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Abstract Riffle-dwelling crayfish populations were sam-

pled at 16 sites in 4 tributaries of the Spring River located

within the Tri-State Mining District in southwest Missouri.

Crayfish density, physical habitat quality, and water quality

were examined at each site to assess the ecological effects of

mining-derived metals on crayfish. Metals (lead, zinc, and

cadmium) were analyzed in samples of surface water, sedi-

ment, detritus, and whole crayfish. Sites were classified

a posteriori into reference, mining, and downstream sites

primarily based on metal concentrations in the materials

analyzed. Three species of crayfish (Orconectes neglectus

neglectus, O. macrus, and O. virilis) were collected during

the study; however, only O. n. neglectus was collected at all

sites. Mean crayfish densities were significantly lower at

mining sites than at reference sites. Mean concentrations of

metals were significantly correlated among the materials

analyzed and were significantly greater at mining and

downstream sites than at reference sites. Principal compo-

nent analyses showed a separation of sites due to an inverse

relationship among crayfish density, metals concentrations,

and physical habitat quality variables. Sediment probable-

effects quotients and surface-water toxic unit scores were

significantly correlated; both indicated risk of toxicity to

aquatic biota at several sites. Metals concentrations in whole

crayfish at several sites exceeded concentrations known to be

toxic to carnivorous wildlife. Mining-derived metals have

the potential to impair ecosystem function through decreased

organic matter processing and nutrient cycling in streams

due to decreased crayfish densities.

The Tri-State Mining District (TSMD) occupies an area of

approximately 647,500 ha in southwestern Missouri,

southeastern Kansas, and northeastern Oklahoma. The

TSMD was mined for zinc (Zn) and lead (Pb) for [150

years, beginning in the mid-1800s and ending in the late

1960s, with peak production occurring during World War

II (Stewart 1986). Many sites in the TSMD are contami-

nated by wastes from historical mining, ore processing, and

smelting (Barks 1977; Czarnezki 1985; Davis and

Schumacher 1992), which has resulted in effects on aquatic

organisms and potential risk to humans and wildlife

(Angelo et al. 2007; Brumbaugh et al. 2005; MacDonald

et al. 2010; Schmitt et al. 2006; Wang et al. 2010; Wild-

haber et al. 1997, 2000). The United States Environmental

Protection Agency (USEPA) has established four Super-

fund National Priority List (NPL) sites within the TSMD.

Crayfish are an important structural component of many

aquatic systems, including Ozark streams, where they have

been found to be the predominant macroinvertebrate

(Rabeni 1985). Crayfish also play an integral role in stream

function and the cycling of nutrients and energy through

stream food webs by shredding organic matter (Creed

1994; Momot et al. 1978; Momot 1995; Rabeni et al. 1995)

and as an important prey item for fish and other aquatic and

terrestrial vertebrates (DiStefano 2005 and references
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therein; Hobbs 1993; Rabeni et al. 1995). Recent research

has showed that crayfish significantly affect aquatic

microhabitats by way of ecosystem engineering (Zhang

et al. 2004). Therefore, effects on crayfish may result in

changes in the structure and function of Ozark stream

ecosystems.

The objectives of this study were to determine crayfish

species composition and densities in riffle habitats at

selected stream sites in the TSMD; to evaluate crayfish

densities relative to concentrations of the mining-derived

metals, Pb, Zn, and cadmium (Cd), in surface water, sed-

iment, detritus, and whole crayfish; to characterize physical

habitat and water quality; and to evaluate the potential

effects of metals in crayfish to carnivorous wildlife.

Materials and Methods

Crayfish were sampled in riffle habitats of tributaries of the

Spring River of southwestern Missouri and southeastern

Kansas. The 16 sample sites were located in Jenkins Creek,

Center Creek, Turkey Creek, and Shoal Creek (Table 1;

Fig. 1). Sites were selected based on stream order (Strahler

1952) and proximity to areas with mine waste. Sites were

classified based on distances downstream from known

sources of mining-related contaminants and metal con-

centrations in the materials analyzed from each site. Sites

considered upstream of contaminated areas where metals

concentrations were low (e.g., reference sites) included J1,

C1, T1, T2, S1, and S2; sites directly downstream of highly

contaminated areas where metals concentrations were high

(e.g., mining sites) included C2, C3, C4, T3, S3, and S6;

and sites considered to be further downstream of mining or

less contaminated areas where metals concentrations were

intermediate (e.g., downstream sites) included C5, T4, S4,

and S5.

