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a b s t r a c t

Owl clutches typically hatch asynchronously, and brood size hierarchies develop. In this study, we
describe intra-clutch variation of testosterone, androstenedione, estradiol, and corticosterone in Eastern
screech owl egg yolks. In order to assess whether these hormones may have originated in the follicle, we
also characterize variation of testosterone, androstenedione, and corticosterone within the exterior,
intermediate, and interior regions of the yolk. Concentrations of testosterone and androstenedione were
distributed relatively evenly across egg lay order with the exception of first-laid eggs that had signifi-
cantly lower concentrations of both androgens than eggs later in the laying sequence. Corticosterone
and estradiol did not vary with laying order. Our results suggest that when food is abundant, yolk hor-
mones are deposited in patterns that minimize sibling differences except to reduce dominance by the
first-hatching chick. Testosterone and androstenedione concentrations varied throughout the yolk, while
corticosterone was evenly distributed throughout the yolk. This supports a follicular origin for both yolk
androgens, and an adrenal origin for yolk corticosterone.

Published by Elsevier Inc.

1. Introduction

Owls were the classic example that David Lack used to explain
how female birds adjust brood size to the available food supply.
Lack suggested that a sibling hierarchy based on age forms through
asynchronous hatching, and this allows older and larger nestlings
to monopolize a majority of the food resources. If food becomes
limited, younger nestlings perish and minimal energy is wasted.
Lack’s insight stimulated considerable interest in the role female
birds play in adjusting the onset of incubation, the resulting dispar-
ities created among nestlings, and the adaptive function of sibling
asymmetries in a wide range of species [21,38,48,60,66–68]. In
1993, Schwabl’s [53] discovery that female birds deposit yolk ste-
roids in differential concentrations within their clutches widened
the focus of maternal effects beyond asynchronous hatching to in-
clude the role that egg hormones play in sibling competition and
development.

Several steroid hormones have been identified in avian eggs,
including testosterone, 5a-dihydrotestosterone, estradiol [53],
androstenedione [53], progesterone [31], and corticosterone [53].
Exposure to high concentrations of yolk androgens has generally
been found to be correlated with increased growth and survivor-
ship [19], increased boldness [9,61] and alertness [11], and more
vigorous begging [53]. However, negative effects of yolk androgens

on growth and survival have also been described [40,43,57]. Ele-
vated yolk corticosterone has often been found to be associated
with negative effects on offspring quality, including reduced
growth [14,23,24,51], increased activity of the hypothalamic–
pituitary–adrenal axis as adults [23], slower plumage development
[51], and depressed immunity [50], although exposure to elevated
yolk corticosterone was also found to dampen the response to
stress in fledglings [35]. Concentrations of corticosterone may
adaptively match maternal quality with offspring demand
[33,35], and elevated embryonic exposure to corticosterone may
induce phenotypes that increase survival in low-quality environ-
ments [7]. Estradiol is typically present in yolk at much lower con-
centrations in comparison to yolk androgens [6], but exposure
during development may also alter offspring phenotype [64].

Since Schwabl’s [53] discovery, work on within-clutch patterns
of yolk steroids has found different within-clutch patterns in dif-
ferent species, and it has been suggested that the variable patterns
reflect different life-history strategies [34,58]. In some species,
androgen concentrations increase [15,30,47,54] or corticosterone
concentrations decrease [34] across the laying order. Both these
patterns could benefit later-hatching nestlings by counteracting
the formation of a sibling hierarchy. In other species, androgen
concentrations decrease [55] or corticosterone concentrations in-
crease [27,36] across the laying order, both of which could handi-
cap later-hatching nestlings and reinforce the effects of hatching
asynchrony. Because yolk estradiol concentrations are often unde-
tectable [19] or do not vary with laying order [37], estradiol is not

0016-6480/$ - see front matter Published by Elsevier Inc.
doi:10.1016/j.ygcen.2011.04.001

⇑ Fax: +1 703 532 9465.
E-mail address: chahn@usgs.gov

General and Comparative Endocrinology 172 (2011) 423–429

Contents lists available at ScienceDirect

General and Comparative Endocrinology

journal homepage: www.elsevier .com/locate /ygcen

http://dx.doi.org/10.1016/j.ygcen.2011.04.001
mailto:chahn@usgs.gov
http://dx.doi.org/10.1016/j.ygcen.2011.04.001
http://www.sciencedirect.com/science/journal/00166480
http://www.elsevier.com/locate/ygcen


thought to play a role in mediating asynchronous hatching. How-
ever, in zebra finches (Taeniopygia guttata), within-clutch variation
of yolk estradiol concentrations has been described [69].

