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a b s t r a c t

The Viburnum Trend mining district in southeast Missouri, USA is one of the largest producers of

lead–zinc ore in the world. Previous stream surveys found evidence of increased metal exposure and

reduced population densities of crayfish immediately downstream of mining sites. We conducted an in-

situ 28-d exposure to assess toxicity of mining-derived metals to the woodland crayfish (Orconectes

hylas). Crayfish survival and biomass were significantly lower at mining sites than at reference and

downstream sites. Metal concentrations in water, detritus, macroinvertebrates, fish, and crayfish were

significantly higher at mining sites, and were negatively correlated with caged crayfish survival. These

results support previous field and laboratory studies that showed mining-derived metals negatively

affect O. hylas populations in streams draining the Viburnum Trend, and that in-situ toxicity testing was

a valuable tool for assessing the impacts of mining on crayfish populations.

Published by Elsevier Inc.

1. Introduction

Extensive deposits of lead (Pb) ore have been mined in
Missouri for more than three centuries. Mining of the Viburnum
Trend in southeast Missouri, USA, which contains economi-
cally significant Pb–zinc (Zn) ores, began in the 1950s. By 1970,
the Viburnum Trend was the largest Pb-producing region in
the world (Ryck and Whitley, 1974). Deposits within the
Viburnum Trend also contain considerable quantities of copper-
(Cu), cobalt- (Co), and nickel- (Ni) bearing minerals (Jessey, 1981).
Although the mining district remains a major producer of Pb,
and a minor producer of Zn and Cu (Missouri Department of
Natural Resources, 2004), there is no commercial recovery
of Co or Ni (Kuck, 2004; Shedd, 2004). We conducted no analyses
of copper because previous studies have indicated that it
is a minor component of metal contamination from mining
in the Viburnum Trend (Besser et al., 2008; Brumbaugh et al.,
2007).

Although modern mining practices incorporate efficient ex-
traction technologies and operate within environmental regula-
tions, early studies (Duchrow, 1983; Ryck and Whitley, 1974;

Wixson, 1977) showed that metal exposures to aquatic biota had
occurred within the Viburnum Trend. Subsequent investigations
have documented elevated metal concentrations in water,
stream sediments, and aquatic food chains (Besser et al., 2006;
Brumbaugh et al., 2007; Schmitt et al., 2007a, b), and the
loss of biota including crayfish (Allert et al., 2008) and other
macroinvertebrates (unpublished data; B. Poulton, USGS, Colum-
bia, MO). In addition, sportfish including smallmouth bass
(Micropterus dolomieu), longear sunfish (Lepomis megalotis), and
suckers (Catostomidae) are known to contain Pb at concentra-
tions exceeding recommended human food consumption levels
(Missouri Department of Health and Senior Services, 2005).

Crayfish hold an intermediate trophic position and facilitate
the flow of nutrients and energy in aquatic ecosystems (Lodge
et al., 1995). Crayfish process a significant portion of organic
matter in streams (Usio, 2000), breaking allocthonous and
autochthonous material into smaller particles that are ultimately
consumed by aquatic insects, snails, and microbial fauna (Huryn
and Wallace, 1987; Parkyn et al., 2001). Crayfish are the dominant
invertebrate biomass in some Ozark streams (Rabeni et al., 1995)
and are the primary food source for several centrarchid fishes
(Whitledge and Rabeni, 1997). Crayfish are also prey for more than
200 species of insects, arachnids, amphibians, fish, reptiles, birds,
and mammals in and around North American water bodies
(DiStefano, 2005).
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The southern-most mines within the Viburnum Trend are
located in the headwaters of the Black River watershed (Fig. 1).
The woodland crayfish (Orconectes hylas) is endemic to the Black
River watershed (Pflieger, 1996) and occurs at high densities
(25–37/m2) in riffle habitats of Ozark streams (DiStefano et al.,
2002). Allert et al. (2008) reported reduced densities of O. hylas

(0–2/m2) at sites immediately downstream of mining activities
compared with densities (15–20/m2) at sites upstream of mining
or at sites greater than 10 km downstream of mining areas in the
Black River watershed. These findings suggest that mining
activities are adversely affecting crayfish populations. We there-
fore conducted chronic in-situ exposures of O. hylas in two
tributaries of the Black River watershed with the following
objectives: (1) to evaluate crayfish responses relative to metal

exposure through aqueous and dietary pathways, and (2) to
evaluate the effects of mining-derived metals on survival and
growth of O. hylas.

2. Methods

2.1. Study area

Crayfish cages were deployed from 30 June to 28 July 2005 at seven sites in

three tributaries of the Black River (Table 1). Previously collected physical,

chemical and biological data (Allert et al., 2008; Besser et al., 2006; Brumbaugh

et al., 2007) were used to identify reference sites (sites upstream of known mining

activities); mining sites (sites impacted by mining activity); and downstream sites,

where possible biological recovery may occur. Two sites were designated as
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Fig. 1. Map of study sites in the Black River watershed of Missouri, USA.
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reference sites (WF1, BF1); three as mining sites (SC2, WF3, BF3); and two as

downstream sites (WF4, BF5). Sites classified as mining sites were 0.4–3.7 km

downstream of mining activity, whereas those classified as downstream sites were

at least 7 km downstream of mining-related activity.

2.2. Crayfish collection and rearing

Ovigerous O. hylas females were collected from the reference site on the

West Fork (WF1) in early April in 2005 and returned to the US Geological

Survey’s Columbia Environmental Research Center (CERC) located in Columbia,

MO, USA. Sixteen females were held in individual 2-L flow-through aquaria

with CERC well water (temperature 18 1C, pH 7.7, alkalinity 254 mg/L as CaCO3,

hardness 286 mg/L as CaCO3) and fed frozen brine shrimp (San Francisco Bay

Brand, Inc., San Francisco, CA, USA) ad libitum daily. Upon hatching and detaching

from the adult females, juvenile crayfish were placed in a fiberglass tank

filled with CERC well water and fed flake food (Ziegler Brothers, Inc., Gardner,

PA, USA) ad libitum daily until their body width was greater than 2 mm. Prior to

stocking crayfish into cages, a subset of crayfish available for stocking into cages

(n ¼ 88) was measured for mean carapace length (CL, from tip of rostrum to

posterior edge of the cephalothorax, to the nearest 0.1 mm) and weighed (to the

nearest 0.01 g).

2.3. Toxicity test

A 28-d in-situ toxicity test was conducted with juvenile O. hylas, at seven sites

in the West Fork, Bee Fork, and Strother Creek of the Black River watershed (Fig. 1).