Crayfish were collected by disturbing the substrate

inside a 1 m2 weighted polyvinyl chloride (PVC) quadrat

frame placed on the stream bottom directly upstream of a

kick seine (1.5 m length 9 1.5 m height) with a 3 mm

diameter delta mesh on one date per site during the period

of July 13 to 29, 2009 (15 sites) or on September 3, 2009

(Site S6). Each site consisted of a stream reach containing

three riffles. Eight kick-seine subsamples were randomly

located in each riffle (total n = 24/site). Crayfish were

identified as to species (Pfleiger 1996), and carapace length

(CL) was measured (to the nearest 0.1 mm) from the tip of

rostrum to the posterior edge of the cephalothorax. All

crayfish except those retained for metal analyses were

released alive to the stream.

Table 1 Sampling locations in Jenkins, Center, Turkey, and Shoal creeks in southwestern Missouri and southeastern Kansas, USA

Stream/

site

Latitude Longitude Gradient

(m/km)

Drainage

area (ha)

Upstream

tailings

area (ha)

Tailings

area/

drainage

area

Distance

downstream

from tailings (km)

Stream

order

Site

group

Jenkins creek

J1 37804033.400 94815040.100 5.01 9,324 0.70 0.00008 5.1 3 R

Center creek

C1 37806046.900 94818002.900 4.36 29,526 27.8 0.00094 15 5 R

C2 37810046.600 94827056.200 2.52 66,045 588 0.00891 3.4 5 M

C3 37810004.600 94832021.300 2.52 67,340 785 0.01166 0.6 5 M

C4 37810045.800 94828044.700 2.46 73,297 815 0.01112 3.9 5 M

C5 37809005.400 94836050.700 2.72 77,182 908 0.01176 1.0 5 D

Turkey creek

T1 37805024.100 94827027.900 8.98 4,144 81.7 0.01971 2.7 2 R

T2 37806038.400 94831017.200 3.66 6,734 143 0.02128 4.1 3 R

T3 37806051.600 94832044.900 3.63 9,324 225 0.02417 1.1 4 M

T4 37807046.900 94837035.200 4.79 11,396 318 0.02790 4.5 4 D

Shoal creek

S1 36856034.700 94818003.900 3.36 69,671 96.0 0.00138 6.8 5 R

S2 37801025.700 94831011.000 2.84 84,952 120 0.00142 5.1 5 R

S3 37802007.700 94835016.500 1.52 113,441 181 0.00160 2.6 5 M

S4 37802024.000 94836030.100 2.32 114,736 209 0.00182 2.4 5 D

S5 37802031.200 94839008.000 3.08 116,549 213 0.00183 7.1 5 D

S6 37�02033.800 94839023.600 3.08 117,585 345 0.00294 0.5 5 M

R reference site, M mining site, D downstream site
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Water depth and current velocity were measured at each

1 m2 kick-seine quadrat just before crayfish sampling using

a Marsh-McBirney 2000 portable flow meter (Hach Inc.,

Loveland, Colorado, USA) at 6/10 of measured depth (Bain

and Stevenson 1999). Substrate particle size was visually

estimated at five random points within a 0.5 9 0.5 m grid

of each quadrat and assigned a value based on six

coarseness categories (Bain et al. 1985).

A Hydrolab Quanta meter (Hach Inc., Loveland, Colo-

rado, USA) was used to measure temperature, pH, specific

conductance, dissolved oxygen, and turbidity in each riffle

sampled for crayfish. A surface-water grab sample was

collected from each riffle for analyses of metals (Pb, Zn,

and Cd), alkalinity, hardness, and sulfate concentration.

