Microbial Content of Abattoir Wastewater and Its Contaminated Soil in Lagos, Nigeria

A. O. Adesemoye
Adekunle Ajasin University, tony.adesemoye@unl.edu

B. O. Opere
Lagos State University

S. C. O. Makinde
Lagos State University, olubunmi.makinde@lasu.edu.ng

Follow this and additional works at: http://digitalcommons.unl.edu/plantpathpapers

Part of the Environmental Health Commons, Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons

http://digitalcommons.unl.edu/plantpathpapers/564

This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Microbial content of abattoir wastewater and its contaminated soil in Lagos, Nigeria

Adesemoye A. O.1*, Opere B. O.2 and Makinde S. C. O.3

1Microbiology Department, Adekunle Ajayi University, Akungba-Akoko, Ondo State, Nigeria.
2Microbiology Department, Lagos State University, Ojo, P. M. B. 1087, Apapa, Lagos, Nigeria.
3Department of Botany and Centre for Environment and Science Education, Lagos State University, Ojo, P. M. B. 1087, Apapa, Lagos, Nigeria.

Accepted 25 August, 2006

Microbial content of wastewater in two abattoirs and the impact on microbial population of receiving soil was studied in Agege and Ojo Local Government Areas in Lagos State, Nigeria. Wastewater samples were collected from each of the abattoirs over three months period and examined for microbial content. Soil samples contaminated with the wastewaters were also collected and analysed for microbial content as compared to soil without wastewater contamination in the neighbourhood (control). Some physico-chemical parameters of the samples such as total dissolved solid, chemical oxygen demand etc were examined. The wastewater samples from both abattoirs were highly contaminated; Agege abattoir showed mean bacterial count of 3.32x10^7 cfu/ml and Odo abattoir showed mean count of 2.7x10^7 cfu/ml. The mean fungal populations were 1.6x10^5 and 1.2x10^5 cfu/ml for Agege and Odo abattoirs respectively. In the contaminated soil sample, mean bacterial count was 3.36x10^7 cfu/ml compared to the 1.74x10^6 cfu/ml of the control sample. High microbial load in abattoir wastewater with negative effects on microbial population in soil, in this study, further confirmed the need to treat wastewater rather than discharging it to the environment.

Key words: Abattoir, bacteria, environmental pollution, fungi, microbial population, soil, wastewater.

INTRODUCTION

Efforts have been geared towards curbing the menace of pollution around the world, particularly by the United Nations organs e.g., United Nations Environmental Programme. There are many international conferences and protocols to this effect. Rio de Janeiro Conference of 1992 was a major effort, collating previous environmental issues and bringing them to the fore (Oyesola, 1998). Nevertheless, in many parts of the world, human activities e. g., animal production, still impact negatively on the environment and biodiversity. Some of the consequences of man-made pollution are—transmission of diseases by water borne pathogens, eutrophication of natural water bodies, accumulation of toxic or recalcitrant chemicals in the soil, destabilization of ecological balance and negative effects on human health (McLaughlin and Mineau, 1995; Sinha, 1997; Bridges et al., 2000; Boadi and Kuitunen, 2003; Amisu et al., 2003).

The continuous drive to increase meat production for the protein needs of the ever increasing world population has some pollution problems attached. In many countries, pollution arises from activities in meat production as a result of failure in adhering to Good Manufacturing Practices (GMP) and Good Hygiene Practices (GHP). Consideration is hardly given to safety practices during animal transport to the abattoir, during slaughter and during dressing. For example, during dressing, the oesophagus of cattle and sheep should be sealed to prevent leakage of animal contents. These ineptitudes often lead to contaminations from hides, hooves and content of alimentary tract during evisceration and negatively impact on the environment, including microbes in the soil and surface and ground water (Hinton et al., 2000; Laukova et al., 2002; Amisu et al., 2003).

A specific example of what happens is logging of contaminated water in the soil. In that situation, oxygen becomes less available as an electron acceptor, prompting denitrifying bacteria to reduce available nitrate into
gaseous nitrogen which enters the atmosphere with resultant negative effects. Also, anaerobic archaea (methanogens), may produce excessive methane at a higher rate than aerobic methane oxidizing bacteria (methanotrophs) could cope with, thus contributing to greenhouse effect and global warming. Increase in methane is a concern because it is five times more effective as a greenhouse gas than CO₂ (Madigan et al., 2003; Rusanov et al., 2002; Tourova et al., 2002; Tortora, 1997). Leaching into groundwater is a major part of the concern, especially due to the recalcitrant nature of some contaminants (Lapygina et al., 2002; Shah and Thakur, 2002; Tortora et al., 1997; Federov et al., 1993; Bitton and Harvey, 1992). The processes of adsorption and trapping by fine sandy materials, clays and organic matter can remove pathogenic organisms and some dissolved organic matter during passage of polluted water through the soil, thus reducing the microbial load. However, if there is too high departure of conditions from normalcy, beyond the carrying capacity of the natural process, diversity of autochthonous species could diminish while count of individual species that are able to survive may increase with possibility of grave consequences on groundwater (Baker and Herson, 1994; Atlas and Bartha, 1998; Lapygina et al., 2002).