Crayfish were exposed in hemicylindrical (0.28-m2) cages constructed of stainless-

steel wire mesh (2.7-mm diagonal opening) and polyethylene (LDPE) reinforcing

strips (Fig. 2). We collected cobble substrates (2.5–7.5 cm) and approximately 10-g

organic material (henceforth detritus) from each site to provide both food and

shelter for caged crayfish. Cobble, detritus, and three polyethylene scour pads were

placed in three polyethylene-mesh packs (15-cm length�30-cm width; 1.27-cm

diagonal opening), which were closed using plastic cable ties and secured to the

bottom of each cage using stainless-steel wire. Prior to placing organic material

into the mesh packs, all predatory insects (i.e., Odonata and Plecoptera larvae)

were removed. The bottom of the cages were buried 2–4-cm into the stream

sediment to expose crayfish to sub-surface water and to anchor the cages. Minced

fish (largescale stonerollers, Campostoma oligolepis; henceforth stonerollers) from

each site were added to each cage weekly in increasing increments to maintain

dietary rations proportional to anticipated crayfish biomass (0.1, 0.1, 0.2, 0.4 g

minced fish in weeks 1, 2, 3, and 4, respectively). Ten juvenile crayfish were placed

in each of the six cages at each site except at SC2, where seven cages were

deployed. Three cages (n ¼ 30 crayfish) were sampled on both day 14 and 28,
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Table 1
Sampling sites and cage locations in three tributaries of the Black River.

Site Stream Latitude, longitudea Prominent mining feature upstream Stream

order

Stream distance

from tailings or

mine (km)

Type of

site

SC2 Strother Creek 37136007.200 , 91101040.800 Effluent pond; Buick tailings 2 3.7 M

WF1 West Fork 37130039.600 , 91109043.200 None 2 NA R

WF3 West Fork 37129049.200 , 91105013.200 Brushy Creek tailings; West Fork tailings 2 2.2 M

WF4 West Fork 37129013.200 , 91103003.600 Brushy Creek tailings; West Fork tailings 2 10.1 D

BF1 Bee Fork 37126043.400 , 91106029.400 None 1 NA R

BF3 Bee Fork 37126028.700, 91105038.000 Fletcher clarification dam and tailings 1 0.4 M

BF5 Bee Fork 37127036.000 , 91101030.000 Fletcher clarification dam and tailings 2 7.4 D

Latitude, longitude as determined by global positioning system (GPS) receiver. R ¼ reference site; M ¼ mining site; D ¼ downstream site; NA ¼ not applicable.
a (GPS; 710 m) based on the WGS84 geodetic datum.

Fig. 2. Diagram of cage. Cage frame consists of low-density polyethylene (LDPE) strips (0.635-cm width) heat welded to stainless-steel-woven-wire mesh (2.7-mm diagonal

mesh opening). Cage includes a hinged door with 6-mm nylon shock cord used to secure door by fastening around stainless steel machine screws installed on cage frame

and cage door. The feeding/stocking port consists of a twist-off polyvinyl chloride (PVC) cap. Polyethylene mesh packs (1.27-cm diagonal mesh opening) filled with rolled up

scour pads (for crayfish refuge), organic material, and cobble were inserted into cage prior to stocking with crayfish and secured to bottom of cage with stainless-steel wire.

A.L. Allert et al. / Ecotoxicology and Environmental Safety 72 (2009) 1207–1219 1209



except at SC2, where four cages were sampled on day 28. Crayfish were measured

(CL and wet weight) and frozen for metal analyses. Test endpoints included

survival and growth. Biomass (i.e., standing crop) at day 28 was estimated

by multiplying the number of survivors by the mean wet weight of survivors at

each site.

2.4. Wild crayfish collections

Wild crayfish (O. hylas) were collected on days 0 and 28 of the toxicity test at

each site to compare CL, wet weight, and metal concentrations of wild crayfish to

those stocked in cages. Crayfish were collected by disturbing substrate directly

upstream of a small kick seine (1-m length�1.5-m height) with 3-mm delta mesh

(Flinders and Magoulick, 2005). Wild crayfish were collected within 200 m of cage

placement. Collections were made upstream or downstream of cage placement,

depending on the nearest available riffle, and number of kick seines required to

collect 30 individuals. All crayfish collected were identified to species, measured

(CL and wet weight) and frozen for metal analyses.

2.5. Water samples

Surface water quality parameters (temperature, pH, conductivity, dissolved

oxygen, and turbidity) were measured in-situ on days 0, 7, 14, 21, and 28 using a

Hydrolabs Quanta meter (Loveland, CO, USA). A sub-surface grab sample was

collected in a pre-cleaned 4-L carboy at each site on days 0, 14, and 28 for

additional water quality and nutrient analyses at CERC. Alkalinity and hardness

were measured by titration (APHA, 2005). Sulfate was measured by colorimetric

detection with a Hachs 2100 spectrophotometer (Loveland, CO, USA). Recovery of

reference standards used as laboratory control samples for surface water quality

parameters (pH, conductivity, dissolved oxygen, turbidity, alkalinity, hardness,

and sulfate) ranged from 90% to 118%. Overall, detection and recoveries of water

quality parameters were within acceptable criteria, thus none of the sample results

were corrected.

Samples for dissolved nutrient analyses were filtered through 0.4-mm

polycarbonate filters under vacuum pressure within 4 days of collection. Nutrients

were measured in surface water samples with a Technicons Autoanalyzer

(Tarrytown, NY, USA) using colorimetric detection (APHA, 2005). Total ammonia

(NH3) was analyzed using a salicylate/nitroprusside colorimetric reaction.

Dissolved nitrite/nitrate (NO2/NO3) was measured following cadmium reduction

and measured using colorimetric reaction (APHA, 2005). Soluble reactive

phosphorus (SRP) was determined using the automated ascorbic acid method

(APHA, 2005). Samples for total phosphorous (TP) and total nitrogen (TN) were

digested in sodium hydroxide and potassium persulfate then analyzed using the

automated ascorbic acid and the automated cadmium reduction methods,

respectively (APHA, 2005). Dissolved organic carbon (DOC) was analyzed using a

persulfate/UV digestion followed by colorimetric analysis of CO2. Method limits of

detection limits (MLDs) for nutrients are listed in Table S-1. Recovery of reference

standards used as laboratory control samples for nutrients ranged from 100% to

128%, except for one standard for NH3 (1 mg N/L) that was 145%. Overall, detection

and recoveries of nutrients were within acceptable criteria and all measured

concentrations exceeded MLDs, thus none of the sample results were corrected

for recovery.

