.14 | 0.24 | 0.34 | 0.21
Mead irrigated maize | α | 0.73 | 3.95 | 4.49 | 3.35 | 2.98 | 3.51 | 1.61 | 2.07 | NS
 | γ | 16.11 | 30.91 | 48.21 | 59.92 | 64.10 | 49.94 | 35.94 | 17.71 | NS
 | R | 0.49 | 0.21 | 0.22 | 0.31 | 0.23 | 0.29 | 0.20 | 0.13 | NS
Mead irrigated rotation: maize | α | 0.40 | 1.65 | 2.60 | 2.48 | 3.30 | 1.20 | 1.29 | 0.64 | NS
 | γ | 17.61 | 32.62 | 48.64 | 58.70 | 65.20 | 50.15 | 38.13 | 21.68 | NS
 | R | 0.51 | 0.47 | 0.43 | 0.38 | 0.42 | 0.41 | 0.36 | 0.38 | NS
Mead irrigated rotation: soybean | α | 0.59 | 2.24 | 6.35 | 5.37 | 5.29 | 6.48 | 3.51 | NS | NS
 | γ | 12.20 | 23.63 | 31.62 | 37.67 | 36.42 | 31.74 | 23.52 | NS | NS
 | R | 0.59 | 0.45 | 0.27 | 0.29 | 0.27 | 0.21 | 0.23 | NS | NS
Mead rainfed rotation: maize | α | 0.54 | 3.39 | 4.67 | 4.21 | 3.78 | 3.23 | 2.31 | 0.94 | NS
 | γ | 17.47 | 31.51 | 44.79 | 55.53 | 56.19 | 46.60 | 33.49 | 18.65 | NS
 | R | 0.66 | 0.53 | 0.48 | 0.53 | 0.37 | 0.35 | 0.29 | 0.44 | NS
Mead rainfed rotation: soybean | α | 0.75 | 4.69 | 16.67 | 9.43 | 15.38 | 31.88 | 5.89 | 1.35 | NS
 | γ | 13.11 | 23.44 | 29.27 | 34.98 | 30.74 | 29.40 | 20.29 | 13.47 | NS
 | R | 0.53 | 0.16 | 0.08 | 0.05 | 0.01 | 0.00 | 0.04 | 0.18 | NS

References

