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Abstract

The potential effects of proposed lead-zinc mining in an ecologically sensitive area were assessed by studying a nearby mining district

that has been exploited for about 30 y under contemporary environmental regulations and with modern technology. Blood and liver

samples representing fish of three species (largescale stoneroller, Campostoma oligolepis, n ¼ 91; longear sunfish, Lepomis megalotis,

n ¼ 105; and northern hog sucker, Hypentelium nigricans, n ¼ 20) from 16 sites representing a range of conditions relative to mining

activities were collected. Samples were analyzed for metals (also reported in a companion paper) and for biomarkers of metals exposure

[erythrocyte d-aminolevulinic acid dehydratase (ALA-D) activity; concentrations of zinc protoporphyrin (ZPP), iron, and hemoglobin

(Hb) in blood; and hepatic metallothionein (MT) gene expression and lipid peroxidation]. Blood lead concentrations were significantly

higher and ALA-D activity significantly lower in all species at sites nearest to active lead-zinc mines and in a stream contaminated by

historical mining than at reference or downstream sites. ALA-D activity was also negatively correlated with blood lead concentrations in

all three species but not with other metals. Iron and Hb concentrations were positively correlated in all three species, but were not

correlated with any other metals in blood or liver in any species. MT gene expression was positively correlated with liver zinc

concentrations, but neither MT nor lipid peroxidase differences among fish grouped according to lead concentrations were statistically

significant. ZPP was not detected by hematofluorometry in most fish, but fish with detectable ZPP were from sites affected by mining.

Collectively, these results confirm that metals are released to streams from active lead-zinc mining sites and are accumulated by fish.

r 2007 Elsevier Inc. All rights reserved.

Keywords: d-aminolevulinic acid dehydratase activity; Lead; Cadmium; Zinc; Cobalt; Nickel; Hemoglobin; Zinc protoporphyrin; Metallothionein;

Lipid peroxidation

1. Introduction

The extensive lead (Pb) deposits of southern Missouri
were first discovered by early French explorers of the
Mississippi River valley. Subsequently discovered ores

containing variable amounts of Pb, zinc (Zn), copper
(Cu), cadmium (Cd), cobalt (Co), nickel (Ni), silver, and
other metals have been mined at varying levels of intensity
for more than 300 y. Mining currently occurs only in the
‘‘New Lead Belt’’ (NLB), which exploits a geologic
formation known as Viburnum Trend. In contrast to
previous large-scale Pb–Zn mining, the NLB was devel-
oped during the 1960s and has operated under environ-
mental regulations and with the most efficient extraction
technologies available (Jennett and Callier, 1977; Wixson
and Jennett, 1975; Wixson, 1978). By the 1980s, two
decades of exploitation had depleted the Viburnum Trend
and mining activity in the NLB declined. Continuing
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exploration revealed additional potentially exploitable
deposits southwest of the Viburnum Trend, within the
boundaries of the Mark Twain National Forest. This area
is in an environmentally sensitive part of southern Missouri
that hosts recreationally significant aquatic resources
including springs, caves, natural areas, a National Park,
and a Federally designated Scenic River that could be
threatened by mining. In response to public concerns, a
multi-year interdisciplinary investigation was initiated to
evaluate potential environmental consequences of ex-
panded Pb-Zn mining in the exploration area (Imes,
2002). The study described here, which represents part of
the larger investigation, was focused in the NLB as a model
for the potential consequences of expanded mining else-
where in southern Missouri.

The primary objective of our study was to document
metals concentrations and biomarkers of metals exposure in
fish from streams representing a wide range of conditions
related to contemporary Pb–Zn mining in the Missouri
Ozarks. This was achieved by collecting blood and liver
samples of fish from the exploration area and other
reference areas and from sites located at various distances
from NLB mines, analyzing them for metals and biomarkers
of metals exposure, and comparing the results to pertinent
data from the scientific literature. Secondary objectives
included the refinement of biomarker methods for use with
small fish and the documentation of metals concentrations
and biomarker responses in a species for which they had not
been evaluated previously. The use of small fish was
necessary because many NLB mines and there associated
mills and tailings disposal facilities are located near head-
water streams that are too small to support large fish in the
numbers necessary for metals and biomarker analyses by
traditional methods (e.g., Schmitt et al., 1984, 1993). The
metals analyses, which are reported in a companion paper
(Schmitt et al., 2007), indicated that blood and liver Pb
concentrations were elevated in fish from sites near NLB
mines, but that mining-related trends in the concentrations
of Cd and Zn were less evident. Elevated blood and liver
concentrations of Co and Ni in fish from one site in the NLB
were also reported. In this paper we report the results of the
biomarker analyses performed on the fish analyzed for
metals by Schmitt et al. (2007).

2. Methods of study

2.1. Study design

Fish of two species, largescale stoneroller (Campostoma oligolepis;

henceforth stoneroller) and longear sunfish (Lepomis megalotis; sunfish),

were collected from each site. Northern hog sucker (Hypentelium

nigricans; hog sucker), a species collected in previous studies (Schmitt

et al., 1984, 1993), were retained for analysis when captured incidentally to

facilitate temporal and inter-species comparisons. Sites 1–14, in the Black

and Meramec River systems, were selected to represent the range of

conditions present in the NLB relative to mining; they included reference

sites (n ¼ 3) located upstream of all mining activity and sites situated

1.4–49.8 km downstream of NLB mines and ore processing facilities

(Schmitt et al., 2007). Sunfish were not present in the immediate vicinity of

Sites 6 and 14 but were obtained 2–5 km downstream of the other species

(Schmitt et al., 2007). A site on the Eleven Point River (Site 15) was

selected to represent existing conditions in the exploration area and also

served as an additional reference site. The Big River (Site 16), which has

been contaminated by mine tailings from historical mining in the Old Lead

Belt (e.g., Gale et al., 2004; Schmitt et al., 1984), was also sampled. Sites 2,

5, 9, 14, and 16 were sampled for blood metals and biomarkers by

previous studies (Dwyer et al., 1988; Schmitt et al., 1984, 1993, 2005) and

were used for temporal and inter-species comparisons. All sites were

sampled in September 2001 except Site 16, which was sampled in early

December 2001. More complete descriptions of the study area and the fish

collection sites are presented by Schmitt et al. (2007).

2.2. Biomarkers

Oxidative damage in hepatic tissues, which can result from exposure to

a variety of metals (Farag et al., 1995), was assessed by measuring

fluorescent products of lipid peroxidation (FPLPs). The FPLPs represent

the interaction of polyunsaturated fatty acid peroxidation products with

phospholipids and amino groups of membrane proteins (Dillard and

Tappel, 1984). They tend to be long-lived and remain at the sites of

oxidative damage (Mezzetti et al., 1999). The FPLPs react with proteins to

alter the structure of membranes and form fluorophores, which were

measured fluorometrically (Farag et al., 1995).

Metallothioneins (MTs) are ubiquitous low molecular weight proteins

and polypeptides of extremely high metal and sulfur content that are

involved in the intracellular fixation and regulation of the essential trace

elements Zn and Cu. They can also mitigate the harmful effects of toxic

metals such as Pb, Cd, and mercury (Kägi and Schäffer, 1988). The

induction of MT synthesis, which we quantified by measuring MT mRNA

expression with reverse-transcriptase polymerase chain reaction

(RT-PCR), represents a sensitive biomarker of metals exposure (Tom

et al., 2004).