2.6. Metal concentrations

Water samples were filtered for metal analyses using a polypropylene

syringe and filter cartridge (0.45-mm pore size) into a pre-cleaned polyethylene

bottle on-site, and placed on ice. Water samples were subsequently acidified

to 1% (v/v) with nitric acid (J.T. Baker Inc., Phillipsburg, NJ, USA) within 4 days

of collection.

Surface water samples were analyzed for Pb, Zn, Cd, Ni, and Co by inductively-

coupled plasma-mass spectrometry (ICP-MS) (Brumbaugh et al., 2007; May

et al., 1997). Calibration verification, method limits of detection, and recoveries

of metals in reference solutions, duplicates, and spikes were all within accept-

able criteria and all measured concentrations exceeded MLDs (Brumbaugh

et al., 2007).

Detritus, macroinvertebrates (i.e., Ephemeroptera, Odonata, Plecoptera,

Megaloptera, Trichoptera, Diptera, and Chirononmidae), stonerollers, and whole

crayfish from each site were analyzed for Pb, Zn, Cd, Ni, and Co by ICP-MS (Besser

et al., 2006; Brumbaugh et al., 2005). Tissues were lyophilized and reduced to a

coarse powder by mechanical crushing in a glass vial with a glass rod. Neither

exoskeletons nor gut contents of any of the biota were removed before analysis. A

dry mass of 0.25 g from each composited sample was digested using concentrated

nitric acid and microwave heating. Quality control measures incorporated at the

digestion stage included digestion blanks, certified reference materials, replicates,

and spikes. A calibration blank and an independent calibration verification

standard were analyzed with every 10 samples to confirm the calibration status

of the ICP-MS during instrumental analyses of digestates. The MLDs for detritus,

macroinvertebrates, stonerollers, and crayfish are listed in Table S-2. All measured

concentrations exceeded the MLDs.

Recoveries of the elements from reference materials (fish, mussel, oyster, plant,

and plankton) ranged from 87% to 115%. Relative percent differences (RPDs) for

replicate analyses were o26% for all elements except for Pb analyses of one sample

of detritus (50%) and one sample of macroinvertebrates (85%). Instrumental

precision, estimated by determining the RPDs from the duplicate analysis of

detritus and biota digestates, was o4%. Recoveries of method spikes for all five

metals in 14 separate spiked samples of all the sample types analyzed averaged

97%. Post-digestion or analysis spike recoveries ranged from 83% to 104%. As a

check for potential interferences, dilution percent differences (DPDs) based on 5X

dilutions of detritus and biota sample digestates were determined; DPDs were

o10% for all metals. Blank-equivalent concentrations (BECs) for digestion blanks

were less than corresponding MLDs; therefore sample results were not corrected

for BECs. Overall, quality assurance results indicated that the methods used

provided acceptable accuracy and precision, thus none of the sample results were

corrected.

2.7. Statistical analysis

Statistical analyses were conducted using Statistical Analysis System (SAS) for

Windows (Release 9.1; SAS Institute, Cary, NC, USA). Censored values (o MLD)

were replaced with 50% of the MLD for statistical computations and graphing.

Survival and biomass data of caged crayfish on day 28 of the toxicity test and the

overall means (e.g., data from days 0, 7, 14, 21, and 28) for water quality, nutrients,

and metal concentrations were used in the statistical analyses. No wild crayfish

were collected within 200 m of our cages at SC2, so our search was expanded until

one adult wild crayfish was collected at a distance greater than 500 m away from

the cages; therefore it was not used in the statistical analyses of CL and wet weight

of wild crayfish. However, data from this individual is present in tables and figures

for comparative purposes. All data were tested for normality and homogeneity of

variance using the PROC UNIVARIATE module in SAS. Data were not normally

distributed, therefore rank transformation were used in statistical analyses.

Differences in caged crayfish survival and biomass among sites and groups of

sites were tested using nested analysis-of-variance (ANOVA; cages nested within

site), with site considered a fixed effect. Differences in caged crayfish survival

among groups of sites were tested as planned non-orthogonal contrasts using

single degree-of-freedom F-tests. The mean square for cage survival within site

was used in all tests, which were conducted using the PROC GLM module in SAS.

Differences in crayfish survival and biomass among individual sites were also

evaluated with Duncan’s multiple range test. Differences in wild crayfish growth,

water quality, nutrient, and metal concentrations among groups of sites were also

tested using the same procedures. Differences in mortality, size of crayfish, water

quality, nutrient, and metal concentrations were tested on a stream-by-stream

basis using the Kruskal–Wallis test. Results were similar to those that included all

seven sites; therefore we list only exceptional results in Table S-3. Finally,

associations among caged crayfish survival and biomass on day 28, wild crayfish

(excluding SC2) CL and wet weight, water quality, nutrient, and metal concentra-

tions were examined with Spearman’s correlation analysis. A significance level of

Po0.05 was used to judge all statistical tests.

3. Results

3.1. Toxicity test

Mean percent survival of caged crayfish on day 28 (henceforth
survival) was significantly greater at reference sites (90%) than at
mining sites (39%; Table 2; Fig. 3), and decreased sharply with
increasing metal concentrations in surface water (Fig. 4). When
analyzed on a stream-by-stream basis, survival at the mining site
(BF3) in the Bee Fork was significantly lower; however, survival
was not significantly lower at the mining site (WF3) in the West
Fork (Table S-3).

Mean CL and wet weight of caged crayfish at all sites on day 28
were significantly greater than those on day 0 (n ¼ 88;
CL ¼ 6.770.11; wet wt. ¼ 0.0670.003), except mean wet weight
of crayfish at SC2 (Table 2). Mean CL and wet weight of crayfish at
day 28 were significantly greater at downstream sites than
at reference or mining sites; however, CL and weight were
not significantly different among mining and reference sites
(Table 2). Mean biomass of crayfish at reference and downstream
sites on day 28 was significantly greater than at mining sites
(Table 2; Fig. 3).
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3.2. Wild crayfish collections

Very few wild crayfish were collected at any of the mining sites
on either day 0 or 28, despite significant sampling effort (i.e., 415
kick seines). Mean wet weight of wild crayfish on days 0 and 28
were significantly greater at reference and downstream sites than
mining sites; however, there was no significant difference in
CL among groups of sites on day 28 (Table 3).