Alkalinity and hardness were measured by titration

(American Public Health Association 2005). Sulfate con-

centrations were determined by colorimetric detection

using a Hach 2100 spectrophotometer (Hach Inc., Love-

land, Colorado, USA). A subsample of each surface-water

sample was filtered on-site into a precleaned polyethylene

bottle using a polypropylene syringe and filter cartridge

(0.45 lm pore size), placed on ice, refrigerated, and sub-

sequently acidified to 1 % (v/v) with nitric acid within

4 days of collection. Water samples were analyzed for Pb,

Zn, and Cd using semiquantitative multielement induc-

tively-coupled plasma-mass spectrometry (ICP-MS).

Crayfish were subsampled from those collected during

kick-seine sampling for metals analyses. Generally, five

crayfish from each riffle at each site were composited for

analysis; however, samples from three sites (T4, S1, and

S4) contained only three crayfish per riffle. Crayfish were

rinsed with site water and placed in precleaned high-den-

sity polyethylene (HDPE) containers. Detritus (e.g.,

weathered leaves) was collected with a kick net and by

hand on the day of crayfish sampling at the stream banks of

each riffle sampled and placed in precleaned 125 mL

HDPE bottles. Samples of crayfish and detritus were placed

on ice, frozen (-20 �C) within 6 h of collection, and stored

frozen until analyzed. Animal tissues and organic material

were lyophilized (i.e., freeze-dried) and decreased to a

coarse powder by mechanical crushing in a glass vial with

a glass rod. Neither exoskeletons nor gut contents of the

crayfish were removed before analyses. A dry mass of

0.25 g from each composite sample of crayfish or detritus

sample was digested using concentrated nitric acid and

microwave heating before being analyzed for Pb, Zn, and

Cd using ICP-MS (Allert et al. 2008, 2009a; Besser et al.

2007). Surficial sediments (approximately the top 10 cm)

were collected within the wetted stream channel of each

riffle at each site using PVC scoops rinsed with site water

before collection (Besser et al. 2009b). Sediment samples

were composited and wet-sieved through a 2 mm stainless-

steel mesh sieve in the field to remove coarse particles

using a minimal quantity of site water (Besser et al. 2009b;

Brumbaugh et al. 2007); placed in precleaned 125 mL

glass bottles on ice; then refrigerated (-4 �C) until ana-

lyzed. In the laboratory, a subsample of the \2 mm sedi-

ment sample was sieved using a 250 lm stainless-steel

Fig. 1 Study sites, mine-related

waste (i.e., chat piles), city of

Joplin boundary, and designated

areas within USEPA NPL

(Superfund) sites, as well as

drainages, which are

distinguished by gray shades
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mesh sieve. Total recoverable (TR) metals (Pb, Zn, and

Cd) in the \2 and \250 lm sediment fraction were ana-

lyzed by ICP-MS (Brumbaugh et al. 2007; May et al.

1997).

Site-mean TR metals concentrations in the \250 lm

sediment fraction were converted to probable-effects quo-

tients (PEQs) by dividing site-mean TR metals concentra-

tions by TSMD-specific probable-effects concentrations

(PECs; MacDonald et al. 2000, 2010) for each metal.

Individual PEQs for the three metals were summed

(
P

PEQs) to estimate risks from the metal mixtures (Besser

et al. 2009a; Ingersoll et al. 2001). In general,
P

PEQs

greater than one are assumed to indicate a greater hazard of

toxic effects (Besser et al. 2009a); however, MacDonald

et al. (2010) calculated low-risk (
P

PEQ = 6.47) and high-

risk (
P

PEQ = 10.04) toxicity thresholds for Pb, Zn, and

Cd in TSMD sediments to better assess risks of toxicity in

the TSMD.

The cumulative risk of toxic effects from metals in

surface water was estimated using a toxic units (TU)

approach (Wildhaber and Schmitt 1996). A TU is defined

as the measured concentration of each dissolved metal in

surface water divided by the chronic ambient water-quality

criterion for the metal adjusted for hardness and the dis-

solved fraction of metal (USEPA 2005, 2006). TUs for

metals were summed to produce a total toxicity estimate of

the mixture (i.e., TU unit score =
P

TU) for site means;

values [1.0 generally indicate potential toxicity to aquatic

biota.