The biochemical effects of Pb were evaluated at several points in the

heme biosynthetic pathway; we measured the activity of the enzyme

d-aminolevulinic acid dehydratase (ALA-D; EC 4.2.1.24) and concentra-

tions of hemoglobin (Hb), iron (Fe), and zinc protoporphyrin (ZPP) in

blood. The condensation of two molecules of d-aminolevulinic acid (ALA)

to one molecule of porphobilinogen (PBG), which is catalyzed by ALA-D,

occurs early in the heme biosynthetic pathway. Lead inhibits ALA-D

stoichiometrically (Chisolm et al., 1985; Kelada et al., 2001) by displacing

Zn at the metal binding site (Warren et al., 1998), which inhibits the

enzyme by changing its quaternary structure. Erythrocyte ALA-D

inhibition is a well documented biomarker of Pb exposure in many

vertebrates, including humans (e.g., Blus et al., 1991; Goldstein et al.,

1975; Hodson, 1976; Schmitt et al., 2005). The terminal step in the heme

biosynthetic pathway is the insertion of Fe2+ into protoporphyrin IX,

which is catalyzed by the mitochondrial enzyme heme synthetase

(ferrochelatase, EC 4.99.1.1; Joselow, 1980). Ferrochelatase inhibition

causes the accumulation of protoporphyrin IX, which may also result

from Pb-impaired Fe delivery or utilization (Joselow, 1980; Labbé et al.,

1999; Sakai, 2000). Protoporphyrin IX chelates free Zn2+ to become zinc

protoporphyrin (ZPP), which can be measured by hematofluorometry

(Labbé et al., 1999; Lee et al., 2001; Gurer-Orhan et al., 2004). Although

widely used in human medicine, the measurement of ZPP and other

porphyrins as a consequence of Pb exposure in fish has received little study

(e.g., Hodson et al., 1984; Theodakoris et al., 1992). Heme homeostasis

can also be affected by other metals present in the ores of the NLB,

including Cd, Ni, Cu, and Co (e.g., Maines, 1980; Maines and Sinclair,

1977; Taylor, 1990).

2.3. ZPP pilot studies

We conducted pilot studies with laboratory-raised fish of several species

to determine whether ZPP could be measured by hematofluorometry and

to optimize field and laboratory procedures. In the first study (Study 1),

ZPP was measured in preserved erythrocytes of common carp (Cyprinus
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carpio, n ¼ 3) and bluegill (Lepomis macrochirus, n ¼ 6). Blood (1–3mL)

was obtained by caudal veinipuncture with a heparinized (6 IU/mL) needle
and syringe and transferred immediately to chilled heparinized Vacutai-

nerss (BD Diagnostics, Franklin Lakes, NJ), chilled on ice, then

refrigerated (4 1C). Erythrocytes were preserved within 8 h as follows:

samples were centrifuged for 2min @3500 rpm, the supernatants were

aspirated, and a 1:1 volume of saline solution (9 g/L NaCl) was added. The

erythrocytes were re-suspended by gentle rocking and the procedure was

repeated three times. After aspiration of the final saline wash, an equal

volume of 40% glycerol solution in citrate buffer was added. The

preserved samples were analyzed with three different hematofluorometers

to evaluate consistency among instruments.

In the second study (Study 2), whole blood (1–3mL) was obtained as

described from bluegill (n ¼ 10) and lake sturgeon (Acipenser oxyrynchus,

n ¼ 16), transferred to heparinized Vacutainers, and refrigerated (4 1C).

Samples were analyzed by hematofluorometry over 7 d to evaluate the

effects of storage time.

2.4. Field procedures

Most fish were collected by DC electrofishing and by seining. Sunfish

were also collected by hook-and-line. The collection target was six (each)

adult stoneroller (75–150mm total length, 3–20 g) and juvenile sunfish

(100–150mm, 30–60 g) samples at each site. Hog sucker were larger

(100–150mm, 40–650 g). Most fish were analyzed individually; however,

because the sunfish and stoneroller at several sites were small, some were

analyzed as composites with a ‘‘sample’’ representing the number of fish

(typically 1–3) necessary to provide approximately 400mL of blood. All

fish were held alive in plastic containers filled with aerated stream water

for p2 h following capture.

Blood was collected from stoneroller and sunfish with a chilled (0 1C),

heparinized microcapillary tube (75mL for stoneroller and small sunfish,

370mL for larger sunfish) after severing the caudal peduncle with a razor

blade. Blood was obtained from hog sucker by caudal veinipuncture using

a heparinized (6 IU/mL) needle and syringe. The blood was dispensed

immediately into a chilled 2-mL cryogenic tube from which 200mL was

transferred with a heparinized microcapillary tube to a pre-weighed, acid-

cleaned 10-mL borosilicate glass tube with a Teflons cap, which was then

frozen immediately in dry ice for metals analysis (including Fe). One drop

was next dispensed onto each of two clean pieces of Parafilm Ms

(American National Can, Menasha, WI) and analyzed immediately for Hb

with a HemoCues (HemoCue AB, Ängelholm, Sweden) portable blood

photometer (Schmitt et al., 2005). Replicate field measurements of Hb

were consistent in all three species; coefficients of variation (CVs) were

p10% in 89 of 105 (85%) sunfish, 88 of 94 (94%) stoneroller, and 19 of 20

(95%) hog sucker. Hb is therefore reported as the mean of the two

observations for each sample (g/dL).

The remaining blood was dispensed into a 5-mL cryogenic vial and

chilled (0 1C, for ZPP and ALA-D analysis). Following blood collection

the fish was euthanized by cervical dislocation, measured (total length,

mm), and weighed (g). The abdominal cavity was opened by dissection

and a liver sample (ca. 0.5 g) was obtained and divided into three

approximately equal sub-samples for metals and biomarker analyses.

These samples were placed in acid-cleaned 0.5-mL cryogenic vials and

frozen immediately in dry ice. All contact surfaces and dissecting

instruments were thoroughly cleaned with laboratory detergent, de-

ionized H2O, and acetone between samples. At the end of each day the

chilled blood samples were assayed for ZPP, then frozen immediately in

dry ice. Upon return from the field the metals samples were stored frozen

at �20 1C and the biomarker samples at �80 1C until analyzed.

2.5. Laboratory methods

2.5.1. Erythrocyte zinc protoporphyrin (ZPP)

ZPP in whole blood and preserved erythrocytes was measured directly

in units of mmol ZPP/mol heme (mmol/mol) based on fluorescence (415 nm

excitation, 596 nm emission) using one of several Aviv Model 206D

hematofluorometers (Aviv Instrument, Lakewood, NJ). The instruments

were calibrated at the beginning and end of each measurement session

using procedures and reference materials obtained from the manufacturer

(Aviv Biomedical, 2001). One drop (20mL) of whole blood or preserved

erythrocytes was placed on a glass coverslip (25mm2) with a clean

polyethylene pipette tip and stirred vigorously for 10 s. ZPP was measured

3–6 times at 60-s intervals, with 10 s of stirring between measurements.

Duplicate coverslips were prepared and read from at least 10% of each

group of samples; the unweighted mean for each fish is reported. The limit

of detection (LOD) was 5.0� 10�12 g ZPP per drop of blood (nominally

1mmol/mol; Aviv Biomedical, 2001).

2.5.2. ALA-D activity

Erythrocyte ALA-D activity in 25-mL subsamples of homogenized

whole blood was assayed in 96-well microtiter plates as described by

Schmitt et al. (2005). Each sample was analyzed in triplicate; the

arithmetic mean of the three observations is reported. For quality control

(QC) purposes one triplicate sample per plate was randomly selected for

duplicate analysis in a separate location on the plate. Concentrations of

Hb in each well were also measured with the HemoCue as described

previously. Enzyme activity in each well was computed as nmol PBG/mL
blood/h using the sample absorbance reading and the parameters (slope

and y-intercept) from the regression of the PBG standard curve. Mean

ALA-D activity was also standardized to both field- and laboratory-

determined Hb concentrations and reported as nmol PBG/mg Hb/h. The

LODs and limits of quantitation (LOQs) for the method were calculated

as described by Keith et al. (1983) using the daily assay method blanks.

