






Figure 9. Flow simulations for the scenario 1 model at reservoir elevations 485 ft (A), 510 ft (B), and 540 ft (C). Rising

reservoir elevations result in progressively increased saturation in the upstream portion of the embankment and flow

through the model. The high-hydraulic conductivity horizontal drainage fill (df) is effective in rapidly draining flow to the

toe of the dam and maintains unsaturated conditions in the downstream portion of the embankment. Distances, elevations,

and heads in meters equal 0.3048 times values in feet.
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indicator of relative amounts of seepage along the dam

if the wells are located in different geologic structures.

While the two-dimensional flow scenarios provide

useful information about the character of flow through

the dam and the relative influence of different dam and

foundation materials, there is likely a three-dimensional

component to flow at the Hidden Dam site caused by
topographic variations along the strike of the dam as

well as the topography of the bedrock surface. To first

order, this would involve a component of flow towards

the low elevation areas along the centerline of the dam,

but local effects caused by the rolling surface and

bedrock topography may also be relevant in controlling

flow. Three-dimensional modeling was not possible in

this study because of the large number of parameters

required to model flow, especially when incorporating
small-scale features such as the drainage fill. Future

work could benefit from simulating three-dimensional

Figure 10. Outward seepage (A) and self-potentials (B) predicted as a function of distance along the downstream

embankment and ground surface for the three different reservoir elevations shown in Fig. 9. Distances and elevations in

meters equal 0.3048 times values in feet. Flux in meters per second equal 0.3048 times flux in feet per second.
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flow to better predict seepage areas at the site, but will

likely require a more generic dam model that does not

include all of the structural detail explored in this study.

Conclusions

Self-potential and electrical resistivity surveys at

Hidden Dam have provided valuable information

regarding the hydrogeologic factors contributing to

seepage observed at the site. The self-potential data

confirm known seepage areas in the vicinity of the

drainage blanket on the northwest (right) side of the

dam, little-to-no seepage on the southeast (left) side of

the dam, and a potentially focused area of seepage

immediately above the outlet works. The resistivity

cross-sections provide a useful means for delineating

subsurface structural variability that controls flow

patterns. Enhanced flow is most likely to occur in the

regions that contain sediments or weathered granite, and

therefore increased porosity and permeability, rather

than areas of more competent bedrock. Most promi-

nently, the resistivity models indicate a fairly wide

sediment channel that is likely a contributing factor to

the known seepage area on the right side of the dam.

The upstream reservoir head, geometry of the competent

granite in the subsurface, and downstream surface

topography are likely the most significant controlling

factors for the observed seepage.

Numerical modeling of likely flow scenarios and the

predicted geophysical response provides valuable addi-

tional information about possible seepage behavior at the

Hidden Dam site. This also provides a framework for

iteratively updating hydrogeologic assumptions by com-

paring predicted responses with hydraulic and geophys-

ical measurements. Modeling results can also be used to

help guide future geophysical work or site new monitor-

ing wells. This work focused primarily on understanding

seepage patterns through the dam foundation, but future

studies could easily incorporate seepage mechanisms

through the embankment as well. Including variability in

downstream topography in the dam-parallel direction

would also provide more accurate flow simulations and a

better indication of the importance of three-dimensional

flow pathways at the site.

While the primary focus of this work is on the

analysis of present-day seepage conditions at the Hidden

Figure 11. Comparison of the historical trend of observed water levels in observation well OW-7 (solid dots) with those

predicted by flow scenario 2 (open circles) as a function of reservoir elevation. Elevations in meters equal 0.3048 times

elevations in feet.
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Dam site, we hope to further develop the use of coupled

hydrogeophysical modeling and inversion. A fully

integrated approach would involve the use of both

hydraulic and geophysical measurements used together

to directly inform hydrogeologic models and better

understand dynamic seepage patterns.
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APPENDIX

HYDROGEOPHYSICAL MODELING

Variably-saturated Flow Equations

The formulation of the steady-state Richards

equation solved by COMSOL Multiphysics is:

+: {
Kskr

rg
+pzrg+zð Þ

� �
~Qs ðA� 1Þ

where Ks is the saturated hydraulic conductivity (m/s); r
is the water density, which is set to a constant 1,000 kg/

m3; g is the acceleration due to gravity, equal to 9.8 m/s2;

P is the state variable that describes water pressure (Pa)

throughout the model; z is elevation (ft); and Qs

represents imposed fluid sources or sinks (1/s). Fixed-

head boundary conditions are applied on the upstream

side of the dam, with the head equal to the difference

between the reservoir and ground surface elevation. On

the downstream side of the dam, a mixed boundary

condition is implemented to simulate the seepage face

that can occur when the water level intersects the ground

surface (Chui and Freyberg, 2009). The seepage face

boundary condition acts as a no-flow boundary above

the water level, and is assigned atmospheric pressure at

locations where the water level intersects the ground

surface. The left, right, and bottom boundaries of the

model are placed far away from the study area to limit

their influence on the simulated flow near the dam, and

are assigned no-flow boundary conditions.
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The van Genuchten equations (van Genuchten,

1980) are used to describe the relative hydraulic

permeability, kr, effective saturation, Se, and liquid

volume, h, as a function of pressure head, which is

defined as Hp~p=rg (m):

kr~
Se 1{ 1{Se1=m

� �m� �2

Hpv0

1 Hp§0

8<
: ðA� 2Þ

Se~

1

1z aHp

�� ��n� �m Hpv0

1 Hp§0

8><
>: ðA� 3Þ

h~
hrzSe hs{hrð Þ Hpv0

hs Hp§0

	
ðA� 4Þ

m~1{
1

n
ðA� 5Þ

Liquid volume ranges from user-specified small residual

value, hr, to the total porosity, hs. These bounds, as well

as the constants a and n depend on material properties.

a is related to the air entry pressure head and desorption

behavior of the soil, and n is related to the pore-size

distribution of the soil. A detailed description of how

these values were determined for the Hidden Dam

model follows.