Different methods of waste treatment have been developed, for reasons of public health and conservation, which results in the destruction of pathogens and the mineralization of the organic components of sewage prior to discharge. Anaerobic wastewater treatment using granular sludge reactor is one of such methods (Liu et al., 2002; Boadi and Kuittunen, 2003). However, in Nigeria, like many developing countries, the discharge of untreated wastes into the environment is still a problem, despite the establishment of Federal Environmental Protection Agency (FEPA) since 1998 (Adeyemo, 2003). Better inspection of abattoir and strict enforcement of the law are needed to be able to reduce environmental contamination and related diseases especially zoonotic diseases. Attempts to control the hygiene of slaughter house should include visual assessment of premises and animals themselves, and those that are "visibly unacceptably dirty" or are affected by diseases should not be allowed for slaughter (Salami, 1998; Hinton et al., 2000; Inglis and Cohen, 2002; Amisu et al., 2003). This study aims to examine the extent of contamination in untreated wastewater of two abattoirs in Lagos, Nigeria and the impact on the ecology of microorganisms in the soil receiving part of the wastewater. In the two abattoirs examined in this study, different species of cattle are usually slaughtered with their blood, part of the dung and abdominal content washed on cemented pavements. The wastewaters run through open drainage of the abattoirs to bigger adjoining drainages in the neighborhood without any treatment. Part of the wastewater get washed directly to the ground within the neighborhood and may affect the whole biological community, including species diversity and contaminant accumulation in the food chain. Previously, some authors have reported different contaminants in soil and aquatic environments in different parts of Nigeria (Nwachukwu et al., 2001; Adeyemo, 2003; Akpan, 2004; Adewoye and Lateef, 2004; Efe, 2005). Besides contributing to knowledge, hopefully, this report will re-awaken concerned government agencies and other stakeholders.

METHODS

Collection of wastewater and soil sample

Wastewater samples were collected from two abattoirs with Bijou bottles. The abattoirs were located in Agege (Agege Local Government) and Odo (Nigerian Army Cantonment Ojo, Ojo Local Government), both within Lagos State, Nigeria. The Bijou bottles were used to aseptically draw part of the wastewater running off the drainage system just as it was leaving the slaughter pavements. Sample bottles were placed on ice during transport to the laboratory. Soil samples were collected from Agege abattoir contaminated area and the neighbourhood without wastewater contamination to serve as control. Agege abattoir was chosen for soil sample collection because slaughtering activities was relatively higher and the abattoir was well demarcated with a fence. Whatever contamination observed from the soil samples was therefore attributed to the wastewater. Samples were collected at 10 days interval over a period of three months. All samples were transported to the laboratory for analyses immediately after collection. Samples were collected three times per month at an interval of 10 days over a period of three months from each abattoir and labeled appropriately. There were a total of nine replicates for each sample.

Analyses of wastewater samples for physico-chemical properties

Samples were analysed for the following physico-chemical parameters: hydrogen ion concentration, temperature, turbidity, total suspended solid, total dissolved solid, biochemical oxygen demand (BOD), chemical oxygen demand (COD) and conductivity. The pH value of the samples were determined with a pH meter (Unicam 9450, Orion model No. 91-02). Temperature was measured with mercury thermometer immediately after sample collection. Turbidity was determined with Milton Roy (USA) Spectronic 20D meter. Gravimetric method involving filtration and evaporation were used to measure total suspended solids and total dissolved solids. Methods recommended by APHA (1998) were followed for the measurement of BOD and COD. Wastewater sample was drawn into a 250 ml bottle, incubated in the dark for five days at 20°C and at the end of five days, the final dissolved oxygen (DO) content was determined. Decrease in DO between the final DO reading and the initial DO reading was corrected for sample dilution and recorded as the BOD of the sample. The COD was estimated by determining equivalent amount of oxygen required to oxidize organic matter in the samples. Conductivity was determined using a conductivity meter (Metrohm 640, Switzerland).