The LODs and LOQs were consistent among plates; the mean LOD was

0.04370.001 (SD) absorbance units and the mean LOQ was 0.05370.002

absorbance units. The ALA-D measurements were also very repeatable;

495% of the triplicate (well) measurements made on each sample had

CVs of o20%, and duplicate samples had CVs of o10% in all three

species.

2.5.3. Hepatic lipid peroxidation

A total of 30 liver samples (15 each stoneroller and sunfish) were

analyzed for FPLPs with a fluorometric assay modified from Farag et al.

(1995) and Dillard and Tappel (1984). Five fish of each species

representing ‘‘low’’, ‘‘medium’’, and ‘‘high’’ blood Pb concentrations

were selected (low ¼ 0.02–0.07mg/g dw in sunfish, 0.02–0.05mg/g dw in

stoneroller, from Sites 3, 10, and 15; medium ¼ 0.25–0.44mg/g dw
in sunfish, 0.15–0.26mg/g dw in stoneroller, from Sites 1, 5, and 6;

high ¼ 1.42–3.80mg/g dw in sunfish, 1.65–3.30mg/g dw in stoneroller, from

Sites 14 and 16). Approximately 200mg of frozen liver tissue from each

fish was homogenized in 0.5mL of ice-cold dH2O at medium speed for 15 s

in an Omni tissue homogenizer (Omni International, Marietta, GA). The

homogenate and a 0.5mL ice-cold dH2O rinse were transferred to a 15-mL

glass centrifuge tube, 2mL of 2:1 chloroform:methanol were added, and

the mixture was vortexed for 1min. Ice-cold dH2O (1mL) was then added

and the sample was vortexed and centrifuged (2min at 1200� g).

Chloroform was removed, 100mL of methanol was added, and the sample

was again vortexed. Samples were irradiated at 250 nm in a UV light box

for 5min to remove the fluorescence contribution of compounds such as

retinol. Aliquots (200-mL) of each sample were analyzed in triplicate in 96-

well plates (360 nm excitation; 460 nm emission) with a Cytofluors Model

2300 (Millipore, Billerica, MA). A quinine sulfate standard curve was

prepared (0.000–0.002 mg/mL quinine sulfate) for each set of samples for

standardization of relative fluorescence values per unit of tissue mass. The

error associated with the slope of the routine quinine sulfate standard

curves was o1% and CVs for procedural blanks averaged p5% for the

duration of the study. The LODs and LOQs for the method, calculated as

described for ALA-D, were consistent among plates; the mean LOD was

37.572.27 (SD) fluorescence units, and the mean LOQ was 44.975.72

fluorescence units. Hepatic lipid peroxidation, as indicated by relative

fluorescence, exceeded the method LOD and LOQ in all samples analyzed,

and 497% of the triplicate (wells) measurements made on each sample

had an associated CV of o5%.
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2.5.4. Metallothionein (MT) expression

Hepatic MT mRNA was measured in stoneroller liver samples from a

reference site (Site 10, Sinking Creek; n ¼ 6) and Site 16 (Big River, n ¼ 6).

Samples were analyzed by RT-PCR using the methods of McClain et al.

(2003) and Roberts and Oris (2004) with DNA primers synthesized from

fathead minnow (Pimephales promelas). Total oligonucleotide was isolated

by acid guanidinium thiocyanate phenol-chloroform extraction using

Tri-Reagent (Sigma, St. Louis, MO, USA; manufacturer’s protocol) and

was quantified spectrophotometrically at 260 nm. Reverse transcription

was carried out using the First-Strand cDNA Synthesis Kit (Amersham

Pharmacia, Uppsala, Sweden). The PCR reactions contained 25mL total

volume [5 mL of reverse transcription product, 2.5 mL of 10X PCR Buffer,

1mL of 5mM DNTPs, 0.5 mL of 15 mM oligonucleotide primer, 1mL of

Taq polymerase (2.5 units), and 15mL of DNAase-free water]. Amplifica-

tion occurred over 24 cycles (94 1C for 30 s, 55.5 1C for 30 s, and 72 1C for

30 s). Amplification products were electrophoresed in 1.5% LE Agarose

(Fisher Biotech, Fairlawn, NJ) and stained with ethidium bromide for

visualization and quantitation using Gel-Pro Analyzer software (Media

Cybernetics, Silver Spring, MD). The optical density of each sample’s MT

band was obtained and standardized on a sample-by-sample basis to the

optical density of an 18S rRNA band using commercially available

primers (Ambion, Austin, TX). The ratio of MT optical density to 18S

optical density was used as a measure of relative gene expression.

2.5.5. Blood moisture content and Fe

Frozen blood samples were freeze-dried, digested with HNO3 and

H2O2, and analyzed for Fe by inductively coupled plasma mass spectro-

metry (ICPMS) as described by Schmitt et al. (2005, 2007). Moisture

content was determined from weight loss during lyophilization. Iron was

analyzed and reported as both dry-weight (dw) and wet-weight (ww)

concentrations, the latter computed from the moisture content of each

sample. The LODs for Fe, calculated assuming a digestion weight of 50mg

of dry blood, were 1.0–40mg/g dw.

2.6. Data set composition and statistical analyses

Release 9.1 of the Statistical Analysis System (SAS Institute, Cary, NC)

was used for all statistical analyses. A total of 219 samples were included

in the univariate analyses; 94 samples representing all 16 stations were

stoneroller (only one sample was obtained from Site 7), 105 samples from

16 sites were sunfish, and 20 samples from Sites 4, 7, 8, 11–13, and 16 were

hog sucker. Several samples could not be analyzed for Hb or ALA-D due

to clotting, and three sunfish samples representing Sites 1 and 5 were

excluded from regression and correlation analyses because of suspiciously

high blood or liver Zn concentrations indicative of possible external

contamination (Schmitt et al., 2007). Both dw and ww blood Fe

concentrations were analyzed for differences among sites and species,

but only the ww concentrations were used in correlation and regression

analyses because of the association of Fe with Hb, the latter determined in

the field on whole blood. Censored values (oLOD) were replaced with

50% of the LOD for statistical computations and graphing, and all data

representing elemental and Hb concentrations and ALA-D activity were

log10-transformed prior to statistical analysis. Individual variables were

analyzed statistically using analysis-of-covariance (ANCOVA) and

analysis-of-variance (ANOVA). In these analyses, differences among sites

were tested within each species with Fisher’s protected LSD test. Sites were

also grouped according to their distance from mining (Schmitt et al.,

2007): ‘‘reference’’ (no upstream mining-Sites 3, 10, 11, and 15); ‘‘near

mine’’ (o10 km downstream from an NLB mine-Sites 2, 4, 6, 7, 12, and

14); and ‘‘downstream’’ (410 km downstream from an NLB mine-Sites 1,

5, 8, 9, and 13). Differences among groups of sites were tested as planned

non-orthogonal contrasts using single degree-of-freedom F-tests. Results

of the ZPP pilot studies were analyzed by ANCOVA and mixed-model

ANOVA to evaluate the effects of fish species, instruments, individual fish,

replicate samples, and storage time on ZPP concentrations. The biomarker

data reported here were combined with the metals data reported by

Schmitt et al. (2007) and examined statistically with Pearson correlation

coefficients, simple linear (least-squares) regression, and stepwise multiple

linear regression. In the latter, the forward selection method was used and

variables were allowed into the models only if they significantly (Po0.05)

reduced the unexplained sum-of-squares after accounting for all other

factors already included (i.e., the Type-II sums-of-squares were used).

Molar concentrations of Hb ([Hb]) and Fe ([Fe]) in blood were computed

on the basis of the approximate molecular weight of common carp Hb

(65.88 kD; Grujic-Injac et al., 1980) and the atomic weight of Fe (55.85)

and analyzed using simple linear regression and geometric mean

(functional) regression (Ricker, 1973).