In this study, we investigated within-clutch patterns of four
yolk steroids—testosterone, androstenedione, corticosterone, and
estradiol—in clutches of Eastern screech owl (Megascops asio) eggs.
Few raptors have been examined to determine the pattern of yolk
androgen concentrations, and this is the first study of a nocturnal
raptor. Most owls are heavily dependent for food on rodents and
other small mammals [25,29,59], and these groups are character-
ized by extreme population fluctuations [12,13]. Consequently
owls adjust their brood size to extreme changes in food supply
[13,25,59]. We hypothesized that screech owls might utilize yolk
hormones to reinforce the age-based sibling hierarchy, thus
employing a physiological mechanism to make the hierarchy more
effective. Specifically, we predicted that yolk androgen concentra-
tions would decrease across the laying order in Eastern screech owl,
because this pattern would support a sibling feeding hierarchy,
providing older chicks with the benefits associated with higher
androgen concentrations noted above. We hypothesized that corti-
costerone concentrations would increase across the laying order
because this pattern would handicap younger chicks and reinforce
a sibling hierarchy. Because yolk estradiol concentrations have not
been well characterized, we also measured estradiol in the yolks of
screech owl eggs.

Yolk androgens have most frequently been reported to increase
across egg lay order [17,19], but we based our prediction that they
would decrease on the life history traits of owls [25]. The extreme
fluctuations of owls’ food supply appear to impose strong selection
on the effectiveness of the sibling feeding hierarchy, and we
hypothesized that a physiological mechanism like decreasing yolk
androgens could contribute to sibling asymmetries and enhance
the effectiveness of the sibling feeding hierarchy. In addition, owls
do not show sibling aggression or declining egg size with lay order
[25], traits that contribute to brood reduction in some other asyn-
chronously-hatching species [10,41]. In owls the clutch size is typ-
ically large (4–5) and the nestling period is long (28–30 days),
conditions under which a sibling feeding hierarchy is particularly
effective as a food distribution system [25].

Since Lack’s work, asynchronous hatching has been found to be
a widespread trait, but it is often accompanied by other traits that
facilitate brood reduction [10,41]. In boobies and eagles, asynchro-
nous hatching is accompanied by aggressive behavior in nestlings,
and obligate siblicide effects brood reduction [45,62,65]. In gulls,
including kittiwakes, asynchronous hatching is accompanied by
decreasing egg size in later-laid eggs, and brood reduction is
accomplished by a sibling feeding hierarchy reinforced by lower
survival of chicks from smaller eggs [4,21]. Asynchronous hatching
may also be present without brood reduction. In some species, pri-
marily songbirds, asynchronous hatching is hypothesized to reduce
predation rather than to reduce the brood size [8], because it short-
ens the time that eggs and young are in the nest and allows older
chicks to fledge early if necessary. This strategy is consistent with
the ‘‘hatching asynchrony adjustment hypothesis’’ [19], in which
increasing yolk androgen concentrations partially compensate for
the delayed hatching of later-laid eggs. Consequently, differences
in life history strategy are considered important to understand
the variability among species in yolk hormone patterns [34].

We also investigated the distribution of testosterone, andro-
stenedione, and corticosterone within the yolks of screech owl
eggs. Differences in concentrations within yolk layers provide evi-
dence to the origin of yolk steroids and may have important conse-
quences for developing embryos. Few studies have found a
correlation between yolk androgen concentrations and blood
concentrations in females [39,44,48,70], so it has been suggested
that yolk androgens originate in the follicle [18]. In contrast, yolk

corticosterone has been shown to positively correlate with blood
concentrations in females, and it has been suggested that cortico-
sterone originates in the adrenal gland [32]. We expected testos-
terone and androstenedione to decrease from interior to the
exterior of the yolk, because this pattern reflects androgen produc-
tion by the follicle during egg formation. In the domestic hen, tes-
tosterone production increases early in the period of yolk
production and then remains relatively constant before dropping
off sharply during the last 24 h of yolk deposition [2]. In contrast,
corticosterone was expected to be evenly distributed throughout
the yolk.