Increased concentrations of metals in fish and crayfish

within the TSMD represent a risk to fish and carnivorous

wildlife (Schmitt et al. 2006, 2008). The screening-level

criteria developed by Schmitt et al. (2006) were used to

assess the potential hazards of metals in crayfish collected

during this study to carnivorous wildlife. Toxicity thresh-

olds of metals in target species were determined through

food-chain analysis using procedures developed for con-

ducting ecological-risk assessments (USEPA 1992, 1993,

1997, 1999, 2007). This assessment used representative

bird and mammal species based on body weight, such as

the American robin (Turdus migratorius) and short-tailed

shrew (Blarina brevicauda), which can be extrapolated to

similar-sized species that consume crayfish. Hazard quo-

tients (HQs) were calculated using site mean concentra-

tions of Pb, Zn, and Cd in crayfish and no-effect hazard

concentrations (NEHCs) to estimate daily contaminant

intake rates; NEHCs are consensus-based no-adverse effect

level-based toxic reference values normalized for estimated

daily food ingestion rates (Schmitt et al. 2008). All assume

a diet of 100 % crayfish. There is no analogous procedure

to assess risk to predatory fish.

All statistical analyses were conducted using Statistical

Analysis System (release 9.1; SAS, Chicago, IL) for

Windows. Before analyses, data were tested for normality

and homogeneity of variance using Shapiro-Wilk statistic.

Data were not normally distributed; therefore, all analyses

were conducted using rank-transformed data (Conover and

Iman 1981). Ranks of site means for crayfish density,

water-quality variables, physical habitat quality variables,

and metal concentrations were used in the statistical anal-

yses. Censored values [less than method detection limit

(MDL); Supplemental Table S1] were replaced with 50 %

of the MDL for statistical computations, figures, and tables;

only metal concentrations in surface water samples from

reference sites were censored.

Differences among groups of sites (i.e., reference,

mining, downstream) were tested using nested analysis of

variance (ANOVA; riffles within sites) with site considered

a fixed effect. Differences in measured variables were

tested as planned nonorthogonal contrasts using single df

F-tests. The within-site mean squares for ranked variables

were used in all tests, which were conducted using PROC

GLM. Associations between site means metal concentra-

tions were examined using Spearman’s rank correlation

analyses (Supplemental Table S2) and indicated a high

degree of correlation between metals. Separate linear

regression of O. n. neglectus and O. macrus densities

against physical and chemical habitat variables was per-

formed using PROC REG with variable selection based on

Akaike’s information criterion (AIC; Burnham and

Anderson 2002). In these analyses, models were evaluated

relative to each other based on corrected AIC values

(AICc). The AICc values are adjusted upward for sample

size relative to the number of independent variables, which

protects against over-fitting models due to small sample

size (Burnham and Anderson 2002). The best-fit equally fit

model (variables n = 30) for O. n. neglectus density

included five variables: current velocity; Pb and Cd

in detritus; temperature and pH; R2 = 0.89; and AICc =

55.65. The best two equally fit models for O. macrus

density included two variables: alkalinity and current

velocity (R2 = 0.99; AICc = -6.68) or Pb in surface

water and Zn in crayfish (R2 = 0.99; AICc = -5.99). The

relationship among O. n. neglectus and O. macrus densities

and the variables identified in the best-fit models were

further examined with principal component analyses

(PCA). A significance level of P \ 0.05 was used to judge

all statistical tests. Supplemental material contains site

mean summaries.