3. Results

Blood Pb concentrations were significantly greater in fish
of all three species from sites located downstream of mines
than at reference sites (Table 1). Concentrations in all three
species were greatest at Site 16 (Big River) and at sites
located nearest to NLB mines (Table 1). Concentrations of
Pb in blood and liver were highly correlated in all three
species (Schmitt et al., 2007). Concentrations of Cd in
blood and liver also differed significantly among sites, but
mining-related trends were less apparent than for Pb, and
Zn differences were even less apparent (Schmitt et al.,
2007). The biomarker results reflected the differing metals
concentrations.

3.1. ALA-D activity

Among-species differences in un-standardized ALA-D
activity were not statistically significant (P40.05) when
considered across all sites, nor were differences in ALA-D
activity standardized to either field- or laboratory-measured
Hb (ALA-D/Hb; data not shown). However, significant
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Table 1

Activity of the enzyme d-aminolevulinic acid dehydratase [ALA-D, nm porphobilinogen (PBG)/mL blood/h], ALA-D activity normalized to laboratory-

determined hemoglobin (Hb) concentrations (nm PBG/mg Hb/h), field-measured Hb concentrations (g/dL), and concentrations of lead (Pb, mg/g dry

weight) and iron (Fe, mg/g wet weight) in the blood of three fish species

Species, site, and typea n/df Blood Pb ALA-D ALA-D/Hb Hb Blood Fe

Hog suckerb

4 (Bee Fork; M) 2 2.1470.82 b 1.770.1 a 2.670.4 cde 9.170.5 a 29373 a

7 (Sweetwater Creek; M) 2 3.2071.90 b 1.270.2 a 3.870.1 a 5.571.0 ab 135727 bc

12 (Strother Creek; M) 3 1.3770.10 b 1.370.2 a 2.470.1 ed 7.470.2 a 21777 ab

8 (Black R. @ Lesterville; D) 4 0.207o0.01 c 1.370.1 a 2.970.3 bcd 8.871.0 a 250734 a

13 (Neals Creek; D) 3 0.3670.03 c 1.570.2 a 3.470.2 ab 7.770.8 a 232716 ab
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Table 1 (continued )

Species, site, and typea n/df Blood Pb ALA-D ALA-D/Hb Hb Blood Fe

11 (Middle Fork @ Redmondville; R) 3 0.2870.04 c 1.870.3 a 3.470.1 abc 8.370.5 a 241714 a

16 (Big R.) 3 6.6370.87 a 0.670.2 b 2.270.1 e 4.171.3 b 125737 c

ANOVA-F 6, 13c 44.00 ** 4.73 ** 5.70 ** 2.98 * 3.43 *

R2 20 0.95 0.69 0.72 0.58 0.61

Sunfishd

2 (West Fork @ West Fork; M) 10 0.4470.05 c 0.970.1f fg 2.070.2 g 7.170.4 abcd 17279 abcde

4 (Bee Fork; M) 8 1.1370.90 b 0.870.1 g 1.970.1 g 6.270.3 def 17579 abcde

6 (Logan Creek @ Corridon; M) 6 0.3270.04 de 1.470.1 abc 3.170.1 bc 7.670.2 a 16779 cde

7 (Sweetwater Creek; M) 6 1.3270.30 b 1.170.1 cdef 2.570.2 def 7.570.4 ab 165717 de

12 (Strother Creek; M) 6 0.6270.14 c 0.870.1 fg 2.370.3 efg 5.270.3 g 15778 de

14 (Courtois Creek; M) 6 0.6470.19 cf 1.070.1 efg 2.770.2 cde 6.170.3 def 17877 abcd

1 (Black R. @ Sutton Bluff; D) 7 0.1670.02 f 0.970.1 efg 2.070.1 fg 6.270.2 cdef 17375 abcde

5 (Logan Creek @ Ellington; D) 6 0.3970.10 cde 1.470.2 abcd 3.170.2 bcd 7.270.4 abc 175711 abcde

8 (Black R. @ Lesterville; D) 6 0.0970.10 g 1.670.2 abc 3.570.2 ab 6.470.3 cde 19773 ab

9 (Middle Fork @ Black; D) 6 0.1770.03 f 1.670.1 ab 3.670.3 ab 6.070.3 efg 172711 abcde

13 (Neals Creek; D) 6 0.1870.04 f 1.170.1 defg 2.670.3 cdef 6.270.4 cdef 19478 abc

3 (West Fork @ Greeley; R) 6 0.0970.02 g 1.170.2 efg 2.870.2 cde 6.070.3 efg 15278 e

10 (Sinking Creek; R) 7 0.0970.03 g 1.270.1 bcde 2.670.2 cde 6.570.2 bcde 20179 a

11 (Middle Fork @ Redmondville; R) 6e 0.3870.07 cde 1.070.1 defg 3.170.4 bcd 5.470.3 gf 17078 bcde

15 (Eleven Point R.; R/EA) 6 0.2470.04 ef 2.070.3 a 4.070.1 a 6.370.2 cde 19478 abc

16 (Big R.) 7 2.6570.33 a 0.870.1 g 2.170.2 fg 5.770.4 efg 171710 abcde

ANOVA-F 15, 89c,f 29.56 ** 6.09 ** 8.34 ** 4.50 ** 1.97 *

R2 105f 0.83 0.51 0.59 0.43 0.25

Stonerollerg

2 (West Fork @ West Fork; M) 7 0.3370.02 efg 1.070.1 bc 2.070.2 bcd 8.070.4 abc 22979 bc

4 (Bee Fork; M) 6h 0.9870.08 bc 1.070.1 ab 1.970.1 bcde 8.070.2 ab 26579 ab

6 (Logan Creek @ Corridon; M) 3i 0.7570.11 bcd 1.070.1 ab 2.270.1 abcd 6.670.3 abcd 223711 c

7 (Sweetwater Creek; M) 1j nak 0.7 bcde 1.7 de 2.3 e nak

12 (Strother Creek; M) 6 0.6270.05 cd 0.670.2 e 1.670.3 e 7.570.2 abc 219711 c

14 (Courtois Creek; M) 6l 2.2570.33 a 0.670.1 cde 1.770.1 de 7.570.5 abc 220711 c

1 (West Fork @ Sutton Bluff; D) 7 0.1970.01 gh 1.070.1 ab 2.370.1 abc 6.570.2 bcd 20378 c

5 (Logan Creek @ Ellington; D) 6 0.1270.02 ij 1.770.1 a 2.870.2 a 6.770.4 abcd 21577 c

8 (Black R. @ Lesterville; D) 6 0.1570.02 hi 1.170.1 ab 1.970.1 cde 8.070.5 abc 231713 bc

9 (Middle Fork @ Black; D) 6 0.3070.05 fg 1.070.2 bcd 2.270.2 abcd 5.970.5 d 207721 c

13 (Neals Creek; D) 6 0.5270.06 de 0.570.1 de 1.770.1 de 6.470.5 cd 20278 c

3 (West Fork @ West Fork; R) 6 0.1270.04 ij 1.070.1 b 2.270.1 abcd 7.170.2 abcd 218711 c

10 (Sinking Creek; R) 7 0.0370.01 k 0.970.1 bcd 2.570.1 ab 7.870.4 abc 21477 c

11 (Middle Fork @ Redmondville; R) 6 0.3570.02 ef 0.970.2 bcde 2.170.1 abcd 7.370.5 abcd 219711 c

15 (Eleven Point R.; R/EA) 6 0.1270.05 j 1.370.3 ab 2.370.1 abc 7.870.6 abc 286719 a