2. Materials and methods

2.1. Study species

The Eastern screech owl is a small owl (males are typically
160 g, females 200 g) that has a broad ecological niche and a large
geographic range. Screech owl clutches contain between 2 and 8
eggs, although 4–6 eggs is typical. The first 2 or 3 eggs are typically
laid 1 day apart, with increasing intervals thereafter [16,63]. Eggs
are incubated for approximately 28 days, and hatch asynchro-
nously over 3 or more days (personal observation). The young
fledge at 28–30 days of age [16]. The owls used in this study were
members of a captive breeding colony at USGS—Patuxent Wildlife
Research Center, Laurel, MD. Owls were housed in outdoor flight
cages (12 � 3 m) that contained nest-boxes, and breeding pairs
were kept together year-round. Pairs were provided two mice
per bird daily, as well as Nebraska Brand Bird of Prey Diet (Central
Nebraska Packing, Inc., North Platte, NE), and pairs were provided
two additional mice per day for each nestling as soon as it hatched.

2.2. Egg collection

In 2006 and 2007, nests were monitored closely during egg-lay-
ing. Eggs were collected within 3 h of laying and replaced with arti-
ficial eggs. In 2006, 57 eggs were collected from 15 clutches for a
study of within-clutch variation in maternal hormones. In 2007,
28 eggs from 10 different clutches were collected for a study of
variation in maternal hormone concentration in different regions
of the yolk. Eggs from both years were stored at �70 �C until
analysis.

2.3. Yolk hormone analysis

For all samples, the yolk and albumen were separated. In 2006,
yolks were weighed to the nearest 0.01 g on a digital scale, and
whole yolks were homogenized with an equal volume of phos-
pho-saline buffer (PBS). Hormones were extracted using absolute
ethanol according to the procedure used by Kozlowski et al. [26].
Briefly, yolk samples were homogenized and incubated at 37 �C
for 1 h. After incubation, 500 lL of absolute ethanol was added to
500 lL of the yolk/PBS mixture. Upon adding ethanol, the samples
were immediately homogenized again, and allowed to incubate at
room temperate for 10 min. Samples were then spun in a centri-
fuge for 10 min at 12,282g. The supernatant was retained and as-
sayed for testosterone, androstenedione, corticosterone and
estradiol.

In 2007, we followed the methods of Lipar et al. [31] to assess
hormone distribution throughout the yolk. Frozen yolks were
dissected with a scalpel blade, and samples of similar mass were
taken from the interior, intermediate, and exterior layers of the
yolk. Sample masses were recorded immediately upon dissection
and ranged from 0.08 to 0.21 g. The largest difference in mass
between samples from the same eggs was 0.05 g. Since hormone
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concentrations are expressed as nanograms per gram of yolk, var-
iation in the sample masses did not contribute to error in the mea-
surement of hormone concentrations. Individual samples were
homogenized in 1.5 ml microcentrifuge tubes with 200 lL of PBS.
Hormones were extracted using absolute ethanol as described
above, and supernatant was assayed for testosterone, androstene-
dione, and corticosterone.

All samples were analyzed using radioimmunoassay (RIA) in the
Endocrinology Lab at the Saint Louis Zoo. In preparation for assay,
ethanol extracts were thawed and spun in a centrifuge at 4500g for
10 min to remove any remaining lipids. Hormone concentrations
were measured using commercially available RIA kits: testosterone
(Coat-A-Count� Testosterone 125I Kit, Diagnostic Products Corpo-
ration, Los Angeles, CA), androstenedione (Coat-A-Count� Direct
Androstenedione 125I Kit, Diagnostic Products Corporation, Los
Angeles, CA), estradiol (Double Antibody Estradiol 125I Kit, Diag-
nostic Products Corporation, Los Angeles, CA), and corticosterone
(Double Antibody Corticosterone Kit, ICN MP Biomedicals). In our
assays, the upper and lower detection limits were as follows: tes-
tosterone: 0.05–40 ng/ml; androstenedione: 0.10–10 ng/ml; corti-
costerone: 0.13–5 ng/ml; estradiol: 0.005–0.50 ng/ml. All kits
have highly specific antibodies and low cross-reactivities with
other steroids. The following cross-reactivity data were supplied
by the manufacturer.

