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4. Discussion

4.1. LUE in field measurements and in remote sensing models

Some large-scale studies have cautioned the use of field-derived LUE 
values in remote sensing models. For the United States, Lobell et al. 
(2002) calibrated LUE values in the CASA model using Advanced 
Very High Resolution Radiometer (AVHRR) satellite data with agri-
cultural survey data. Their derived ε*

GPP values after translation were 
only 1.43 ± 0.27 gC MJ−1 for corn and 0.63 ± 0.20 gC MJ−1 for non-
corn areas. Bradford et al. (2005) also found that the LUE values esti-
mated from the AVHRR data were well below the values that were de-
rived from field measurements. In these studies, the large discrepancies 
between the LUE values in remote sensing models and field measure-
ments were attributed to the biased location selection in field measure-
ments and the overestimated APAR values in satellite-based studies. 
However, we observe that the ε*

GPP values derived from inventory data 
are consistent with those derived from the flux tower data (Figure 8). 
In our best fit with the tower-based GPP reference, the ε*

GPP values are 
2.78 ± 0.48 gC MJ−1 for corn and 1.64 ± 0.23 gC MJ−1 for soybean 
based on the Local-MOD15 model. When using the inventory-based  

Figure 5. Annual GPP derived from the 2011 national inventory data are plotted against the modeled PAR × EVI × f(ε) products by applying (a) a general crop-
land mask (EVI-Mask) and (b) a fractional cropland map (EVI-Frac). Solid lines denote linear regressions with no intercepts. Dashed lines denote lines with the 
ε*

GPP values used by MOD17A2.

Figure 6. The spatial distribution of annual cropland GPP in 2011 as derived 
by (a) the yearly MODIS GPP products (MOD17A3), (b) the EVI-Mask model 
setup with a general cropland ε*

GPP, and (c) the EVI-Frac model setup with 
crop-specific ε*

GPP.

Figure 7. GPP estimates (mean ± standard deviation) in 2011 as derived from 
NASS inventory data and modeled by MOD17A3 and different model setups. 
The model setups are specified in Table 2. Standard deviations of MODIS GPP 
estimates are derived using all pixels that have subpixel proportions of corn or 
soybean greater than 50%.
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GPP references, the derived ε*

GPP values are 2.48 ± 0.65 gC MJ−1 for 
corn and 1.18 ± 0.29 gC MJ−1 for soybean using the MOD15-Frac 
model. All these values fall within the range of field-measured results 
as reviewed by Sinclair and Muchow (1999).

Though different from early studies using AVHRR data (Bradford 
et al., 2005; Lobell et al., 2002), our findings show agreement with re-
cent studies (Bandaru et al., 2013; Chen et al., 2011; Guanter et al., 
2014) and indicate that the field-derived ε*

GPP values should be con-
sistently used for large-scale modeling. In our results (Figures 2 and 
5), it is clear that the underestimated MODIS GPP is largely due to the 
underestimated ε*

GPP. The MODIS Land Science team has made tre-
mendous efforts on model parameterization in a generalized manner 
to characterize global biomes, such that the ε*

GPP values prescribed in 
the current MODIS GPP products do not vary with geographical lo-
cation. Our evaluation efforts imply that there is a need to readjust the 
parameters in the MOD17 model carefully for studies in specific re-
gions, especially agricultural zones.

4.2. Uncertainties of ε*
GPP estimates in regional modeling

Several factors may influence the inversion of the MOD17 model for 
deriving optimal cropland ε*

GPP values in our study. First, we did not try 
to alter the MOD17 model structure, which uses TMIN and VPD to ac-

count for climatic stresses. Other PEMs used slightly different climate 
variables to down-regulate LUE estimates (Cramer et al., 1999; Wu et 
al., 2010), and recent studies also tried to estimate LUE directly from 
remote sensing data (Hilker et al., 2008, 2010). To understand the in-
fluences of environmental factors on the modeled results, we also per-
form model calibrations without environmental LUE limitations (i.e., 
without f(ε) in Eq. (1)) using the Local-MOD15 model setup. The de-
rived LUE values are 2.31 gC MJ−1 for corn and 1.37 gC MJ−1 for soy-
bean, which are approximately 16.9% and 16.5% lower than the mod-
els with environmental LUE down-regulations, respectively.