3.3. Water quality

Mean conductivity, hardness, and sulfate concentrations in
surface water were significantly higher at mining and down-
stream sites than reference sites (Table 4); whereas alkalinity was
significantly lower at downstream sites than at reference and
mining sites (Table 4). Reference sites had significantly higher
turbidity (Table 4); however, values were still very low. Dissolved
oxygen and pH at reference sites were significantly lower than
mining and downstream sites (Table 4); however, at all the sites,
the range in dissolved oxygen and pH readings were narrow.

Ammonia, NO2/NO3, and TN concentrations in surface water
from mining sites were significantly higher than reference and
downstream sites (Table 5). Soluble reactive phosphorous con-
centrations in surface waters from mining and downstream sites
were significantly lower than reference sites (Table 5); however,

there were no significant differences in TP concentrations among
reference, mining and downstream sites (Table 5). Dissolved
organic carbon was significantly lower at downstream sites than
reference or mining sites (Table 5).

Analyses on a stream-by-stream basis produced slightly
different results for several parameters. There were no significant
differences in dissolved oxygen or DOC at sites in the West Fork;
however, there were at sites in the Bee Fork (Table S-3). There
were significant differences in alkalinity at sites in the West Fork;
however, alkalinity was not significantly different at sites in the
Bee Fork. There was no significant difference in SRP or NH3 in
either the Bee Fork or West Fork, despite an overall significant
difference when SC2 was included in the analyses.

3.4. Metal concentrations

Concentrations of metals in surface water were all below
surface water chronic criteria (WQC; USEPA, 2002; Table 6).
Cobalt concentrations in surface water were also all below a
proposed Canadian guideline for chronic exposure of 4mg Co/L
(Nagpal, 2004). However, concentrations of Pb, Zn, Ni, and Co in
surface waters were significantly higher at mining sites compared
with reference or downstream sites (Table 6).

Concentrations of all metals in detritus, macroinvertebrates,
stonerollers, and caged crayfish were significantly higher at
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Table 2
Number (n) of living crayfish, percent (%) survival, carapace length (CL), and wet weight (means with standard error in parenthesis) of caged Orconectes hylas.

Day/site n % Survival CL (mm) Wet wt. (g) Biomass (g/m2)

Day 14
Reference sites

WF1a 24 83 (3) b 9.3 (0.19) b 0.17 (0.01) c 4.3 (0.7) ab

BF1 28 93 (7) a 8.5 (0.22) c 0.13 (0.01) d 5.3 (0.8) ab

Group mean 88 (4) A 8.9 (0.16) C 0.15 (0.01) B 4.7 (0.5) A

Mining sites

SC2 23 84 (9) b 8.4 (0.24) c 0.12 (0.01) d 3.3 (0.4) b

WF3b 27 90 (6) a 9.7 (0.21) b 0.20 (0.01) bc 5.3 (0.6) ab

BF3 17 57 (23) b 9.8 (0.31) b 0.18 (0.02) c 4.0 (1.8) ab

Group mean 77 (27) A 9.3 (0.16) A 0.17 (0.01) B 4.3 (0.6) B

Downstream sites

WF4 28 84 (3) b 11.2 (0.17) a 0.32 (0.02) a 8.3 (1.8) a

BF5 29 97 (3) a 9.8 (0.23) b 0.23 (0.02) b 6.0 (1.8) ab

Group mean 92 (8) A 10.5 (0.01) B 0.27 (0.01) A 7.3 (1.3) A

Day 28
Reference sites

WF1 27 90 (6) a 10.5 (0.33) bc 0.40 (0.02) cd 1.2 (3.3) c

BF1 26 90 (0) a 10.8 (0.37) b 0.29 (0.03) de 14.7 (2.3) bc

Group mean 90 (3) A 10.7 (0.15) B 0.33 (0.14) B 13.3 (1.9) B

Mining sites

SC2c 3 7 (3) d 9.2 (0.03) c 0.17 (0.03) e 0.3 (0.2) d

WF3 20 67 (9) bc 11.3 (0.47) b 0.37 (0.05) cd 7.7 (2.5) cd

BF3 16 53 (3) c 13.2 (0.46) a 0.58 (0.05) ab 7.7 (3.5) cd

Group mean 39 (9) B 11.9 (0.36) B 0.44 (0.04) B 4.7 (1.6) C

Downstream sites

WF4 26 87 (3) ab 14.0 (0.31) a 0.71 (0.05) a 32.0 (4.9) a

BF5 25 77 (13) ab 12.9 (0.3) a 0.53 (0.04) bc 22.7 (5.2) ab

Group mean 82 (16) A 13.4 (1.6) A 0.61 (0.03) A 27.3 (3.8) A

Sites with the same lower case letter and groups of sites with the same capital letter are not significantly different for each test day (Po0.05). Initial stocking number ¼ 30,

unless otherwise noted.
a Stocking number ¼ 29.
b Stocking number ¼ 31.
c Stocking number ¼ 40.
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mining sites than at reference or downstream sites, with the
exception of Cd concentrations in macroinvertebrates, and stone-
rollers (Table 7; Fig. 5). Mean concentration of Pb in wild crayfish
was significantly higher at mining sites than at reference or
downstream sites (Table 7). Mean concentrations of Zn and Co in
all sample types were highest at SC2. Lead and Ni concentrations
were highest at SC2 and/or BF3. Metal concentrations in samples
at all mining sites were generally two to ten-fold higher in all
sample types compared with those at downstream or reference
sites. Concentrations of Pb, Zn, and Ni were highest in detritus and
were generally higher in macroinvertebrates compared with
stonerollers or crayfish. Metal concentrations in the West Fork
were generally lower than those in the Bee Fork. Concentrations of
Pb and Cd in fish; Zn in invertebrates, and Zn in surface water
were not significantly different among the three groups of sites in
the West Fork (Table S-3).

Mean concentrations of metals in crayfish at day 0 were: Pb
(6.070.4mg/g dry weight), Zn (8170.3mg/g dry weight), Cd
(0.1670.2mg/g dry weight), Ni (4.070.7mg/g dry weight), and
Co (2.070.4mg/g dry weight). Caged crayfish rapidly accumulated
all metals at all mining sites (Fig. 6). Metal concentrations in
caged crayfish at SC2 continued to increase throughout the
exposure; however, they did not at WF3 or BF3. Metal concentra-
tions in caged crayfish on day 28 at reference and downstream
sites were generally lower than concentrations in crayfish stocked
into cages on day 0. Concentrations of metals in caged crayfish at
day 28 were comparable to those in wild crayfish at all sites
except at SC2, where metal concentrations in caged crayfish were
greater than the single large wild crayfish collected at SC2.
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Fig. 3. (a) Mean percent (%) survival and (b) mean biomass of caged Orconectes

hylas within groups of sites on days 14 and 28. Groups of sites with the same letter

are not significantly different (Po0.05).
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3.5. Correlation analyses

Carapace length and wet weight of caged crayfish were
negatively correlated with Zn concentrations in stonerollers
(Table S-4). Carapace length and wet weight of caged crayfish

were negatively correlated with SRP, and CL was negatively
correlated with TP (Table S-5).