The testosterone antibody cross-reacts as follows: 5b-andro-
stan-3a, 17b-diol: 0.4%; androstenedione: 0.5%; 5b-androstan-3b,
17b-diol: 0.2%; 5a-dihydrotestosterone: 3.3%; 5(10)-estren-
17a-ethinyl-17b-ol-3-one: 0.2%; 4-estren-17a-methyl-17b-ol-3-
one: 1.1%; 4-estren-17-ol-3-one: 20%; 19-nortestosterone: 20%;
ethisterone: 0.7%; 19-hydroxyandrostenedione: 2.0%; 11-keto-
testosterone: 16%; methyltestosterone: 1.7%; norethindrone: 0.1%;
11b-hydroxyyestosterone: 0.8%; and triamincinolone: 0.2%. Cross-
reactivities for all other compounds are below 0.1%.

The androstenedione antibody cross-reacts as follows: andros-
terone: 0.14%; DHEA: 0.16%; progesterone: 0.16%; spironolactone:
0.11%; 5a-dihydrotestosterone: 0.21%; and testosterone: 1.49%.
Cross-reactivities for all other compounds are below 0.1%.

The estradiol antibody cross-reacts as follows: d-equilenin:
4.2%; 17b-estradiol-3b-D-glucuronide: 6.0%; b-estradiol 17-propio-
nate: 0.43%; 1,3,5(10)-estratrien-17a-ethinyl-3,17b-diol 3-methyl
ether: 0.87%; 1,3,5(10)-estratrien-17a-methyl-3,17b-diol 3-methyl
ether: 3.5%; 4-estren-17a-ethinyl-17b-ol-3-one: 0.14%; 4-estren-
17b-ol-3-one: 1.75%; estriol: 0.24%; estrone: 12.5%; estrone-b-D-
glucuronide: 1.6%. Cross-reactivities for all other compounds are
below 0.1%.

The corticosterone antibody cross-reacts as follows: desoxycor-
ticosterone: 0.34%; testosterone: 0.10%; progesterone: 0.02%; preg-
nenolone: <0.01%; and 17a-hydroxyprogesterone: <0.01%.

Assays were run according to kit directions, with the exception
that the kit standards for testosterone, androstenedione, and
estradiol, which are supplied in human serum, were replaced by
standards obtained from Sigma Chemical (Saint Louis, MO), and
diluted in 10% steroid-free calf serum. In all assays, standard dil-
uent was added to extracted yolk samples, and steroid-free yolk
extract was added to standards and quality controls. Calf serum
and yolk extract were stripped of steroids using dextran-coated
charcoal (DCC #6241, Sigma Chemical, Saint Louis, MO) prior to
use.

Eggs from the same clutch, and yolk sections from the same egg,
were measured in the same assay, and all samples were measured
in duplicate. Mean ± SEM intra-assay variation of duplicate sam-
ples was 4.9 ± 0.4 for testosterone, 9.6 ± 0.9 for androstenedione,
5.6 ± 0.5 for estradiol, and 4.5 ± 0.6 for corticosterone. Inter-assay
variation of quality controls was 3.5 ± 2.5 for testosterone,
4.3 ± 1.9 for androstenedione, 7.5 ± 1.7 for corticosterone, and
8.6 ± 4.77 for estradiol.

2.4. Assay validation

All assays were tested for linearity by diluting four samples that
contained high concentrations of hormone by 1/2, 1/4, and 1/8
with steroid-free yolk extract. Serial dilutions gave calculated ob-
served/expected values of 91.22 ± 2.21% (mean ± SE) of expected
values for testosterone, 102.45 ± 2.92% of expected values for
androstenedione, 94.32 ± 5.1% of expected values for corticoste-
rone, and 98.54 ± 3.1% of expected values for estradiol. We as-
sessed the accuracy of the assay by adding a known amount of
hormone to four yolk extracts containing low values of hormone.
Addition of known amounts of each hormone at three dosage levels
resulted in recovery of 101.68 ± 4.14% of added testosterone,
90.89 ± 4.53% of added androstenedione, 96.52 ± 6.41% of added
estradiol, and 92.71 ± 3.94% of added corticosterone.