Second, the general cropland mask defined by a threshold of 50% 
influences regional GPP modeling. When the cropland mask is defined 
based on thresholds of 40% or 60%, the calibrated cropland ε*

GPP val-
ues using the MOD15-Mask model setup are 2.06 ± 0.15 gC MJ−1 or 
1.60 ± 0.10 gC MJ−1, which are approximately 14.4% higher or 11.2% 
lower, respectively, than when a threshold of 50% is applied (Table 
4). The method that applies fractional land use maps circumvents the 
threshold problem and provides reliable ε*

GPP and GPP estimates (Fig-
ures 7 and 8). Even the NASS CDL data routinely produce fine-resolu-
tion land use maps on an annual basis, successful algorithms that can 
produce global crop-specific maps at fine resolutions remain to be de-
veloped (Yu et al., 2013; Zhong et al., 2011).

Finally, satellite-derived FPAR also influence the ε*
GPP estimates. 

Models with EVI-based FPAR perform better than the MOD15-based 
FPAR in terms of the explained GPP variance (Figure 4). However, 
ε*

GPP values derived from EVI-based FPAR are approximately 14–
25% greater than values derived from the MOD15-based FPAR (Ta-
bles 3 and 4). Similar to previous studies (Kalfas et al., 2011; Xiao 
et al., 2004), the constant in Eq. (6) for estimating the FPAR was as-
sumed to be 1.0. Additional field studies are necessary for quantifying 
the relationships between EVI and FPAR for different crop species.

5. Conclusions

Satellite remote sensing provides an efficient method for monitoring 
vegetation GPP at a large scale. However, parameterization of the light 
use efficiency varies considerably for croplands. Based on the MOD17 
model, we evaluate ε*

GPP values at multi scales using both in situ mea-
surements and inventory data.

We observed consistent LUE values from both site and regional-
scale models. The derived ε*

GPP values based on the 28 site-years tower 
measurements are 2.78 ± 0.48 gC MJ−1 for corn and 1.64 ± 0.23 gC 
MJ−1 for soybean. Calibrations using 4-year inventory data generate 
ε*

GPP values of 2.48 ± 0.65 gC MJ−1 for corn and 1.18 ± 0.29 gC MJ−1 
for soybean. The environmental factors account for approximately 16% 
uncertainties of the ε*

GPP estimates. The general cropland mask with 
varying thresholds (0.40–0.60) accounts for 11–14% of the uncertainty 
in the GPP estimates. The different methods that are used to derive 
FPAR from satellite data may generate 14–25% uncertainties of ε*

GPP. 
Given the results from both tower measurements and inventory data, 
we conclude that field-derived LUE values should be used consistently 
in large-scale modeling.

We also observed that the MODIS GPP products are underes-
timated for croplands in the Midwestern US. Using model setups 
similar to the MOD17 GPP product, the derived ε*

GPP value is 1.80 
± 0.12 gC MJ−1, or 1.73 times greater than the value prescribed in the 
current MOD17 GPP model. With recalibrated ε*

GPP values, the mod-
eled annual GPP could match national inventory data. These results 
suggest that the parameters (primarily ε*

GPP) in the MOD17 model 
should be carefully readjusted to characterize cropland GPP in the 
Midwestern US.

Figure 8. Comparisons of the derived ε*
GPP values based on different model 

setups for (a) corn and (b) soybean. Standard deviations are calculated based 
on data from all site-years and county-years.



Light use  eff ic iency in  MODIS GPP for croplands  in  the  Midwestern U.S .   119

Acknowledgments — We gratefully acknowledge the support of the National 
Natural Science Foundation of China (Grant no. 41401484 and 2013M540087). 
We thank the anonymous reviewers for Agricultural and Forest Meteorology 
for their insightful comments.

References

Bandaru, V., West, T.O., Ricciuto, D.M., César Izaurralde, R., 2013. Es-
timating crop net primary production using national inventory data 
and MODIS-derived parameters. ISPRS J. Photogramm. Remote Sens. 
80, 61–71.

Beer, C., et al., 2010. Terrestrial gross carbon dioxide uptake: Global dis-
tribution and covariation with climate. Science 329 (5993), 834–838.

Boryan, C., Yang, Z., Mueller, R., Craig, M., 2011. Monitoring US ag-
riculture: The US Department of Agriculture, National Agricultural 
Statistics Service, cropland data layer program. Geocarto Int. 26 (5), 
341–358.

Bradford, J., Hicke, J., Lauenroth, W., 2005. The relative importance of 
light-use efficiency modifications from environmental conditions and 
cultivation for estimation of large-scale net primary productivity. Re-
mote Sens. Environ. 96 (2), 246–255.

Chen, T., van der Werf, G.R., Dolman, A.J., Groenendijk, M., 2011. Evalu-
ation of crop-land maximum light use efficiency using eddy flux mea-
surements in North America and Europe. Geophys. Res. Lett., 38.