Mean percent survival of caged crayfish was negatively corre-
lated with most metal concentrations in surface water, detritus,
macroinvertebrates, stonerollers, and caged crayfish (Table 8).
Biomass of caged crayfish was negatively correlated with Zn
concentrations in stonerollers and Co concentrations in caged
crayfish. Concentrations of Pb, Zn, Ni, and Co in caged crayfish and
all environmental matrixes were highly inter-correlated (Table 8).
Lead concentrations in caged crayfish were positively correlated
with Pb, Zn, and Ni concentrations in wild crayfish (Table 8). Zinc
concentrations in caged crayfish were positively correlated with
Co concentrations in wild crayfish. Survival of caged crayfish was
negatively correlated with NH3, NO2/NO3, TN, conductivity,
hardness, and sulfate (Table S-5). Biomass of caged crayfish was
negatively correlated with DOC (Table S-5).

Wet weight of wild crayfish was correlated with Co concentra-
tions in wild crayfish (Table S-4); however, CL and wet weight of
wild crayfish were not significantly correlated with any water
quality parameter or nutrient concentration (Table S-5). There
were fewer significant correlations between metal concentrations
in wild crayfish and the other samples collected at the sites;
however, concentrations of Pb in wild crayfish were signifi-
cantly correlated with most metals in all sample types analyzed
(Table 8). Zinc concentrations in wild crayfish were significantly
correlated with Pb, Zn, and Cd concentrations in detritus, and with
Zn concentrations in macroinvertebrates. Nickel concentrations in
wild crayfish were correlated with Zn concentrations in macro-
invertebrates, and Pb, Zn, and Cd concentrations in detritus.

Ammonia, NO2/NO3, TN, conductivity, hardness, sulfate, and Ni
concentrations in surface water were all significantly correlated
(Table S-6). Soluble reactive phosphorous (SRP) was negatively
correlated with dissolved oxygen; dissolved organic carbon was
negatively correlated with pH; and temperature was negatively
correlated with Co concentrations in surface water. Hardness was
also significantly correlated with Pb, Ni, and Co concentrations in
surface water. Lead concentrations in surface water were
significantly correlated with Co concentrations in surface water,
as were Ni and Co concentrations in surface water.

4. Discussion

We documented decrease survival of caged crayfish at sites
directly downstream (0.4–3.7 km) of mining sites. Survival and
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Table 3
Number (n), carapace length (CL), and wet weight (means with standard error in

parenthesis) of wild Orconectes hylas collected at sampling sites on days 0 and 28

of the in-situ exposure.

Day/site n CL (mm) Wet wt. (g)

Day 0
Reference sites

WF1 30 10.1 (0.3) a 0.26 (0.03) a

BF1 35 9.5 (0.2) a 0.21 (0.02) a

Group mean 9.8 (0.3) A 0.23 (0.02) A

Mining sites

SC2 0 – –

WF3 1 5.4 (–) a 0.03 (–) a

BF3 32 9.2 (0.3) a 0.18 (0.01) a

Group mean 7.3 (1.9) B 0.11 (0.08) B

Downstream sites

WF4 30 9.4 (0.3) a 0.22 (0.03) a

BF5 43 7.1 (0.2) a 0.08 (0.01) a

8.2 (0.1) A 0.15 (0.07) A

Day 28
Reference sites

WF1 30 12.9 (0.3) a 0.58 (0.04) a

BF1 37 12.0 (0.4) a 0.47 (0.04) a

Group mean 12.5 (0.4) A 0.53 (0.05) A

Mining sites

SC2 1 35.0 (–) 12.1 (–)

WF3 12 12.2 (0.4) a 0.48 (0.05) a

BF3 2 12.3 (0.2) b 0.34 (0.05) a

Group mean 12.2 (0.02) A 0.41 (0.07) B

Downstream sites

WF4 18 13.2 (0.3) a 0.56 (0.04) a

BF5 30 12.3 (0.3) a 0.53 (0.05) a

Group mean 12.7 (0.5) A 0.55 (0.02) A

Sites with the same lower case letter and groups of sites with the same capital

letter are not significantly different for each test day (Po0.05).

Table 4
Water quality (means with standard error in parenthesis) of surface water at sampling sites.

Site Temp (1C) PH (SU) Cond (ms/cm) DO (mg/L) Alk (mg/L as CaCO3) Hard (mg/L as CaCO3) Turb (NTU) Sulfate (mg/L)

Reference sites

WF1 23.6 (0.6) a 8.04 (0.03) ab 344 (5) e 7.8 (0.5) a 182 (3) a 183 (3) d 0.60 (0.04) a 0.3 (0.2) e

BF1 23.1 (1.4) b 7.84 (0.09) c 282 (6) f 6.3 (0.4) b 143 (3) c 145 (2) e 0.50 (0.04) a 1 (0.3) e

Group mean 23.4 (0.7) A 7.94 (0.06) B 313 (11) C 7.1 (0.4) B 162 (8) A 164 (7) C 0.55 (0.03) B 0.6 (0.2) C

Mining sites

SC2 25.8 (0.5) a 7.94 (0.04) bc 858 (31) a 8.0 (0.2) a 117 (3) d 409 (11) a 0.50 (0.04) a 304 (10) a

WF3 24.6 (0.9) a 8.09 (0.03) a 418 (7) cd 8.4 (0.3) a 170 (3) b 212 (3) c 0.40 (0.05) a 53 (3) d

BF3 24.2 (0.9) a 8.01 (0.05) ab 592 (15) b 8.4 (0.1) a 143 (2) c 247 (5) b 0.40 (0.06) a 129 (6) b

Group mean 24.9 (0.5) A 8.01 (0.03) A 623 (42) A 8.3 (0.1) A 143 (7) A 289 (26) A 0.45 (0.03) A 162 (32) A

Downstream sites

WF4 24.3 (0.4) a 8.10 (0.04) a 395 (2) d 8.3 (0.1) a 165 (2) b 198 (1) c 0.50 (0.12) a 42 (1) d