2.5. Statistical methods

Hormone concentrations were analyzed using mixed model
analysis of covariance for a within-clutch data set examining egg
lay order and a within-egg data set to examine yolk layer [52].
The model fit the repeated measures within-clutch with the struc-
ture compound symmetry. Two possible random models were
examined and the better random model was selected based on
goodness of fit statistics. The two choices were a homogeneous
variance model fitting a single residual variance or a heteroge-
neous variance model fitting a separate residual variance for each
egg number. The residuals for all hormones were examined and in
most case there was some skewing to the right. However, the de-
gree of skewing was not considered serious given the large number
of replicates for each egg lay order and for each yolk layer.

When the analysis resulted in a significant egg lay order ef-
fect or significant yolk layer effect, Tukey–Kramer HSD was used
to identify differences between pairs of means for egg lay order
or for egg yolk layer. For the within-clutch data analyses, the
fixed portion of the model included egg lay order, while yolk
mass as a covariate. The random effects were female and the
residual variance(s). Only the analysis of androstenedione re-
sulted in a heterogeneous residual variance model. For the with-
in-egg data analyses, the fixed portion of the model included egg
yolk layer, while yolk mass was a covariate. The random effects
were female, egg lay order and the residual variance(s). Only the
analysis of corticosterone resulted in a heterogeneous residual
variance model.

3. Results

3.1. Within-clutch variation in yolk hormone concentrations

The average yolk mass was 4.080 ± 0.090 g and ranged from 3.44
to 5.69 g. Yolk mass did not differ in response to egg lay order
(F3,39 = 0.57, P = 0.635). The average concentration of yolk testoster-
one was 32.3 ± 2.5 ng/g and ranged from 10.5 to 75.6 ng/g. The aver-
age concentration of yolk androstenedione was 39.6 ± 4.1 ng/g, and
ranged from 11.3 to 105.5 ng/g.

Yolk corticosterone concentrations averaged 2.28 ± 0.21 ng/g
and ranged from 0.95 to 4.33 ng/g, and yolk estradiol concentrations
averaged 4.47 ± 0.34 ng/g and ranged from 2.49 to 11.38 ng/g. The
concentrations of the four hormones in egg yolk were significantly
different (F3,46 = 137.66; P < 0.0001) (Fig. 1). Tukey–Kramer
post hoc tests were performed, and all mean differences were
significant.

Yolk androgens were distributed relatively evenly across egg lay
orders (P > 0.585 all tests) except for the first eggs, which
contained significantly lower concentrations of testosterone as
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compared to second and third eggs (P = 0.010) (egg order effect:
F3,40 = 5.00, P = 0.005) (Fig. 2A) and androstenedione (egg order
effect: F3,23 = 14.95, P < 0.001) (Fig. 2B) where first egg concen-
trations were lower than second-, third-, and fourth-laid eggs
(P < 0.001 for all tests). Testosterone and androstenedione concen-
trations did not differ between second-, third- and fourth-laid eggs
(P > 0.148 for all tests). Yolk corticosterone (F3,36 = 0.15, P = 0.927)
(Fig. 2C) and yolk estradiol concentrations (F3,40 = 1.65, P = 0.193)
(Fig. 2D) did not vary with laying order. Concentrations of testos-
terone, androstenedione, corticosterone, and estradiol did not vary
(P > 0.321 for all tests) with yolk mass.

3.2. Variation of hormone concentrations within the yolk

Average (±SE) testosterone concentration was 25.5 ± 2.1 ng/g in
the exterior layer of the yolk, 50.9 ± 3.7 ng/g in the intermediate
layer, and 51.0 ± 3.6 in the interior layer (Table 1). Average (±SE)
androstenedione concentration was 22.8 ± 4.0 ng/g in the exterior
layer of the yolk, 38.9 ± 4.0 ng/g in the intermediate layer, and
40.7 ± 4.0 in the interior layer. Average (±S.E.) corticosterone con-
centration was 4.07 ± 0.38 ng/g in the exterior layer of the yolk,

Fig. 1. Mean (±SE) yolk steroid concentration in 57 owl eggs from 15 clutches
(testosterone: T; androstenedione: A4; corticosterone: CORT; estradiol: E2).

Fig. 2. Mean (±SE) yolk testosterone (A), androstenedione (B), corticosterone (C), and estradiol (D) concentration in relation to position in the laying order. Levels not
connected by the same letter (a and b) are significantly different.