Preparation of media and total viable count

All the media used in this study were prepared and sterilized according to manufacturer's instructions. The media used include

Table 1. Physico-chemical properties of wastewater from two abattoirs in Lagos, Nigeria

<table>
<thead>
<tr>
<th>Parameters measured</th>
<th>Agege</th>
<th>Odo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>Ox-blood to yellowish red</td>
<td>Ox-blood to yellowish red</td>
</tr>
<tr>
<td>Appearance</td>
<td>Turbid</td>
<td>Turbid</td>
</tr>
<tr>
<td>Temperature</td>
<td>27±1.1°C</td>
<td>26±0.72°C</td>
</tr>
<tr>
<td>pH value</td>
<td>4.6±0.3</td>
<td>4.7±0.45</td>
</tr>
<tr>
<td>Conductivity (µScm⁻¹)</td>
<td>34.0±2.1</td>
<td>34.6±1.2</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>7.6±0.6</td>
<td>7.1±0.3</td>
</tr>
<tr>
<td>Total suspended solids (mgL⁻¹)</td>
<td>1800±20</td>
<td>1750±25</td>
</tr>
<tr>
<td>Total dissolved solids (mgL⁻¹)</td>
<td>630±8.3</td>
<td>610±5.0</td>
</tr>
<tr>
<td>Biological oxygen demand (mgL⁻¹)</td>
<td>35±1.5</td>
<td>30±2.0</td>
</tr>
<tr>
<td>Chemical oxygen demand (mgL⁻¹)</td>
<td>142±6.2</td>
<td>140±2.8</td>
</tr>
</tbody>
</table>

Values are means of three repeated sampling of three replicates each.

RESULTS

Summary of the physico-chemical properties of analyzed wastewater

The results of the physico-chemical analyses are presented in Table 1. Physico-chemical parameters analyzed were not statistically different for the wastewaters from both abattoirs (Agege and Odo). For example, mean temperature was 27±1.1°C in Agege abattoir and 26±0.72°C in Odo abattoir. The pH value was 4.6±0.3 and 4.7±0.45 for Agege and Odo abattoirs respectively.

Preparation of diluents, isolation and identification of isolates

A measure of 10 g of soil sample, crushed and slightly heated (or 10 ml in the case of wastewater) was diluted in 90 ml of sterile distilled water, followed by serial dilution. Then, the serial diluents were aseptically inoculated onto different plates of melted sterile medium after cooling to 45°C and glass spreader was used to spread the inoculum. Sub-culturing was done until distinct colonies (pure cultures) were obtained. In identifying fungi, microscopic and macroscopic examinations including staining for morphological characteristics were carried out on fungal isolates and identification was done based on the characteristics. For bacteria, pure cultures were isolated followed by biochemical tests to identify the isolates. Biochemical tests done using standard methods include; Gram stain, motility, urease activity, carbohydrate utilization, starch hydrolysis, gelatin hydrolysis, oxidase, catalase, indole production, citrate utilization, nitrate reduction and hydrogen sulphide production (Anon, 1994; Cappuccino and Sherman, 1998).

Data analysis

Data obtained were analyzed using SAS 9.1 software (SAS Institute, Cary, USA) and means were separated by least significant differences (P ≤ 0.05).

Total viable count of bacteria in wastewater and soil samples

The mean bacterial counts from Agege and Odo abattoirs were not statistically different. The mean total bacterial.

Figure 1. Population of bacteria in (A) Agege abattoir, (B) Odo Abattoir, (C) contaminated soil and (D) soil without abattoir contamination. Populations are means of three repeated sampling of three replicates each.
Table 2. Microbial isolates from two abattoir wastewater samples.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Agege abattoir</th>
<th>Odo abattoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>Bacillus sp.</td>
<td>Bacillus sp.</td>
</tr>
<tr>
<td>Bacterium</td>
<td>Clostridium welchii (C. perfringes)</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>*Pseudomonas</td>
<td>C. aeruginosa</td>
<td>C. aeruginosa</td>
</tr>
<tr>
<td>Luteus</td>
<td>Micrococcus luteus</td>
<td>Micrococcus luteus</td>
</tr>
<tr>
<td>Vibrio sp.</td>
<td>Vibrio sp.</td>
<td>Vibrio sp.</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>Lactobacillus plantarum</td>
<td>Lactobacillus plantarum</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td></td>
<td>Aspergillus niger</td>
</tr>
<tr>
<td>Mucor sp.</td>
<td>Mucor sp.</td>
<td>Mucor sp.</td>
</tr>
<tr>
<td>Saccaromyces sp.</td>
<td></td>
<td>Saccaromyces sp.</td>
</tr>
<tr>
<td>Penicillium sp.</td>
<td></td>
<td>Penicillium sp.</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>Fusarium sp.</td>
<td></td>
</tr>
</tbody>
</table>

| count of the replicates taken from Agege abattoir was 3.32x10^7 cfu/ml while that of the Odo abattoir was 2.7x10^7 cfu/ml. Meanwhile, mean bacterial population of the wastewater contaminated soil samples from Agege abattoir was 3.36x10^7 cfu/g, which was statistically greater at p ≤ 0.05 than 1.74x10^6 cfu/g counted from the uncontaminated soil (soil without wastewater contamination) in the neighborhood (Figure 1).