BF5 22.9 (0.8) a 8.05 (0.04) ab 446 (4) c 8.2 (0.1) a 141 (1) c 199 (1) c 0.40 (0.02) a 80 (1) c

Group mean 23.6 (0.5) A 8.08 (0.03) A 420 (9) B 8.3 (0.1) A 152 (5) B 199 (1) B 0.44 (0.05) A 64 (8) B

Temp ¼ temperature; Cond ¼ conductivity; DO ¼ dissolved oxygen; Alk ¼ alkalinity; Hard ¼ hardness; Turb ¼ turbidity. Sites with the same lower case letter and groups

of sites with the same capital letter are not significantly different (Po0.05).
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biomass of caged crayfish were significantly lower at mining sites
than reference or downstream sites, and survival was negatively
correlated with metal concentrations in surface water, detritus,
macroinvertebrates, stonerollers, and whole crayfish. Survival was
also negatively correlated with several water quality parameters.
Our study supports previous results which found reduced
densities of O. hylas populations in riffle habitats, and elevated
metals concentrations (Pb, Zn, Cd, Ni, and Co) in O. hylas at sites
directly downstream of mining in the Black River watershed
(Allert et al., 2008). Metal concentrations in detritus and biota at
mining sites in this study were comparable to those of Besser et al.
(2006), and decreased with distance from mining sites. Alikhan
et al. (1990) also reported an inverse relationship between
distance from a contaminant source and metal concentrations in
crayfish. Conductivity, hardness, sulfate, and nitrogen ions often
are elevated below mining sites (Gray, 1998; Tiwary, 2001), and
may be useful in indicating the extent of mining impacts. Finally,
in-situ testing of crayfish was an important tool for demonstrating

that absence of crayfish populations below mining sites was the
result of metal exposure as opposed to habitat loss due to physical
impairment by mine waste (e.g., sedimentation by mine tailings).

Although no toxicity studies have been conducted with
juvenile O. hylas in single-metal exposures, previous studies have
shown several species of crayfish to be relatively sensitive to
metals, and that juvenile crayfish are more sensitive than adult
crayfish. Wigginton and Birge (2007) calculated 96-h median
lethal concentrations (LC50) of Cd to six species of crayfish
(Cambaridae) with a mean LC50 of 1510mg Cd/L for adult crayfish
and of 111mg Cd/L for juvenile crayfish at a water hardness of
approximately 45 mg/L as CaCO3. Other studies (Lindhjem and
Bennet-Chambers, 2002; Mirenda, 1986a, b; Naqvi and Howell,
1993) have also reported lethal concentrations that are greater
than the metal concentrations measured in surface waters from
our study streams; however, these laboratory studies were short
in duration and conducted with different species and sizes of
crayfish. Thorp et al. (1979) reported that long-term exposure to 5
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Table 5
Nutrient concentrations (means with standard error in parenthesis) of surface waters at sampling sites.

Site NH3 (mg N/L) SRP (mg P/L) NO2/NO3 (mg N/L) DOC (mg C/L) TN (mg N/L) TP (mg P/L)

Reference sites

WF1 0.01 (0.002) b 0.5 (0.3) a 0.04 (0.01) d 0.59 (0.04) bc 0.10 (0.01) c 3.7 (0.6) ab

BF1 0.01 (0.002) b 0.8 (0.4) a 0.07 (0.01) d 0.90 (0.07) a 0.20 (0.01) c 2.4 (0.5) ab

Group mean 0.01 (0.002) B 0.6 (0.3) A 0.06 (0.01) C 0.75 (0.06) A 0.12 (0.01) B 2.9 (0.4) A

Mining sites

SC2 0.06 (0.01) a 0.3 (0.2) a 1.2 (0.09) a 0.91 (0.06) a 1.30 (0.08) a 4.4 (0.4) a

WF3 0.01 (0.002) b 0.2 (0.1) a 0.13 (0.01) cd 0.60 (0.02) bc 0.20 (0.02) c 2.8 (0.8) b

BF3 0.01 (0.003) b 0 c 0.51 (0.02) b 0.69 (0.06) b 0.50 (0.03) b 2.0 (0.6) a

Group mean 0.03 (0.01) A 0.1 (0.1) B 0.61 (0.10) A 0.73 (0.04) A 0.68 (0.10) A 3.1 (0.4) A

Downstream sites

WF4 0.01 (0.003) b 0 a 0.08 (0.01) d 0.57 (0.03) c 0.10 (0.01) c 2.0 (0.2) b

BF5 0.01 (0.003) b 0.2 (0.2) a 0.19 (0.01) c 0.50 (0.04) c 0.20 (0.01) c 2.6 (1.2) ab

Group mean 0.01 (0.001) B 0.1 (0.1) B 0.14 (0.02) B 0.53 (0.03) B 0.17 (0.02) B 3.1 (0.4) A

NH3 ¼ ammonia; SRP ¼ soluble reactive phosphorus; NO2/NO3 ¼ nitrite/nitrate; DOC ¼ dissolved organic carbon; TN ¼ total nitrogen; TP ¼ total phosphorous. Sites with

the same lower case letter and groups of sites with the same capital letter are not significantly different (Po0.05).

Table 6
Concentrations (mg/L; means with standard error in parenthesis) of metals measured in surface waters (WC) at sampling sites, and site hardness-adjusted chronic water

quality criteria (WQC).

Site Lead Zinc Cadmium Nickel Cobalt

WC WQC WC WQC WC WQC WC WQC WC

Reference sites

WF1 0.03 (0) c 4.9 4.1 (2) b 197 0.03 (0) b 0.37 0.13 (0) c 46 0.09 (0.01) de

BF1 0.03 (0) c 3.8 2.5 (0) b 162 0.03 (0) b 0.32 0.13 (0) c 38 0.14 (0.01) d

Group mean 0.03 (0) B 4.4 3.3 (1) B 180 0.03 (0) A 0.35 0.13 (0) B 42 0.12 (0.01) B

Mining sites

SC2 0.71 (0.02) b 11.3 56 (5) a 390 0.06 (0.02) a 0.65 26 (2) a 90 0.64 (0.05) a

WF3 0.12 (0.01) c 5.7 2.5 (0) b 223 0.03 (0) b 0.41 1.9 (0.01) c 52 0.39 (0.02) b

BF3 1.59 (0.06) a 6.8 6.6 (0.2) b 254 0.03 (0) b 0.46 6.0 (0.01) b 59 0.28 (0.01) c

Group mean 0.86 (0.18) A 7.9 20 (7) A 289 0.03 (0.01) A 0.51 11 (3) A 67 0.43 (0.05) A

Downstream sites

WF4 0.04 (0.01) c 5.3 2.5 (0) b 211 0.03 (0) b 0.40 0.40 (0) c 49 0.15 (0.01) d

BF5 0.03 (0) c 5.3 3.9 (1) b 211 0.03 (0) b 0.40 0.50 (0) c 49 0.12 (0.01) d

Group mean 0.04 (0.01) B 5.3 3.3 (1) B 211 0.03 (0) A 0.40 0.46 (0.02) B 49 0.13 (0.01) B

Sites with the same lower case letter and groups of sites with the same capital letter are not significantly different (Po0.05).