Fig. 3. Mean (±SE) yolk steroid concentration in the exterior, intermediate, and
interior sections of yolk (n = 28 eggs). For each hormone, levels not connected by
the same letter (a, b) 600 are significantly different (testosterone: T; androstene-
dione: A4; corticosterone: CORT).
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3.82 ± 0.32 ng/g in the intermediate layer, and 3.60 ± 0.32 in the
interior layer.

Concentrations of both testosterone (F2,41 = 69.15, P < 0.001)
and androstenedione (F2,50 = 34.68, P < 0.001), but not cortico-
sterone (F2,29 = 1.65, P = 0.210), differed significantly between dif-
ferent yolk regions (Fig. 3). The exterior yolk layer contained
significantly lower concentrations of testosterone and androstene-
dione than both the intermediate (P < 0.001) and interior
(P < 0.001) regions, whereas the intermediate and interior regions
contained equal concentrations of both testosterone (P = 0.999)
and androstenedione (P = 0.721). Corticosterone concentrations
were evenly distributed throughout the yolk (P > 0.222 for all
tests). Yolk testosterone (P = 0.445), androstenedione (P = 0.438),
and corticosterone (P = 0.06) were not significantly related to yolk
mass.

4. Discussion

4.1. Within-clutch pattern

4.1.1. Yolk androgens and corticosterone
Comparative studies have found a variety of within-clutch pat-

terns of yolk androgen and corticosterone concentrations. In some
species, yolk androgen concentrations vary across the laying order
and mediate sibling hierarchies [30,47,54], while in other species,
variation in yolk corticosterone concentrations appears to be
important for mediating sibling interactions [27,34,36]. Whether
both steroids vary in concert or independently to mediate sibling
interactions for most species is unknown. The reasons why females
birds often deposit different concentrations of yolk hormones in
sequential eggs of a clutch is still not well understood, but mea-
surements of yolk hormones in previously unexamined species
contribute to our appreciation of the variations in the within-
clutch patterns. Life history strategy differences are increasingly
considered key to interpreting the effects of yolk hormones on em-
bryos, nestlings, and parental reproductive success [34].

Owls frequently experience brood reduction because of extreme
fluctuations in their food supply [13,25,28,59]. We hypothesized
that a within-clutch pattern of decreasing androgens and increas-
ing corticosterone would constitute a physiological mechanism
that reinforced the age-based sibling feeding hierarchy. However,
we found a relatively even distribution of both yolk androgens
within the clutch, with only the first egg showing lower concentra-
tions. This same pattern was reported for another raptor, American
kestrel [57], a pattern that appears likely to minimize sibling dif-
ferences and have little effect on the existing sibling hierarchy
other than to reduce dominance associated with the first-hatching
nestling. We found an even distribution of corticosterone within
the clutch of screech owl eggs, a pattern that also minimizes
differences among siblings and is expected to have little effect on
the existing age-based hierarchy. It is notable that the same
pattern of even distribution was reported for common eider
(Somateria mollissima), a precocial species that does not have
sibling competition for parental feeding [34].

The relatively even distribution of yolk hormones that we
report here for eastern screech owl may be characteristic of this

species when it has a plentiful food supply. The owls in this study
were captive, and the food provided is typically sufficient to raise
the full brood (Hahn, unpublished data). Future experimental work
is necessary to explore the plasticity of the screech owl’s yolk
hormone deposition in response to food supply. It is possible that
female screech owls do not elevate yolk androgens or corticoste-
rone in response to food supply and thus avoid the long-term
negative effects that may be associated with these hormones
[19,42]. Female screech owls may also show other responses to
poor food supply. For example, Bunn et al. [5] found that barn owls
dramatically adjusted clutch size to changes in abundance of
rodents. Another raptor, American kestrel, adjusts hatching asyn-
chrony in relation to food supply, hatching its young more
synchronously when food is abundant and more asynchronously
when food is limited [67]. Both these adjustments optimize the
number of young fledged [68], but comparable data are not
available for screech owl.