Results

Crayfish were collected at all sites (Supplemental Table

S3). Only one crayfish species, Orconectes (Procericamb-

arus) neglectus neglectus Faxon (ringed crayfish), was

566 Arch Environ Contam Toxicol (2012) 63:563–573
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collected at all sites. There were significant differences in

mean densities of O. n. neglectus among site types; mean

densities were significantly lower at mining and down-

stream sites than reference sites (Table 2). Orconectes

(Procericambarus) macrus Williams (Neosho midget

crayfish) was only collected at reference sites (J1, C1, S1,

and S2). Mean densities of O. macrus were threefold

greater than O. n. neglectus densities at C1; however, at the

three other sites where both species were collected (J1, S1,

and S2), mean densities of O. n. neglectus were 1.5- to

5-fold greater than O. macrus (Supplemental Table S3). A

third species, Orconectes (Gremicambarus) virilis Hagen

(virile crayfish), was collected only at J1 (n = 3) and C1

(n = 2).

Preliminary analyses showed there were no significant

differences in mean CL between sexes for either O. n.

neglectus (F(1,226) = 2.29; P = 0.13) or O. macrus

(F(1,54) = 3.37; P = 0.06). However, there were significant

differences in mean CL among sites (F(1,226) = 2.29;

P = 0.13) and site groups for O. n. neglectus collected for

metal analyses: Crayfish from reference sites were signif-

icantly larger than crayfish collected at mining or down-

stream sites (reference vs. mining F(3,15) = 159;

P \ 0.001; reference vs. downstream F(3,15) = 123;

P \ 0.001; and mining vs. downstream F(3,15) = 0;

P = 0.954). O. macrus were only collected at reference

sites; however, there were no significant differences in CLs

of O. macrus collected for metals analyses among sites

(F(3,52) = 0.46; P = 0.714).

Mean concentrations of Pb, Zn, and Cd in O. n. neg-

lectus, surface water, \250 lm sediment fraction, and

detritus were significantly correlated (Supplemental Table

S2) and significantly greater at mining and downstream

sites than at reference sites (Table 3; Supplemental Tables

S4 through S7). Concentrations of metals in O. macrus

were significantly greater than those in O. n. neglectus in

11 of the 12 comparisons (Supplemental Table S4). Mean

concentrations of Pb, Zn, and Cd in the\250 lm sediment

fraction approached or exceeded TSMD-specific high-risk

concentrations (PEC20; concentrations associated with a

20 % decrease in a measured end point at all site groups

(Table 3; Supplemental Table S6; MacDonald et al. 2010).

Mean concentrations of Pb in surface water did not exceed

the chronic USEPA water-quality criterion at any site

group; however, mean concentration of Zn and Cd did

exceed these criteria at mining sites (Table 3).

Sediment
P

PEQs indicated risk of toxicity at mining

and downstream sites (Table 2; Supplemental Table S8);
P

PEQs were greater than both the TSMD-specific low-

(
P

PEQs = 6.47) and high-risk (
P

PEQs = 10.04) toxic-

ity thresholds at mining and downstream sites (MacDonald

et al. 2010). O. n. neglectus densities were decreased rel-

ative to reference sites where TSMD-specific
P

PEQs were

exceeded (Fig. 2). Surface water
P

TUs were significantly

greater at mining and downstream sites than at reference

sites (Table 2; Supplemental Table S9). Surface water
P

TUs at all mining sites were\1, indicating potential risk

to aquatic biota.

Criteria used to evaluate risks of Pb, Zn, and Cd con-

centrations in crayfish to wildlife indicated that metals

concentrations at mining and downstream sites are poten-

tially hazardous to carnivorous wildlife (Fig. 3). HQs were

greater for birds than mammals in their respective size

category (Supplemental Tables S10 and S11). HQs for

mean concentrations of Pb and Zn in O. n. neglectus were

[1.0 for robin-size birds at mining and downstream sites.

The Cd hazard quotient was\1.0 for robin-sized birds and

approached 1.0 for shrew-size mammals at mining sites

(Fig. 3).

Mean water depth and current velocities were signifi-

cantly greater at mining and downstream sites than at ref-

erence sites (Table 2; Supplemental Tables S12 and S13).