16 (Big R.) 7m 1.3970.25 ab 1.170.2 ab 2.070.3 cde 8.570.8 a 270712 a

ANOVA-F 15, 73c,n 37.43 ** 2.94 ** 3.23 ** 4.91 ** 4.10 **

R2 89o 0.87 0.38 0.40 0.49 0.43

Shown are arithmetic site means7SE, number of observations (n), and results of one-way analysis-of-variance (ANOVA) as F-values (** Po0.01, *

Po0.05, ns P40.05), degrees-of-freedom (df), and coefficients of determination (R2). Within species, means followed by the same letter (ranked

alphabetically from highest to lowest) are not significantly different (P40.05). Blood Pb data from Schmitt et al. (2007).
aM, o10 km downstream of New Lead Belt mine; D, 410 km downstream; R, upstream of all mining (reference); EA, exploration area.
bNorthern hog sucker, Hypentelium nigricans.
cdf.
dLongear sunfish, Lepomis megalotis.
en ¼ 5 for ALA-D and ALA-D/Hb.
fn ¼ 104, df ¼ 15, 88 for ALA-D and ALA-D/Hb.
gLargescale stoneroller, Campostoma oligolepis.
hn ¼ 7 for ALA-D, ALA-D/Hb, and Hb.
in ¼ 4 for ALA-D, ALA-D/Hb, and Hb.
jn ¼ 0 for blood Pb and Fe; nd ¼ not determined.
kna ¼ not analyzed.
ln ¼ 5 for ALA-D and ALA-D/Hb.
mn ¼ 6 for ALA-D and ALA-D/Hb.
ndf ¼ 15, 78 for Hb and 14, 76 for blood Pb and Fe.
on ¼ 84 for Hb, 91 for blood Fe.
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species� site interaction for ALA-D indicated among-
species differences at some sites. Overall trends for ALA-D
activity standardized to field- and laboratory-measured Hb
were similar, but the laboratory-standardized values were
slightly less variable. Consequently, ANCOVA explained
69% of the total variability in the laboratory-standardized
values and 66% in the field-standardized values. We
therefore report only the un-standardized (ALA-D) and
laboratory Hb-standardized (ALA-D/Hb) values.

Both ALA-D and ALA-D/Hb differed significantly
(Po0.01) among sites in all three species (Table 1). In
hog sucker, ALA-D was significantly (Po0.05) lower at
Site 16 (Big River) than at all others, but the other sites did
not differ significantly from each other (Table 1). Among-
site differences in hog sucker were more evident for ALA-
D/Hb; Site 16 was lowest, but activity at Site 7 (Sweetwater
Creek), which is 2.6 km downstream from a mine (Schmitt
et al., 2007), was among the greatest (Table 1). Conse-
quently, differences between sites o10 km downstream
from NLB mines, 410 km downstream, and reference sites
were not significant (P40.05) in hog sucker, but were
significant (Po0.01) in sunfish and stoneroller. In general,
and although there were exceptions and overlap within
groups of sites, ALA-D activity was typically greatest at
reference sites (including Site 15, in the exploration area)
and at sites 410 km downstream of NLB mines. Con-
versely, activity was generally lowest at sites near NLB
mines and at Site 16 (Big River; Table 1).

ALA-D activity was negatively correlated with blood Pb
in all three species; statistically significant (Pp0.01) log-log
linear regressions explained 31% of the variation in un-
standardized ALA-D activity in hog sucker, 7% in
stoneroller, and 13% in sunfish (Fig. 1). Fish of all three
species from sites near NLB mines and the Big River had
greater blood Pb concentrations and less ALA-D activity
than those from reference sites and sites 410 km down-
stream from mines, which had lower blood Pb concentra-
tions and greater ALA-D activity (Fig. 1).

Multiple regression explained a greater percentage of the
variation in ALA-D relationships than simple linear
regression in all three species. Models that included Hb,
either as an independent variable or by incorporating
ALA-D/Hb as the dependent variable, and other variables
such as blood Zn, blood Cd, and blood Fe in addition to
blood Pb were statistically significant (Po0.01) and
explained as much as 96% of the variation in hog sucker,
51% in sunfish, and 86% in stoneroller (Table 2). The
models for hog sucker also contained negative terms for
total length, indicating a decline in ALA-D activity with
fish size (and also increasing blood Pb); however, the
sample size for hog sucker was small relative to the number
of statistically significant terms in the model (Table 2).

3.2. Blood Fe and hemoglobin

Concentrations of Hb were 1.4–11.7 g/dL in hog sucker,
4.1–8.8 g/dL in sunfish, and 0.8–6.0 g/dL in stoneroller.
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Fig. 1. Activity of d-aminolevulinic acid dehydratase (ALA-D) and blood

lead (Blood Pb, from Schmitt et al., 2007) concentrations in three species

of fish from sites o10 km downstream from mining-related facilities in the

New Lead Belt (Near Mines), 410 km downstream (Downstream), no

upstream mining (Reference), and the Big River. Also shown for each

species are the least-squares regressions (solid lines) and 95% confidence

intervals (long-dashed lines) between these variables across all sites

(standard errors in parentheses), and the value representing 50% of the

unweighted mean ALA-D activity at reference sites (short-dashed lines;

0.9 nmPBG/mL/h for hog sucker, 0.5 nmPBG/mL/h for stoneroller, and

0.7 nmPBG/mL/h for sunfish.
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Among-species differences in Hb concentrations were not
statistically significant (ANOVA, P40.05), but concentra-
tions were not consistent across all sites, as indicated by
significant species� site interaction (Po0.05). Differences
among sites were statistically significant in all three species

(Table 1), but there was considerable variability within
sites. Consequently, and although some groups of sites
differed significantly from others with respect to mining
influence, there were no clearly evident mining-related
trends. The lone exceptions were hog sucker from Site 16
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Table 2

Statistically significant (**Po0.01; *Po0.05) functional and multiple linear regression models describing relations between wet-weight concentrations of

hemoglobin as measured in the field (Hbf) and laboratory (Hbl); total length (TL, mm); concentrations of lead (Pb), cadmium (Cd), zinc (Zn), and iron

(Fe) in blood, liver, or both (all mg/g dry weight; from Schmitt et al., 2007); and activity of the enzyme d-aminolevulinic acid dehydratase (ALA-D) in the

blood of three species of fish, with ALA-D as un-standardized values (nM PBG/mL/h) and standardized to Hbf and Hbl (nM PBG/mg/h)