Table 3. Microbial isolates from Agege abattoir soil samples.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Contaminated soil</th>
<th>Uncontaminated soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>Lactobacillus plantarum</td>
<td>Bacillus sp.</td>
</tr>
<tr>
<td>*Pseudomonas</td>
<td>Pseudomonas aeruginosa</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Bacillus sp.</td>
<td>Bacillus sp.</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>Vibrio sp.</td>
<td>Vibrio sp.</td>
<td>Pseudomonas putida</td>
</tr>
<tr>
<td>*Micrococcus</td>
<td>Micrococcus luteus</td>
<td></td>
</tr>
<tr>
<td>*Clostridium</td>
<td>Clostridium welchii (C. perfringes)</td>
<td></td>
</tr>
<tr>
<td>*Aspergillus</td>
<td>Aspergillus niger</td>
<td></td>
</tr>
<tr>
<td>Mucor sp.</td>
<td>Mucor sp.</td>
<td></td>
</tr>
<tr>
<td>*Saccaromyces</td>
<td>Saccaromyces sp.</td>
<td></td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>Fusarium sp.</td>
<td></td>
</tr>
</tbody>
</table>

Total viable count and microbial isolates in analyzed soil

Mean total fungi/yeast counted from the Agege abattoir was 1.60x10^5 cfu/ml and the mean count from Odo abattoir was 1.20x10^5 cfu/ml (Fig. 2). Bacterial and fungal/yeast isolates are shown in Table 2. Bacterial isolates from soil samples with or without wastewater contamination are shown in Table 3.

DISCUSSION

The mean total bacterial count and fungi/yeast were high for samples from the two studied abattoirs (Figures 1 and 2). Going by international standard, any water contaminated to this level is neither good for domestic use nor is it supposed to be discharged directly into the environment without treatment. *Clostridium welchii* (*C. perfringens*), a common cause of gas gangrene and food poisoning as well as bowel disease called necrotizing colitis (Revis, 2004), was isolated from the wastewaters. Ogunseitan (2002) reported that animal excrement can be positive to tests on chemical indicators which will focus on compounds that would complement information based on indicators of pathogenic microorganisms present in fecal materials. The pH of the wastewaters was acidic, ranging from 4.3 to 5.1. However, a pH near 7.0 (neutral) plays a part in determining both the qualitative and quantitative abundance of microflora (Federov et al., 1993, Edward, 1990). It could be inferred then, that more hydrogen ion became available; lowering...
the pH value of contaminated soil and affecting the pattern of microbial population. This can be corroborated by the report of Nazina et al., (2002) that abundance and activity of microflora in soil strata are controlled by the availability of water, nutrients, pH, concentration of metal ions, hydrodynamic communication with the ground surface, the lithology of bearing rocks, and so on.

Total bacterial population obtained from the contaminated abattoir soil was more than that in the soil without wastewater contamination. This could be regarded as destabilization of the soil ecological balance arising from contamination. Environmental stresses brought about by the contamination could be adduced for the reduction in microbial species diversity but increasing the population of few surviving species. Previous reports have proposed extensive microbial diversity (including species richness and species evenness) with population estimated between approximately 4×10^3 to 10^4 species per g of uncontaminated soil (Borneman et al., 1996). A possible explanation on what transpired leading to the change in population pattern is that the organisms in the wastewater and organisms autochthonous to the soil engaged in competition and other negative microbial interactions such as antibiosis, after the water was discharged into the soil. Guided by the law of survival of the fittest (Madigan et al., 2003), those that were not able to survive the new conditions were probably excluded.

Similar to a previous study (Laukova et al., 2002), less diversity of bacteria but increase in population of surviving species was observed in this study. Higher population of bacteria observed in the contaminated soil (Figure 1) possibly had more of bacteria that were able to withstand acidic conditions. Changes in the ecology of soil have been observed by different authors but one germane question is how long such changes can persist. We believe the duration depends on many factors but in agreement with Hill et al. (1996), the type, quantity or concentration of the contaminant and the level of toxicity are very important. High level of contamination of the abattoir wastewater as revealed in this study, further confirmed the dangers associated with discharging untreated wastewater to the environment, thus the need for adequate treatment to ensure decontamination. We use some of the words of Ogunseitan (2003) to submit that sustainability in food production (in this case – meat production) should be given priority of place since it intertwines with public health and economic development. Another related question (outside this study) is the relationship of wastewater contamination to soil fertility. This area is recommended for further studies.

ACKNOWLEDGEMENTS

The authors are grateful to Prof. Poju Akinyanju of the Department of Microbiology, Adekunle Ajayi University, Akungba-Akoko, Ondo State, Nigeria and Prof. Henry Fadamiro, Department of Entomology and Plant Pathology, Auburn University, USA, for their helpful criticisms of the initial manuscript.

REFERENCES