A.L. Allert et al. / Ecotoxicology and Environmental Safety 72 (2009) 1207–12191214



ARTICLE IN PRESS

Table 7
Metal concentrations (mg/g dry weight; means with standard error in parenthesis) in detritus and biota at sampling sites.

Metal and site(s) Detritusa Macro-invertebratesa Stonerollersb Wild crayfishc Caged crayfishd

Lead
Reference sites

WF1 11 (2) b 2.0 (1) c 2.6 (0.1) d 0.53 (–) 1.2 (0.2) b

BF1 7.2 (1) b 1.0 (0.2) c 4.3 (1) cd 0.42 (–) 0.99 (0.2) b

Group mean 8.9 (1) B 1.5 (0.5) B 3.4 (1) B 0.48 (0.1) B 1.1 (0.2) B

Mining sites

SC2 650 (82) a 81 (12) b 42 (2) a 14 (–) 37e (7) a

WF3 143 (30) b 11 (2) c 8.9c (–) c 1.7 (–) 6.4 (1) b

BF3 567 (63) a 114 (15) a 33 (3) b 42 (–) 37 (4) a

Group mean 453 (74) A 69 (14) A 32 (6) A 15 (9) A 26 (4) A

Downstream sites

WF4 54 (8) b 5.3 (1) c 4.6 (1) cd 1.5 (–) 2.8 (0.3) b

BF5 32 (2) b 8.1 (1) c 6.2 (1) cd 2.0 (–) 2.6 (0.3) b

Group mean 41 (5) B 6.9 (1) B 5.6 (1) B 1.7 (0.2) B 2.7 (0.2) B

Zinc
Reference sites

WF1 26 (3) d 100 (9) c 112 (4) b 62 (–) 64 (1) d

BF1 25 (1) d 90 (9) c 129 (3) b 57 (–) 68 (1) cd

Group mean 25 (1) B 95 (6) B 120 (5) B 60 (3) A 66 (1) B

Mining sites

SC2 2288 (309) a 392 (35) a 317 (31) a 73 236e (10) a

WF3 529 (27) bc 162 (41) bc 148c (–) b 64 105 (5) b

BF3 693 (15) b 196 (28) b 108 (15) b 83 97 (3) b

Group mean 1170 (257) A 250 (36) A 200 (50) A 71 (5) A 146 (16) A

Downstream sites

WF4 234 (11) cd 151 (44) bc 93 (7) b 79 (–) 68 (1) cd

BF5 129 (5) d 146 (14) bc 102 (13) b 65 (–) 68 (3) cd

Group mean 174 (22) B 148 (18) B 98 (8) B 72 (7) A 68 (1) B

Cadmium
Reference sites

WF1 0.32 (0.02) b 0.81 (0.3) bc 0.1 (0.02) de 0.75 (–) 0.60 (0.04) bc

BF1 0.27 (0.01) b 0.72 (0.1) cd 0.3 (0.01) a 0.77 (–) 0.56 (0.03) bc

Group mean 0.30 (0.02) B 0.77 (0.5) A 0.2 (0.04) A 0.76 (0.01) A 0.57 (0.02) B

Cadmium (continued)

Mining sites

SC2 3.6 (1) a 1.2 (0.1) ab 0.2 (0.01) ab 0.78 (–) 2.1e (0.2) a

WF3 0.91 (0.1) b 0.32 (0.1) d 0.1c (–) de 1.4 (–) 0.32 (0.02) cd

BF3 1.3 (0.04) b 1.4 (0.3) a 0.2 (0.01) cd 0.41 (–) 0.53 (0.1) bc

Group mean 1.9 (0.4) A 0.97 (0.2) A 0.2 (0.02) A 1.0 (0.25) A 0.98 (0.2) A

Downstream sites

WF4 0.56 (0.1) b 0.41 (0.1) cd 0.1 (0.01) e 0.54 (–) 0.25 (0.03) d

BF5 0.53 (0.03) b 1.2 (0.03) ab 0.2 (0.01) bc 0.70 (–) 0.76 (0.1) b

Group mean 0.54 (0.03) B 0.90 (0.2) A 0.2 (0.02) A 0.62 (0.08) A 0.50 (0.1) B

Nickel
Reference sites

WF1 8.5 (1) d 2.3 (1) c 2.0 (0.02) de 1.1 (–) 1.2 (0.04) c

BF1 12 (0.4) d 2.3 (0.4) c 1.2 (0.1) e 1.1 (–) 1.5 (0.1) c

Group mean 10 (1) B 2.3 (0.4) B 1.6 (0.24) B 1.1 (0.01) A 1.3 (0.1) B

Mining sites

SC2 487 (62) a 57 (9) a 19 (0.2) a 4.2 (–) 17e (2) a

WF3 124 (7) c 17 (4) bc 9.5c (–) b 1.2 (–) 7.5 (0.4) b

BF3 298 (8) b 28 (6) b 5 (0.3) c 16 (–) 8.3 (1) b

Group mean 303 (49) A 34 (6) A 12 (3) A 5.6 (3) A 11 (1) A

Downstream sites

WF4 34 (2) d 4.0 (0.2) c 2.1 (2) de 2.1 (–) 2.1 (0.2) c

BF5 41 (2) d 6.3 (1) c 2.7 (0.5) d 2.0 (–) 1.9 (0.1) c
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and 10mg Cd/L completely eliminated a crayfish population in an
artificial stream. In addition, toxicity of metals to crayfish has
been shown to be higher just after molting due to the high
permeability of the soft carapace (Knowlton et al., 1983;
Wigginton and Birge, 2007). Therefore, tests that include this
sensitive life stage are likely to demonstrate greater sensitivity
(e.g., Kunz et al., 2005).