Species and model F (df) R2

Hog suckera

[Fe] ¼ –0.0002 (0.0003)+3.8562 (0.3011) [Hbf]
b 146.03 (1, 18)** 0.89

log10 ALA�D ¼ �4:6932ð1:4733Þ þ 1:2276ð0:3815Þ

log10 blood Feþ 0:9614ð0:2492Þ log10 blood Zn� 0:0822ð0:0318Þ

log10 blood Pbþ 0:5265ð0:1645Þlog10 Hbl � 0:4022ð0:1539Þ

log10 TL

39.36 (5, 14)** 0.93

log10ALA�D=Hbf ¼ �0:2642ð0:5296Þ þ 0:6558ð0:2290Þ

log10 blood Znþ 0:1344ð0:0592Þlog10 liver Zn� 0:3672ð0:1462Þ

log10 TL

4.97 (3, 16)* 0.48

log10 ALA�D=Hbl ¼ �3:4835ð1:4919Þ þ 1:2577ð0:4240Þ

log10 blood Feþ 1:0822ð0:2093Þlog10 blood Zn� 0:1422ð0:0253Þ

log10 blood Pbþ 0:1035ð0:0253Þlog10 blood Cd� 0:4156ð0:1864Þ

log10Hbf � 0:6807ð0:1372Þlog10 TL

12.49 (6, 13)** 0.85

Sunfishc

[Fe] ¼ 0.0003 (0.0003)+3.1749 (0.2620) [Hbf]
b 43.89 (1, 103)** 0.30

log10 ALA�D ¼ 0:0781ð0:1803Þ � 0:2562ð0:1036Þ

log10 blood Zn� 0:1049ð0:0212Þ log10 blood Pbþ 1:0411ð0:1257Þ

log10Hbf

34.62 (3, 100)** 0.51

log10 ALA�D=Hbf ¼ 2:8472ð1:1030Þ � 0:9637ð0:3555Þ

log10 blood Fe� 0:0528ð0:0240Þ log10blood Cd� 0:0890ð0:0282Þ

log10 blood Pbþ 0:8521ð0:0289Þ log10Hbl

14.12 (4, 99)** 0.36

log10 ALA�D=Hbl ¼ 0:8012ð0:1768Þ � 0:2612ð0:1035Þ

log10 blood Zn� 0:1055ð0:0211Þ log10 blood Pbd

14.48 (2, 101)** 0.22

Stonerollerd

[Fe] ¼ 0.0004 (0.0003)+3.5466 (0.2888) [Hbf]
b 61.70 (1, 89)** 0.41

log10 ALA�D ¼ �3:0968ð1:0645Þ þ 0:7985ð0:3287Þ

log10 blood Fe� 0:0751ð0:0170Þ log10 blood Pbþ 1:2352ð0:0585Þlog10Hbl

163.71 (3, 82)** 0.86

log10 ALA�D=Hbf ¼ �0:3465ð0:0299Þ � 0:0837ð0:0219Þ

log10 blood Pbþ 1:1580ð0:0754Þ log10 Hbl

131.60 (2, 83)** 0.76

log10 ALA�D=Hbl ¼ �0:0714ð0:1020Þ

þ 0:0485ð0:0245Þ log10 blood Cd� 0:0813ð0:0168Þ

log10 blood Pbþ 0:2559ð0:1192Þlog10Hbf

9.93 (3, 82)** 0.27

Shown for each model are intercepts and regression coefficients (with standard errors), F-values and degrees of freedom (df), and coefficients of

determination (R2).
aNorthern hog sucker, Hypentelium nigricans.
bFunctional (geometric mean) regression (Ricker, 1973).
cLongear sunfish, Lepomis megalotis.
dLargescale stoneroller, Campostoma oligolepis.
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(Big River), in which Hb concentrations were significantly
lower (Po0.05) than at all sites except Site 7 (Sweetwater
Creek), which is near an NLB mine (Fig. 2; Table 1).

Blood Fe concentrations (ww and dw) differed signifi-
cantly (Po0.01) among species; concentrations were
typically greater in stoneroller than in hog sucker or
sunfish; the species means were 1735 mg/g dw (228 mg/gww)
for stoneroller, 1646 mg/g dw (215 mg/gww) for hog sucker,
and 1400 mg/g dw (177 mg/gww) for sunfish. Among-site
differences in dw blood Fe concentrations were statistically
significant (F6, 13 ¼ 3.49, Po0.05) in hog sucker but
not in sunfish or stoneroller (F ¼ 1.13–1.62, P40.05);
however, among-site differences in ww blood Fe concen-
trations were significant in all three species (Table 1).
Concentrations were 50.1–322 mg/g (ww) in hog sucker,
87.8–230 mg/g in sunfish, and 128–337 mg/g in stoneroller.
The results were also similar to those for Hb in that
although blood Fe differences among sites were statistically
significant, patterns related to mining influences were not
generally evident. The exceptions were low blood Fe
concentrations in the same fish from Site 16 and Site 7
identified as having low Hb relative to other sites (Fig. 2;
Table 1).

Concentrations of Hb and Fe were positively correlated
in all three species. Statistically significant (Po0.01) linear
regressions between [Hb] and [Fe] with small intercepts and
regression coefficients of 1.7–3.6 explained 89% of the
variation in hog sucker, 41% in sunfish, and 30% in
stoneroller (Fig. 2). The regression coefficients for the
functional regressions, which account for variation in both
variables (Ricker, 1973), ranged from 3.1 in sunfish to 4.0
in hog sucker (Table 2). The expected value is 4.0 based on
the tetrameric structure of Hb (Schmitt et al., 2005). Blood
Fe concentrations in several stonerollers from siteso10 km
downstream from mines were lower than expected based
on Hb measurements (Fig. 2), but neither Hb nor blood Fe
were significantly correlated with blood Pb in either sunfish
or stoneroller (P40.05; data not shown). In contrast, both
blood Fe and Hb were negatively correlated with blood Pb
in hog sucker (r ¼ �0.43 to �0.57, P o0.05, n ¼ 20) due to
the low Hb and Fe concentrations and correspondingly
high blood Pb concentrations in several fish from the Big
River (Fig. 2).

3.3. Zinc protoporphyrin

3.3.1. Pilot studies

Replicate measurements of the samples from Study 1 were
consistent; with one exception, all within-fish CVs were
between 0% and 10%. ANOVA explained 499% of
the total ZPP variation in preserved common carp and
bluegill erythrocytes; differences among fish were significant
(F8, 16 ¼ 31.0, Po0.01) as were those between instruments
(F2, 16 ¼ 31.0, Po0.01) and species (F1, 16 ¼ 5075.3, Po0.01).
Concentrations were 10–23mmol/mol (mean ¼ 17.9mmol/
mol) in bluegill and 4–8mmol/mol (mean ¼ 5.7mmol/mol) in
common carp (data not shown). Differences among instru-

ments were also statistically significant (Po0.01), but the
unweighted instrument means (13.1, 13.6, and 14.6mmol/mol)
differed byo10% and differences were not consistent among
fish, as indicated by significant fish� instrument interaction
(F16, 26 ¼ 2.8, Po0.01).
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Fig. 2. Molar concentrations of iron [Fe] and hemoglobin [Hb] in the

blood of three species of fish. Also shown are the linear regressions (solid

lines) and 95% confidence intervals (dashed lines) between these variables

across all three species (standard errors in parentheses).
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In Study 2, ANOVA also explained 499% of the total
ZPP variation in whole blood from bluegill and lake
sturgeon. Differences between species were significant
(F1, 25 ¼ 7433.0, Po0.01) as were those among individual
fish of the same species (F22, 25 ¼ 92.6, Po0.01), but
differences among replicate coverslips from the same fish
were not (F22, 352 ¼ 0.8, P40.05; data not shown). Day-0
mean concentrations in bluegill were 28.9–53.9 mmol/mol
(overall mean ¼ 35.1 mmol/mol) and 6.6–18.9 mmol/mol
(mean ¼ 11.2 mmol/mol) in lake sturgeon. Concentrations
in the refrigerated samples increased over time in both
species; the linear term for days post-collection was
significant (F2, 25 ¼ 666.6, Po0.01), and the rate of
increase was greater for bluegill (8.32 mmol/mol/d) than
lake sturgeon (1.31 mmol/mol/d). As percentages of the
Day-0 means, the daily rates of increase were 24% in
bluegill and 12% in lake sturgeon. Coefficients of variation
(based on all measurements of the same fish on a given day)
were 2.7–5.7% in bluegill (mean ¼ 3.9%) and 4.3–23.6%
(mean ¼ 10.3%) in lake sturgeon. Collectively, the results
of the pilot studies indicated that 3–6 measurements of one
coverslip would adequately characterize the ZPP concen-
tration of each fish, but that samples should be analyzed
within 24–36 h of collection. These findings were incorpo-
rated into the field protocol.