4.1.2. Estradiol
Estradiol was detected in the yolk of Eastern screech owl eggs at

a significantly lower concentration than both yolk androgens.
Estradiol is typically present in yolk at low concentrations [6].
The low transfer of estradiol may be related to the fact that estra-
diol plays a major role during sexual differentiation, and this pro-
cess can be severely affected by even small changes in estradiol
concentration [1]. In screech owl clutches, yolk estradiol concen-
trations did not vary with laying order. Lack of within-clutch vari-
ation in estradiol has similarly been reported in a number of
species: canaries [56], several species of songbirds, including song
sparrow (Melospiza melodia), red-winged blackbird (Agelaius phoe-
niceus), brown-headed cowbird (Molothus ater), house sparrow
(Passer domesticus), Eastern phoebe (Sayornis phoebe), house finch
(Carpodacus mexicanus) [22], as well as grackles (Quiscalus quiscula)
[3] and Canada geese (Branta canadensis) [37]. Our results, like
most previous studies, suggest that yolk estradiol does not enhance
the effects of hatching asynchrony.

4.2. Yolk layer pattern

Because many studies fail to find a positive correlation between
yolk androgen concentrations and concentrations in the serum of
laying females [27,44,46,69], it is believed that androgens present
in the yolk are follicular in origin [20,31]. In contrast, yolk cortico-
sterone has been shown to positively correlate with blood concen-
trations in females, and is believed to originate in the adrenal gland
[32]. Our results support these studies. Both androgens were dif-
ferentially distributed throughout the yolk of Eastern screech owl
eggs. The exterior layer of the yolk contained significantly less tes-
tosterone and androstenedione than the intermediate and interior
layer of the yolk, reflecting the pattern of testosterone production
by the follicle during egg formation. In the domestic hen, testoster-
one production increases early in the period of yolk production and
then remains relatively constant before dropping off sharply dur-
ing the last 24 h of yolk deposition [2]. Yolk corticosterone concen-
trations were evenly distributed throughout the yolk. This pattern
is expected if yolk corticosterone originates from the female’s adre-
nal gland and is transferred to the yolk via the bloodstream.

Differences in androgen concentrations among yolk layers may
have important consequences for developing embryos. The utiliza-
tion of yolk by embryos is accomplished by the formation of the
yolk sac, an organ that encapsulates the yolk and is connected to
the embryo via a system of vitelline arteries and veins [49]. These
blood vessels cover the yolk sac and are responsible for the trans-
port of yolk substances to the circulatory vasculature of the em-
bryo through endocytosis and enzymatic catabolism. Both of
these processes occur at the interface of the yolk and the yolk

Table 1
Hormone concentrations in different layers of yolk.

Yolk layer Testosterone
(ng/g)

Androstenedione
(ng/g)

Corticosterone
(ng/g)

Interior 51.0 ± 3.6 40.7 ± 4.0 3.60 ± 0.32
Middle 50.9 ± 3.7 38.9 ± 4.0 3.82 ± 0.32
Exterior 25.5 ± 2.1 22.8 ± 4.0 4.7 ± 0.38
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sac, which suggests that absorption of the yolk may proceed from
the exterior to the interior of the yolk. If true, this would mean em-
bryos are exposed to different concentrations of androgens at dif-
ferent periods of development. However, it is unknown whether
variation in steroid hormones among yolk layers persists through-
out embryonic development.

5. Conclusions

We hypothesized that Eastern screech owl would exhibit with-
in-clutch patterns of decreasing yolk androgens and increasing cor-
ticosterone, physiological adjustments that could reinforce the
effectiveness of a sibling feeding hierarchy based on age. Because
owls are dependent for food on rodents and small mammals whose
populations fluctuate dramatically in size [13], owls frequently
experience brood reduction when the food supply is poor
[25,28,29]. We found that both testosterone and androstenedione
were deposited relatively evenly among egg lay orders, showing
lower concentrations only in the first-laid egg, while corticosterone
did not vary with lay order. These patterns minimize differences
among siblings and do not appear likely to influence the age-based
sibling hierarchy except to reduce dominance associated with the
first-hatching chick. The pattern we report may be characteristic
of screech owl clutches when food is abundant and the full brood
is raised. Estradiol was present in the yolk of screech owl eggs,
but at much lower concentrations, and did not vary across the lay-
ing order. This suggests that estradiol does not play a role in the
sibling hierarchy.

As has been demonstrated in several other species, concentra-
tions of testosterone and androstenedione varied throughout the
yolk in a pattern that may parallel the production of androgens
by the follicle, supporting a follicular origin for both hormones.
Yolk corticosterone was evenly distributed throughout the yolk,
suggesting that it originates from the female’s adrenal gland is
transferred to the yolk via the bloodstream. Further study is
needed to determine the whether the within-clutch pattern of yolk
androgens differs when food resources are limited.
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