Determination of Variably Saturated Model

Input Parameters

The model input parameters were obtained from

the seepage studies conducted by Cedergren (1980a,

1980b) and the Soil Plant Air Water (SPAW) soils

database developed by Saxton and Rawls (2006), and

are available through the USDA-NRCS (http://

www.wsi.nrcs.usda.gov/products/W2Q/water_mgt/Water_

Budgets/SPAW_Model.html, last accessed January, 2010).

Estimates of the saturated hydraulic conductivity (Ta-

ble A-1) and gradation curves corresponding to each sub-
domain of the dam were provided by Cedergren (1980a)

and the foundation report (U.S. Army Corps of Engineers,

1977). Grain size distributions were summarized in terms

of percent gravel, sand, silt, and clay by employing a

standardized grain scale.

Soil-water retention curves and saturated and

residual moisture contents (Table A-1) for each sub-

domain were estimated using the graphical user interface
of Saxton and Rawls (2006) and the available gradation

data. Percentages were entered into the SPAW database

to obtain estimates of textural classification (Table A-1)

and statistically-based estimates of soil-water retention

curves for each sub-domain. The retention curves relate

matric suction (Hp , 0) to volumetric moisture content

(volume fraction), and are a key component of the

unsaturated flow models. Soil-water retention curves
were created for matric suctions ranging between

1,500 kPa, corresponding to absorbed soil moisture at

the residual moisture condition, and atmospheric

pressure, corresponding to soil moisture at the saturated

condition. The curves were produced under the assump-

tion that the effects of organic matter and osmotic

pressures were negligible. Soil compaction in the SPAW

model was specified as ‘‘normal,’’ implying that no
unnatural changes in soil bulk density had occurred.

The soil-water retention curves are incorporated

into the flow model by determining the parameters a

and n in Eqs. (A-3) and (A-4) that fit each retention

curve produced by the SPAW model. These parameters

define the relative permeability as a function of

saturation in Eq. (A-2), which is incorporated in the

variably saturated flow Eq. (A-1). Nominal values a 5

0.6562 / m and n 5 2.0 are used for the grout curtain

and bedrock as the necessary input parameters were not

available for these units.

Table A-1. Summary of gradation and soil-water retention data for Hidden Dam model units.

Impervious Core Random Fill Select Fill Drainage Fill

Saturated hydraulic conductivity (m/day) 0.0061 0.30 0.61 2,438

Gravel (weight fraction) 0.10 0.25 0.30 1.00

Sand (weight fraction) 0.45 0.10 0.50 0.00

Silt (weight fraction) 0.10 0.63 0.18 0.00

Clay (weight fraction) 0.35 0.02 0.02 0.00

Textural classification Sandy clay Silty loam Sandy loam Sandy gravel

Residual moisture (volume fraction) 0.21 0.02 0.01 0.02

Saturated moisture (volume fraction) 0.42 0.37 0.38 0.43

a (1/m) 0.6604 0.7871 0.8048 2.351

n 1.9923 3.9218 3.3088 3.5952
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Electrokinetic Coupling to Determine the Self-
potential Response

Electrokinetic coupling is the mechanism by which

fluid flow in porous media generates measurable electri-

cal potentials in the earth, called self-potentials (Ishido

and Mizutani, 1981; Morgan et al., 1989; Revil et al.,

1999). A small amount of excess positive charge is
transported along with fluid flow in porous materials,

generating a ‘‘streaming’’ electric current density. Be-

cause the total electric current density in the earth must be

conserved, this streaming current density generates a

balancing conduction current density that flows through-

out the earth. As this conduction current traverses the

subsurface electrical resistivity structure, it results in

measurable electrical potential differences between vari-
ous locations, which are called self-potentials.

Mathematically, this phenomenon is written:

+: jszjcð Þ~+: QVu{s+Vð Þ~0 ðA� 6Þ

where js and jc represent the streaming and conduction

currents (A/m2), respectively. The streaming current can

be defined as the excess charge density QV in coulombs

per cubic meter (C/m3) times the fluid velocity u (m/s).
The conduction current is defined as the negative of the

electrical conductivity (ohm-m) times the electrical

potential gradient (V/m). The difference in electrical

potential, V, between two locations is the self-potential

value (V). No-flow boundary conditions are implement-
ed along with Eq. (A-6), which simulates the barrier to

electrical current across the air-earth interface due to the

strong contrast in resistivity. The left, right, and bottom

boundaries are placed far away from the dam to limit

their influence on the results within the area of interest.

By coupling the electrical problem to the variably

saturated flow problem, the self-potential response can

be calculated for any flow scenario.
Equation (A-6) can be solved in COMSOL by

coupling directly to the flow velocity, u, that is

calculated in the solution of Richards equation dis-

cussed previously. The subsurface electrical conductivity

(s) structure is calculated dynamically as a function of

the liquid volume content, h, in Eq. (A-4) using Archie’s

law (Archie, 1942; Lesmes and Friedman, 2005):

s~swh
m ðA� 7Þ

where sw is the electrical conductivity of the pore water,
and is fixed at a value of 0.05 S/m (20 ohm-m) for this

study. The cementation exponent, m, is fixed at 1.7. The

excess charge density, QV, is also calculated dynamically

as a function of the saturation-dependent hydraulic

permeability, k, using the relationship provided by

Jardani et al. (2008):

log QVð Þ~{9:2349{0:8219 log kð Þ ðA� 8Þ
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