Table 2 Mean densities of O. n. neglectus, water depth, and
P

PEQ and
P

TU for Pb, Zn, and Cd

Site group O. n. neglectus density (n/m2)
P

PEQ
P

TU Water depth (cm)

Referencea 16.9 (4.0) 9.2 (2.1) 0.23 (0.07) 21.8 (2.7)

Miningb 4.79 (1.33) 38.7 (6.3) 1.14 (0.14) 26.4 (2.4)

Downstreamc 1.68 (0.41) 22.3 (4.0) 0.57 (0.15) 24.8 (1.9)

R versus M F(15,32) = 15.0** F(15,32) = 352** F(15,32) = 2,191** F(15,32) = 6.41**

R versus D F(15,32) = 33.6** F(15,32) = 111** F(15,32) = 484** F(15,32) = 4.88*

D versus M F(15,32) = 5.44* F(15,32) = 39.3** F(15,32) = 395** F(15,32) = 0.00 ns

Data shown are arithmetic site groups means ± SEs. Also shown are results of one-way ANOVA as F values and df for differences among site

groups (** p B 0.01; * 0.01 B p B 0.05; ns C 0.05). Within-site mean squares for ranked variables were used in all tests

R reference site, M mining site, D downstream site
a Reference sites: J1, C1, T1, T2, S1, and S2
b Mining sites: C2, C3, C4, T3, S3, and S6
c Downstream sites: T4, C5, S4, and S5
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Substrate coarseness was not significantly difference

among site groups (Supplemental Tables S12 and S13).

In situ water-quality variables generally did not exceed

state or federal criteria (Supplemental Tables S14 and S15).

However, water-quality constituents associated with metal-

mining, such as specific conductance and concentrations of

hardness and sulfate, were significantly greater at mining

than at reference sites (Supplemental Tables S16 and S17).

A series of interpretable ordinations were obtained by

PCA for each species (Fig. 4). Each ordination resulted in

the first two PCA axes explaining more of the variation

(69–90 %) than expected by chance alone. In the ordina-

tion for the O. n. neglectus, variables with strong positive

associations with PC1 included Pb (0.67) and Cd (0.64) in

detritus. Current velocity (0.58) had a strong positive

association, but density (-0.65) had a strong negative

association with PC2. Reference sites were separated from

all other sites with negative values for PC1, whereas

mining sites had positive values. In the ordination for

O. macrus, density (-0.45) had a strong negative associ-

ation with PC1, whereas, temperature (0.47) and alkalinity

(0.41) had a strong positive association with PC1. Vari-

ables that had strong positive associations with PC2

included Pb in surface water (0.66) and Zn in the\250 lm

fraction of sediment (0.47). Current velocity had a strong

negative association (-0.46). These ordinations suggest

that habitat variables and metals are important in explain-

ing densities of O. n. neglectus and O. macrus among sites.

Discussion

Our results indicate that environmental metals concentra-

tions remain increased in the TSMD as indicated by high

metal concentrations in surface water, sediment, detritus,

and crayfish in the streams investigated. We found

Table 3 Metal concentrations

in O. n. neglectus, detritus,

\250 lm fraction of sediment,

and surface water

Data shown are arithmetic site

groups means ± SEs. Also

shown are results of one-way

ANOVA as F values and df for

differences among site group

(**p B 0.001; ns C 0.05).

Within-site mean squares for

ranked variables were used in

all tests

R reference site, M mining site,

D downstream site

*0.01 B p B 0.05
a Reference sites: J1, C1, T1,

T2, S1, and S2
b Mining sites: C2, C3, C4, T3,

S3, and S6
c Downstream sites: T4, C5, S4,

and S5
d PEC20 = TSMD probable-

effects concentration high-risk

threshold associated with a

20 % decrease in a measured

end point (MacDonald et al.