Choudhury, B.J., 2000. Carbon use efficiency, and net primary productivity 
of terrestrial vegetation. Adv. Space Res. 26 (7), 1105–1108.

Cramer, W., et al., 1999. Comparing global models of terrestrial net pri-
mary productivity (NPP): Overview and key results. Global Change 
Biol. 5 (S1), 1–15.

Field, C.B., Randerson, J.T., Malmstrom, C.M., 1995. Global net primary 
production: Combining ecology and remote sensing. Remote Sens. 
Environ. 51 (1), 74–88.

Garbulsky, M.F., et al., 2010. Patterns and controls of the variability of ra-
diation use efficiency and primary productivity across terrestrial eco-
systems. Global Ecol. Biogeogr. 19 (2), 253–267.

Gelybó, G., Barcza, Z., Kern, A., Kljun, N., 2013. Effect of spatial hetero-
geneity on the validation of remote sensing based GPP estimations. 
Agric. For. Meteorol. 174, 43–53.

Goetz, S.J., Prince, S.D., Goward, S.N., Thawley, M.M., Small, J., 
1999. Satellite remote sensing of primary production: An improved 
production efficiency modeling approach. Ecol. Model. 122 (3), 
239–255.

Gower, S., et al., 2001. Net primary production and carbon allocation pat-
terns of boreal forest ecosystems. Ecol. Appl. 11 (5), 1395–1411.

Griffis, T., Baker, J., Sargent, S., Tanner, B., Zhang, J., 2004. Measuring 
field-scale isotopic CO2 fluxes with tunable diode laser absorption 
spectroscopy and micrometeorological techniques. Agric. For. Mete-
orol. 124 (1), 15–29.

Guanter, L., et al., 2014. Global and time-resolved monitoring of crop pho-
tosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. U. S. 
A. 111 (14), E1327–E1333.

Heinsch, F.A., et al., 2003. User’s Guide: GPP and NPP (MOD17A2/A3) 
Products, NASAMODIS Land Algorithm, Version 2.0., pp. 1–57.

Hilker, T., Coops, N.C., Wulder, M.A., Black, T.A., Guy, R.D., 2008. The 
use of remote sensing in light use efficiency based models of gross pri-
mary production: A review of current status and future requirements. 
Sci. Total Environ. 404 (2), 411–423.

Hilker, T., et al., 2010. Remote sensing of photosynthetic light-use effi-
ciency across two forested biomes: Spatial scaling. Remote Sens. En-
viron. 114 (12), 2863–2874.

Huete, A., et al., 2002. Overview of the radiometric and biophysical per-
formance of the MODIS vegetation indices. Remote Sens. Environ. 
83 (1–2), 195–213.

Kalfas, J.L., Xiao, X., Vanegas, D.X., Verma, S.B., Suyker, A.E., 2011. 
Modeling gross primary production of irrigated and rain-fed maize 
using MODIS imagery and CO2 flux tower data. Agric. For. Meteo-
rol. 151 (12), 1514–1528.

Lindquist, J.L., Arkebauer, T.J., Walters, D.T., Cassman, K.G., Dobermann, 
A., 2005. Maize radiation use efficiency under optimal growth condi-
tions. Agron. J. 97(1), 72–78.

Lobell, D.B., et al., 2002. Satellite estimates of productivity and light use 
efficiency in United States Agriculture, 1982–98. Global Change Biol. 
8 (8), 722–735.

Matamala, R., Jastrow, J.D., Miller, R.M., Garten, C., 2008. Temporal 
changes in C and N stocks of restored prairie: Implications for C se-
questration strategies. Ecol. Appl. 18 (6), 1470–1488.

Meyers, T.P., Hollinger, S.E., 2004. An assessment of storage terms in the 
surface energy balance of maize and soybean. Agric. For. Meteorol. 
125 (1), 105–115.

Myneni, R.B., et al., 2002. Global products of vegetation leaf area and frac-
tion absorbed PAR from year one of MODIS data. Remote Sens. En-
viron. 83 (1–2), 214–231.

Potter, C.S., et al., 1993. Terrestrial ecosystem production – A process 
model-based on global satellite and surface data. Global Biogeochem. 
Cycles 7 (4), 811–841.

Prince, S.D., Goward, S.N., 1995. Global primary production: A remote 
sensing approach. J. Biogeogr. 22 (4–5), 815–835.

Prince, S.D., Haskett, J., Steininger, M., Strand, H., Wright, R., 2001. Net 
primary production of US Midwest croplands from agricultural har-
vest yield data. Ecol. Appl.11 (4), 1194–1205.

Reeves, M.C., Zhao, M., Running, S.W., 2005. Usefulness and limits of 
MODIS GPP for estimating wheat yield. Int. J. Remote Sens. 26 (7), 
1403–1421.