None of the metals in our study exceeded chronic WQC at any
of the study sites; however, reduced survival of O. hylas may be
most associated with Ni concentrations, due to the bioavailability
of Ni in surface and pore waters (Besser et al., 2008; Brumbaugh
et al., 2007) or reflect the cumulative action of a mixture of
metals. Results from our study indicate that O. hylas are highly
sensitive to chronic exposure to metals associated with Pb mining.
These results are consistent with findings of laboratory studies
reported by Kunz et al. (2005), who compared the sensitivity of
four aquatic taxa to chronic toxicity of a five-metal mixture (Pb,
Zn, Cd, Ni, and Co), which was based on concentrations measured
in sediment pore waters from our study streams. Survival of
juvenile O. hylas (approximately 30-d old) was reduced at metal
concentrations an order of magnitude lower than those affecting
rainbow trout (Onchorhynchus mykiss) and mottled sculpin (Cottus

bairdi), fishes that are known to be sensitive to metal toxicity
(Besser et al., 2007). The relative sensitivity of crustaceans to
metal toxicity was further supported by a laboratory study con-
ducted by Besser et al. (2008) that found toxic effects on survival,
growth, and reproduction of H. azteca to be significantly correlated
with metal concentrations in both sediment and sediment pore
water collected from mining sites in the Viburnum Trend.

Previous field studies (Mirenda, 1986a, b; Vijayram and
Geraldine, 1996) have shown a significant correlation between
metal concentrations in water and those in crayfish. In our study,
metal concentrations in caged crayfish were significantly higher at
mining sites than at reference sites, and were significantly
correlated with surface water metal concentrations; however,
there were fewer correlations between metal concentrations in
surface water and metal concentration in wild crayfish. Wild
crayfish on day 0 were significantly larger than crayfish stocked
into cages at all sites except WF3, which may have resulted in

fewer molts in wild crayfish during the 28-d exposure. On day 28,
only wild crayfish at WF1, BF1, and the single crayfish collected at
SC2 were significantly larger than caged crayfish, which indicated
caged crayfish grew faster than wild crayfish, and thus molted
more frequently than wild crayfish. More frequent molting may
have resulted in higher metal concentrations in caged crayfish due
to greater permeability in the carapace after molting (Knowlton
et al., 1983; Wigginton and Birge, 2007).

Diet may also influence bioaccumulation of metals in crayfish
(Besser et al., 2006; Giesy et al., 1980). Besser et al. (2006)
reported strong correlations between Pb, Zn, and Cd concentra-
tions in field-collected crayfish, plant material, and benthic
organisms in streams within the Viburnum Trend. We also found
significant correlations between concentrations of Pb, Zn, Ni, and
Co in caged crayfish and metal concentrations in detritus,
macroinvertebrates, and stonerollers. Although there were fewer
significant correlations between metal concentrations in wild
crayfish, there were significant correlations among Pb, Zn, Cd, and
Ni concentrations in wild crayfish and metal concentrations in
detritus, macroinvertebrates, and stonerollers. Caged and wild
crayfish may have fed on different food items due to availability,
or differences may reflect dietary preference for macroinverte-
brates and fish by juvenile crayfish (Parkyn et al., 2001; Whitledge
and Rabeni, 1997).

Biomass of caged crayfish was significantly higher at down-
stream sites than at reference sites and mining sites, and may
reflect higher nutrient concentrations. Nutrient concentrations
were significantly higher at mining sites, and probably contrib-
uted to the development of large algal mats found at some of our
mining sites (Gale et al., 1973). These algal mats may provide wild
crayfish with additional food resources; however, algae contain
high concentrations of metals at sites downstream of mining
(Besser et al., 2006), which may increase metal effects.

5. Conclusions

These findings suggest that despite the use of efficient
extraction technologies and operations that meet environmental
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Table 7 (continued )

Metal and site(s) Detritusa Macro-invertebratesa Stonerollersb Wild crayfishc Caged crayfishd

Group mean 38 (2) B 5.3 (0.6) B 2.5 (0.3) B 2.1 (0.04) A 2.0 (0.1) B

Cobalt
Reference sites

WF1 8.7 (1) c 4.8 (2) d 1.4 (0.01) d 0.94 (–) 0.87 (0.03) c

BF1 10 (1) c 6.4 (2) d 1.5 (0.1) d 1.6 (–) 1.8 (0.1) bc

Group mean 9.4 (1) B 5.6 (1) B 1.4 (0.05) B 1.3 (0.3) A 1.3 (0.1) B

Mining sites

SC2 328 (40) a 111 (9) a 26 (0.3) a 11 (–) 57e (5) a

WF3 86 (8) b 24 (6) bc 9.5c (–) b 1.4 (–) 6.9 (1) b

BF3 66 (9) b 38 (9) b 3.7 (0.2) c 8.2 (–) 5.2 (1) bc

Group mean 160 (38) A 58 (12) A 14 (5) A 5.5 (2) A 23 (6) A

Downstream sites

WF4 18 (0.3) c 9.9 (5) cd 1.6 (0.2) d 1.6 (–) 1.5 (0.1) bc

BF5 8.9 (1) c 4.9 (1) d 1.1 (0.2) d 0.96 (–) 0.79 (0.1) c

Group mean 13 (2) B 7.0 (2) B 1.3 (0.2) B 1.3 (0.3) A 1.1 (0.1) B

Sites with the same lower case letter and groups of sites with the same capital letter are not significantly different (Po0.05).
a n ¼ 4.
b n ¼ 2; Campostoma oligolepis.
c n ¼ 1.
d n ¼ 6.
e n ¼ 7.
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regulations, Pb–Zn mining in the Viburnum Trend is impacting
water quality, metal accumulation in food webs, and O. hylas

populations of the Black River watershed. Our results indicate that

metals were the main factor causing the observed toxic effects on
O. hylas in streams of the Black River watershed, including
elevated concentrations of metals in crayfish. Survival and
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biomass data from the in-situ toxicity test suggest that recovery of
crayfish populations may occur approximately 10 km downstream
of mining sites. The absence of crayfish may have negative effects
on organic (e.g., leaves, woody debris) processing, nutrient
cycling, and energy transfer in Ozark streams. Crayfish are the
predominant prey item of smallmouth bass, an important species
sought by recreational anglers in the Ozarks (Mayers, 2003;
Weithman, 1991), and other centrarchid fishes in Ozark streams
(DiStefano, 2005; Probst et al., 1984). High metal concentrations in
centrarchids are likely related to high metal concentrations in
crayfish, which could potentially represent a hazard to both
wildlife and humans (Schmitt et al., 2006).
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