2010)
e WQC = federal water-quality

criteria adjusted for hardness

and the dissolved fraction of the

metal (USEPA 2006)

Site group/criteria Pb Zn Cd

O. n. neglectus (lg/g dry weight)

Referencea 3.65 (0.7) 159 (17) 1.22 (0.24)

Miningb 10.1 (1.7) 339 (26) 5.76 (0.77)

Downstreamc 10.5 (2.6) 272 (35) 3.81 (0.94)

R versus M F(15,32) = 47.3** F(15,32) = 120** F(15,32) = 531**

R versus D F(15,32) = 22.3** F(15,32) = 32.4** F(15,32) = 155**

D versus M F(15,32) = 2.05 ns F(15,32) = 17.0** F(15,32) = 66.6*

Detritus (lg/g dry weight)

R 156 (36) 3,281 (663) 34 (11)

M 643 (70) 10,772 (1,438) 138 (20)

D 543 (124) 8,500 (1,261) 92 (20)

R versus M F(15,32) = 167** F(15,32) = 312** F(15,32) = 129**

R versus D F(15,32) = 71.9** F(15,32) = 132** F(15,32) = 41.6**

D versus M F(15,32) = 9.59** F(15,32) = 18.8** F(15,32) = 13.6**

\250 lm sediment fraction (lg/g dry weight)

R 235 (73) 2,093 (409) 14.0 (3.7)

M 947 (231) 8,991 (1,435) 58.6 (8.7)

D 534 (128) 5,393 (1,011) 31.9 (4.2)

R versus M F(15,32) = 155** F(15,32) = 235** F(15,32) = 341**

R versus D F(15,32) = 51.2** F(15,32) = 54.5** F(15,32) = 93.4**

D versus M F(15,32) = 15.9** F(15,32) = 40.1** F(15,32) = 47.1**

PEC20
d 179 2,409 14.1

Surface water (lg/L)

R 0.17 (0.04) 43.2 (13.4) 0.14 (0.17)

M 0.56 (0.13) 235 (33) 0.91 (0.16)

D 0.40 (0.09) 93.9 (25.1) 0.43 (0.16)

R versus M F(15,32) = 17.4** F(15,32) = 8.68** F(15,32) = 7.41**

R versus D F(15,32) = 180** F(15,32) = 373** F(15,32) = 439**

D versus M F(15,32) = 93.7** F(15,32) = 482** F(15,32) = 343**

WQCe 5–9 93–145 0.4–0.6
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decreased densities of O. n. neglectus and the absence of

O. macrus at mining-affected sites as well as a negative

association of crayfish densities with metal concentrations.

Our results are consistent with previous investigations that

have documented increased metal concentrations in macr-

oinvertebrates, fish, detritus, and sediment in the TSMD

(Angelo et al. 2007; Brumbaugh et al. 2005; MacDonald

et al. 2010; Schmitt et al. 1993, 2006; Wildhaber et al.

1997, 2000) and that documented the absence or decreased

densities of crayfish below mining-affected sites in the

Viburnum Trend Mining District of southeast Missouri

(Allert et al. 2008, 2009a). Allert et al. (2009a) also doc-

umented decreased survival of caged crayfish at sites

directly downstream (0.4–3.7 km) of mining sites. Survival

and biomass of caged crayfish were significantly lower at

mining sites than reference or downstream sites, and sur-

vival was negatively correlated with metal concentrations

in surface water, detritus, macroinvertebrates, stonerollers,

and whole crayfish. In situ testing of crayfish was an

important tool for showing that the absence of crayfish

populations below mining sites was the result of metal

exposure as opposed to habitat loss due to physical

impairment by mine waste (e.g., sedimentation by mine

tailings).

Although the diversity of crayfish in the Missouri

Ozarks is high ([25 species; Pfleiger 1996), many taxa are

restricted to a single drainage and are further restricted

within drainages due to macrohabitat partitioning between

species (DiStefano et al. 2003; Flinders and Magoulick

2005; Rabeni 1985). O. macrus is endemic to the Ozark

Highlands and is primarily found in the westward-flowing

rivers north of the Illinois River in Oklahoma, including

the Spring River. Within the Spring River drainage, O.

macrus does not occur in the North Fork Spring River or in

portions of Shoal Creek (Dillman et al. 2010; Pfleiger

1996). O. macrus typically inhabits rocky substrates in

swift, shallow water and is a relatively sedentary species

that spends most of its time in cavities beneath rocks or in

excavated tunnels in gravelly substrate (Pfleiger 1996). It is

unclear why O. macrus is not found at sites in the lower

reaches of Center Creek and Shoal Creek despite being

present in the lower Neosho River and Spring River

(Dillman et al. 2010). O. macrus may be more sensitive to

metals than O. n. neglectus, or its sedentary nature within

excavated tunnels may expose O. macrus to greater metal

concentrations typical of porewater and sediment

(Brumbaugh et al. 2007). Either or both mechanisms could

have eliminated O. macrus from Center Creek and Shoal
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Creek where metals concentrations are high (Allert et al.