Reichstein, M., et al., 2005. On the separation of net ecosystem exchange 
into assimilation and ecosystem respiration: Review and improved al-
gorithm. Global Change Biol. 11 (9), 1424–1439.

Ruimy, A., Saugier, B., Dedieu, G., 1994. Methodology for the estima-
tion of terrestrial net primary production from remotely sensed data. 
J. Geophys. Res. Atmos. 99(D3), 5263–5283.

Running, S.W., et al., 2004. A continuous satellite-derived measure of 
global terrestrial primary production. Bioscience 54 (6), 547–560.

Running, S.W., Thornton, P.E., Nemani, R., Glassy, J.M., 2000. Global ter-
restrial gross and net primary productivity from the earth observing 
system. Methods Ecosyst. Sci., 44–57.

Schlesinger, W.H., Bernhardt, E.S., 2013. Biogeochemistry: An Analysis 
of Global Change. Elsevier.

Sinclair, T.R., Muchow, R.C., 1999. Radiation use efficiency. Advances in 
Agronomy 65, 215–265.

Singer, J.W., Meek, D.W., Sauer, T.J., Prueger, J.H., Hatfield, J.L., 2011. 
Variability of light interception and radiation use efficiency in maize 
and soybean. Field Crops Res. 121 (1), 147–152.

Sjöström, M., et al., 2013. Evaluation of MODIS gross primary produc-
tivity for Africa using eddy covariance data. Remote Sens. Environ. 
131, 275–286.



119-A Xin et  al .  in  Agricultural  and Forest  Meteorology 201 (2015) 

Suyker, A.E., Verma, S.B., 2012. Gross primary production and ecosys-
tem respiration of irrigated and rainfed maize–soybean cropping sys-
tems over 8 years. Agric. For. Meteorol. 165, 12–24.

Taylor, K.E., 2001. Summarizing multiple aspects of model performance 
in a single diagram. J. Geophys. Res. Atmos. (1984–2012) 106 (D7), 
7183–7192.

Turner, D.P., Gower, S.T., Cohen, W.B., Gregory, M., Maiersperger, T.K., 
2002. Effects of spatial variability in light use efficiency on satellite-
based NPP monitoring. Remote Sens. Environ. 80 (3), 397–405.

Turner, D.P., et al., 2006. Evaluation of MODIS NPP and GPP products 
across multiple biomes. Remote Sens. Environ. 102 (3), 282–292.

Wu, C., Munger, J.W., Niu, Z., Kuang, D., 2010. Comparison of multiple 
models for estimating gross primary production using MODIS and 
eddy covariance data in Harvard Forest. Remote Sens. Environ. 114 
(12), 2925–2939.

Xiao, X.M., et al., 2004. Satellite-based modeling of gross primary pro-
duction in an evergreen needleleaf forest. Remote Sens. Environ. 89 
(4), 519–534.

Xin, Q., et al., 2013. A production efficiency model-based method for sat-
ellite estimates of corn and soybean yields in the midwestern US. Re-
mote Sens. 5 (11),5926–5943.

Yang, Y., Shang, S., Guan, H., Jiang, L., 2013. A novel algorithm to assess 
gross primary production for terrestrial ecosystems from MODIS im-
agery. J. Geophys. Res.: Biogeosci. 118 (2), 590–605.

Yu, L., et al., 2013. FROM-GC: 30 m global cropland extent derived 
through multi-source data integration. Int. J. Digit. Earth 6, 521–533.

Zhang, Q., et al., 2014. Estimation of crop gross primary production (GPP): 
I. Impact of MODIS observation footprint and impact of vegetation 
BRDF characteristics. Agric. For. Meteorol. 191, 51–63.

Zhang, Y., Yu, Q., Jiang, J., Tang, Y., 2008. Calibration of Terra/MODIS 
gross primary production over an irrigated cropland on the North 
China Plain and an alpine meadow on the Tibetan Plateau. Global 
Change Biol. 14 (4), 757–767.

Zhao, M., Heinsch, F.A., Nemani, R.R., Running, S.W., 2005. Improve-
ments of the MODIS terrestrial gross and net primary production 
global data set. Remote Sens. Environ. 95 (2), 164–176.

Zhao, M., Running, S.W., 2010. Drought-induced reduction in global ter-
restrial net primary production from 2000 through 2009. Science 329 
(5994), 940–943.

Zhong, L., Hawkins, T., Biging, G., Gong, P., 2011. A phenology-based 
approach to map crop types in the San Joaquin Valley, California. Int. 
J. Remote Sens. 32 (22), 7777–7804.