3.3.2. Field study

We detected ZPP in only 26 of 85 stoneroller (31%) from
Sites 9–16; 15 of 104 sunfish (14%) from Sites 3, 4, 6, 8, 10,
14, and 16; and two of 19 hog sucker (11%) from Sites 3 and
16 (Fig. 3). Overall, greatest ZPP concentrations were in fish
from Site 7 (Logan Creek), Site 8 (Sweetwater Creek), and
Site 16 (Big River; Fig. 3). Within-site variability was
considerable (Fig. 3), but CVs for individual fish (among
measurements) of all three species were generally o10%.
In samples with measurable ZPP, concentrations were
1–71mmol/mol in sunfish, 2–89mmol/mol in stoneroller,
and 37–135mmol/mol in hog sucker (Fig. 3). The hog sucker
and stoneroller maxima were in samples from Site 16, but
the two greatest sunfish concentrations were from Site 8,
which is o10km below an NLB mine (Fig. 3). The hog
sucker from Site 16 with high ZPP was also among the fish
from the Big River with low Hb and blood Fe concentra-
tions (Fig. 2). The ZPP field data were not analyzed
statistically due to the large percentage of censored
(i.e., oLOD) values.

3.4. Hepatic lipid peroxidation

Blood and liver concentrations of Pb and Zn and of Cd
in liver differed significantly between species in the
fish selected for FPLP analyses (Table 3). Fish with
the highest Pb concentrations did not necessarily have the
highest Cd or Zn concentrations. Blood and liver Pb
concentrations also differed significantly (Po0.01) among
the groups of fish selected on the basis of Pb concentrations
(low, medium, high) for FPLP analysis. Liver Pb concen-

trations were 0.01–3.41 mg/g dw in individual sunfish and
0.04–7.79 mg/g in stoneroller (Table 3). Blood and liver Cd
differences among groups of fish were also significant
in both species, but were less evident than those for Pb
(Table 3). Neither blood nor liver Zn differences were
statistically significant in either species (P40.05; Table 3).
Hepatic lipid peroxidation (as FPLPs) differed signifi-

cantly (Po0.01) between species, with values for stone-
roller typically 3-fold greater than those for sunfish
(Table 3). However, differences among high-, medium-,
and low-Pb exposure fish of the same species were not
significant (P40.05; Table 3). Correlation and regression
analyses also did not detect statistically significant relations
between FPLPs and metals concentrations in either blood
or liver of individual fish (P40.05).

3.5. Metallothionein induction

Blood and liver Pb concentrations also differed sig-
nificantly (Po0.01) between sites in the stoneroller selected
for MT analysis by RT-PCR, as did blood Cd concentra-
tions (Table 4). Differences for liver Cd and Zn were less
evident; they only approached statistical significance
(P ¼ 0.09–0.10), and mean concentrations of both were
greater in fish from Site 10 (Sinking Creek, a reference
site) than from Site 16 (Big River; Table 4). Maximum
concentrations were 2.98 mg/g Pb (Site 16), 1.89 mg/g Cd
(Site 10), and 93.3 mg/g Zn (also Site 10). Estimates of
hepatic MT mRNA varied greatly among fish at both sites;
CVs were 450% and differences between sites were not
statistically significant (P40.05; Table 4). Nevertheless,
hepatic MT mRNA and liver Zn were positively correlated;
a log-log linear regression between these variables was
marginally significant (P ¼ 0.06) and explained 31% of the
variation in MT mRNA (Fig. 4). No other correlations
approached statistical significance.
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4. Discussion

Threshold blood Pb concentrations associated with
effects on heme synthesis in fish, as indicated by reduced
ALA-D activity, vary among species. In most species
(including hog sucker and sunfish), reduced ALA-D
activity has been reported at blood-Pb concentrations
exceeding about 0.5mg/L (about 4 mg/g dw assuming
87.5% moisture), but varying indirectly with Zn burden
(Dwyer et al., 1988; Schmitt et al., 1984, 1993, 2002). In
channel catfish (Ictalurus punctatus) the threshold may be
only 0.1mg/L (0.8 mg/g; Schmitt et al., 2005). Blood Pb
concentrations in most of our samples were o1.0 mg/g dw,
yet statistically significant negative correlations between

ALA-D activity and blood Pb were evident in all three of
the species we investigated (Fig. 1). Collectively, and
despite the fact that ALA-D inhibition is not equally
sensitive to Pb in all species (Campana et al., 2003; Schmitt
et al., 2005), our findings indicate that the blood Pb
threshold for ALA-D inhibition may be o1.0 mg/g dw in
many fishes. In humans, ALA-D is polymorphic (e.g., Hu
et al., 2001). Although the existence of multiple ALA-Ds
has not been investigated or reported in fish, their
occurrence and relative abundance could at least partly
explain differences in Pb sensitivity among species.
The ores of the Viburnum Trend are enriched with a

variety of metals, but only Pb, Zn, and Cu are recovered
commercially in substantial quantities from NLB mines
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Table 3

Arithmetic mean7SE concentrations of lead (Pb), cadmium, and zinc in blood and liver (all mg/g dry-weight, from Schmitt et al., 2007) and fluorescent

products of lipid peroxidation (FPLPs, fluorescence standardized to quinaldine sulfate) in liver of fish of two species characterized as being low, medium,

or high in blood Pb

Species and

relative Pb

n/df Blood Liver

Lead Cadmium Zinc Lead Cadmium Zinc FPLPs

Sunfisha

Low 5 0.0470.01 a 0.01870.006 a 55.075.5 a 0.0470.01 a 1.65070.233 a 91.778.8 a 1.02470.062 a

Medium 5 0.3270.04 b 0.02670.015 a 40.471.7 a 0.3970.10 b 4.49070.742 b 96.273.3 a 1.01670.124 a

High 5 2.8270.45 c 0.03070.006 a 54.574.0 a 1.9570.39 c 11.47271.926 c 66.574.6 a 1.16470.115 a

Stonerollerb

Low 5 0.0370.01 a 0.01070.001 a 49.671.6 a 0.1370.05 a 0.79270.230 a 93.772.7 a 3.54670.368 a

Medium 5 0.1970.02 b 0.03770.009 b 68.572.2 b 0.3270.10 b 1.29670.286 b 97.279.4 a 3.19670.384 a

High 5 2.3370.29 c 0.02570.005 a 62.276.6 a 5.0370.80 c 3.37672.096 c 116.6715.2 a 3.08270.451 a

ANOVA-F

Species (S) 1, 24c 7.05* 0.19 ns 9.74** 6.43* 23.41** 7.73** 84.53**

Pb 2, 24c 376.79** 4.12* 1.10 ns 7.43* 9.70** 0.79 ns 0.23 ns

S�Pb 2, 24c 0.65 ns 1.35 ns 9.10** 4.08* 0.67 ns 6.50** 0.53 ns

R2 30 0.97 0.32 0.56 0.90 0.65 0.48 0.78

Also shown are results of two-way analysis-of-variance (ANOVA) as F-values (**Po0.01; *Po0.05), degrees-of-freedom (df), and coefficients of

determination (R2). Within each group of three means, values followed by the same letter are not significantly different (P40.05).
aLongear sunfish, Lepomis megalotis.
bLargescale stoneroller, Campostoma oligolepis.
cdf.

Table 4

Arithmetic mean7SE concentrations of lead, cadmium, and zinc in blood and liver (all mg/g dry-weight, from Schmitt et al., 2007) and metallothionein

(MT) induction in liver of largescale stonerollera from two sites.