1997, 2008, 2009a; Knowlton et al. 1983; Wigginton and

Birge 2007).

Previous studies differed in their characterization of

habitat selection by O. neglectus. Gore and Bryant (1990)

found that O. neglectus partition their habitats, with young

typically found in moderate-velocity (25–45 cm/s) cobble

habitats and adults in low-velocity (0 cm/s) macrophyte

beds or high-velocity ([65 cm/s) cobbled habitats. How-

ever, other studies (Flinders and Magoulick 2005;

Magoulick and DiStefano 2007) reported no significant

difference in habitat selection by different size classes of

O. neglectus or O. n. chaenodactylus (Williams 1952). The

range of water depth, current velocities, and substrate in

riffles measured in our study were comparable with pre-

viously reported values (Flinders and Magoulick 2005;

Magoulick and DiStefano 2007; Rabalais and Magoulick

2006). Current velocities in riffles at sites in Center Creek

and Shoal Creek ([0.60 cm/s) were greater than previously

reported ranges for young O. neglectus (Gore and Bryant

1990), which may have limited densities in riffles of those

creeks. Several studies (Flinders and Magoulick 2005;

Rabalais and Magoulick 2006) have reported that O. n.

chaenodactylus densities were negatively correlated with

water depth in larger streams (stream order [3), possibly

explaining the lower densities of O. n. neglectus in Shoal

Creek, which was significantly deeper than the other

streams sampled in our study. The inverse relation between

crayfish density and stream size (C5 orders) or watershed

size may be related to the proportional decrease in allo-

chthonous materials in larger streams (Vannote et al.

1980), loss of habitat heterogeneity (Clark 2009; Mitchell

and Smock 1991), smaller percentage of suitable habitat

(Burkey and Simon 2010; DiStefano et al. 2008; Lodge and

Hill 1994; Westhoff et al. 2006), or increased predation

(Flinders and Magoulick 2003; Hill and Lodge 1995; Stein

and Magnuson 1976).

Previous studies have used crayfish to assess the bio-

availability of metals through the analysis of whole-body

crayfish (Allert et al. 2008, 2009a, 2010; Besser et al. 2007;

Schmitt et al. 2006, 2008). Crayfish, freshwater mussels,

and benthic fishes have been identified as possible sentinel

organisms in the investigation of heavy-metal pollution in

the environment because of their important functional role

in streams and limited home ranges (Allert et al. 2008,

2009a, 2009b, 2010; Angelo et al. 2007; Maret and Mac-

Coy 2002). Dietary pathways have been identified as

important routes of metal exposure (Besser et al. 2005;

Farag et al. 1999). Therefore, the likelihood of food-chain

transfer of metals from crayfish and other environmental

media to wildlife in the TSMD is high and potentially

hazardous.

Conclusion

Crayfish densities were significantly decreased downstream

of mine waste relative to upstream reference sites.

Decreased crayfish densities imply a loss of ecosystem

function because crayfish are a key structural and func-

tional component of Ozark streams and their surrounding

ecosystems. This study provides additional support for the

use of crayfish in the assessment of the bioavailability and

ecological effects of metals in aquatic ecosystems. How-

ever, risk assessments are more effective when contami-

nant (e.g., metals) concentrations are linked with the status

of aquatic organisms (e.g., crayfish density) and toxico-

logical information (e.g., mortality or other sublethal

measurements). In situ and laboratory toxicity tests would

provide additional information regarding metal exposure,
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the bioaccumulation of metals, and the potential toxicity to

known age classes of crayfish because it is impossible to

observe temporal changes and bioaccumulation in the

environment. Genomic research may provide information

on the association of distribution and metal concentrations

among crayfish in the TSMD.
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