Site n/df Blood Liver

Lead Cadmium Zinc Lead Cadmium Zinc MT

10 (Sinking Creek) 6 0.0370.01 0.01070.001 49.572.5 0.1270.04 1.01870.237 88.670.2 0.91470.190

20 (Big River) 6 1.3570.29 0.02170.004 83.276.5 2.3570.21 0.50870.077 82.172.8 0.85570.184

ANOVA-F 1, 10b 190.75** 14.47** 25.52** 111.9** 3.33 nsc 3.50 nsb 0.05 ns

R2 11 0.95 0.59 0.72 0.92 0.25 0.26 o0.01

Also shown are the results of analysis-of-variance (ANOVA) as F-values (**Po0.01; *Po0.05), degrees-of-freedom (df), and coefficients of determination

(R2).
aCampostoma oligolepis.
bdf.
cP ¼ 0.09–0.10.
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(e.g., Wixson and Jennett, 1975). Small amounts of Co are
recovered incidentally (Shedd, 2005), and solid wastes
containing Co and Ni are generated by the facility on
Strother Creek (Doe Run Company, 2003). Although
elevated concentrations of these latter metals have not been
reported previously in fish from the NLB, Schmitt et al.
(2007) detected elevated concentrations of both Ni and Co
in blood and liver of hog sucker from Site 12 (Strother
Creek) relative to Site 11 (Middle Fork at Redmondville, a
reference site) and Site 16 (Big River). Concentrations of Pb,
Cd, and Zn were also comparatively high in fish from Site 12
(Schmitt et al., 2007), and ALA-D activity was inhibited in
all three species (Table 1); however, Co and Ni were not
measured in fish from other sites. Nickel toxicity is additive
with that of other metals, including Cd, Cu, Pb, and Zn
(Enserink et al., 1991), and it can affect heme metabolism.
Erythropoiesis and hemoglobin synthesis in fish can be
stimulated by Ni (Alkahem, 1994); it can inhibit ALA-D
and possibly also ALA synthetase (ALA-S; d-aminolevuli-
nate synthase, E.C. 2.3.1.37), and can induce heme
oxygenase (HO; E.C. 1.14.99.3l; Maines, 1980). ALA-S is
generally perceived as the rate limiting step in heme
synthesis, and HO catalyzes the degradation of heme to
biliverdin (Maines, 1980). Although inspection of the data
(Fig. 1) did not indicate that the points representing fish
from Site 12 deviated from the overall trend of the blood
Pb:ALA-D relationships, the possible contribution of Ni to
the inhibition of ALA-D at some sites cannot be ruled out as
a possible cause of the low apparent blood Pb thresholds in
the species we investigated. However, evaluating the
contribution of Ni would require more data representing a
wider range of sites and concentrations.

Cobalt is also an essential element (it is a component of
vitamin B12) that can be toxic to fish. Although the
mechanism of Co toxicity is unknown, it can act as an
antagonist with respect to the toxicity of other metals

(Marr et al., 1998). In warm-blooded vertebrates, Co has
been shown to stimulate ALA-S and HO (e.g., Maines and
Sinclair, 1977; Maines et al., 1976), but its effects on heme
homeostatis in fish has not been investigated.
In addition to affecting heme metabolism, Co, Cd, and

Ni can also inhibit cytochrome P-450 induction in fish
(Maines, 1980; Spaethe and Jollow, 1989; Taylor, 1990;
Brüschweiler et al., 1996). The cytochrome P-450 enzymes
are involved in the detoxification of xenobiotic organic
chemicals and the homeostasis of steroid hormones; their
inhibition could therefore influence both the toxicity of
organic chemicals and reproduction in fish (Stegeman and
Hahn, 1994). Sodium cyanide, along with xanthates,
alcohols, and other organic chemicals, are used in the
milling process (Jennett and Callier, 1977; Wixson, 1978).
These and other organic chemicals may interact with
metals to affect heme synthesis and metabolism.
Consistent with previous studies, positive terms for

blood Zn were included in some of our statistical models
describing ALA-D activity (Table 2). The ameliorative
effect of Zn has been attributed to the fact that it is
required as a cofactor for ALA-D, and that Zn may be able
to displace Pb from the metal binding site of the enzyme
(Warren et al., 1998); however, as noted by Schmitt et al.
(2002), not all researchers agree on the latter. The lack of a
consistent Zn effect in our data may reflect both differences
among species and the comparatively narrow range of
blood Zn concentrations in our fish relative to other
studies. In contrast to Pb and Cd, Zn is an essential
element; internal concentrations tend to be tightly regu-
lated by fish (Bury et al., 2003). The range of blood Zn
concentrations in our fish was much smaller than that of
Pb and Cd, and differences among groups of sites based
on their proximity to NLB mines were not statistically
significant (Schmitt et al., 2007).
Prolonged exposure of birds and mammals (including

humans) to Pb ultimately results in anemia. However, and
as noted by Schmitt et al. (2002, 2005), such effects have
only been inconsistently documented in fish. Some of our
fish from Site 16 (Big River) and Site 7 (Sweetwater Creek)
with high blood Pb appeared to be anemic, as indicated by
comparatively low Hb and blood Fe concentrations, but
the sample size was small and results were inconsistent; i.e.,
blood Fe and Hb concentrations were also low in some fish
with low blood Pb and vice-versa. In general, our findings
support the widely held belief that ALA-D is not a rate-
limiting step in heme synthesis by fish, and that most
environmental Pb concentrations are lower than those
necessary to produce anemia and other hematological
effects as measured by the methods typically employed.
Nevertheless, ALA-D is an extremely sensitive indicator of
environmental Pb exposure. In addition, Hb and Fe
concentrations, as well as other traditional endpoints used
to assess fish blood such as cell counts and hematocrit, are
relatively crude measurements (Houston, 1997; Schmitt
et al., 2002). More sensitive techniques have demonstrated
Cd effects on erythron status in laboratory studies
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(Houston, 1997), but to date no thorough study of Pb
effects on erythropoiesis in fish has been reported.

Comparisons of ALA-D activity among investigations
can be difficult due to species differences, differing
acclimation temperatures, activity standardization (to Hb,
hematocrit, etc.), and assay-related variables (pH, tempera-
ture, etc.; Schmitt et al., 2005). Comparisons are therefore
often based on proportional activity relative to reference or
control values generated independently within each study.
In wildlife, 50% ALA-D inhibition relative to relevant
reference or control activity is considered evidence of injury
associated with exposure to environmental Pb (US Depart-
ment of the Interior, 1987), a value that has also been used
with fish (e.g., Schmitt et al., 2002, 2005). Mean un-
standardized ALA-D activity in reference fish (from Sites 3,
10, 11, and 15) averaged 1.8 nmolPBG/mL/h in hog sucker,
1.3 nmolPBG/mL/h in sunfish, and 1.0 nmolPBG.mL/h in
stoneroller; and ALA-D/Hb averaged 3.4 nmol PBG/mg/h
in hog sucker, 1.6 nmol PBG/mg/h in sunfish, and
1.1 nmolPBG/mg/h in stoneroller (Table 1). Relative to
these values, mean ALA-D activity was inhibited by X50%
only in hog sucker from Site 16 (Big River) and stoneroller
from Site 13 (Neals Creek; Table 1). Activity was also
reduced by X50% in a few individual sunfish and stone-
roller from Site 16 and from some sites o10 km down-
stream from NLB mines (Fig. 1). Mean ALA-D/Hb was
not inhibited by X50% relative to reference sites in any
taxa from any site (Table 1); however, some ALA-D/Hb
differences were confounded with low Hb concentrations
(Fig. 2; Table 1). Overall, the degree of inhibition evident in
the species we evaluated from the Big River and sites near
NLB mines were less than what was reported for common
carp and bass by Schmitt et al. (2005), which is consistent
with the lower blood Pb concentrations in our fish.

Higher-level biological effects, including but not limited
to behavioral changes, have been reported less frequently
and associated only indirectly with Pb exposure and
ALA-D inhibition in fish. Inhibition may ultimately result
in the accumulation of ALA (Kelada et al., 2001), which is
structurally similar to g-aminobutyric acid (GABA). The
stimulation of GABA receptors in the nervous system
by ALA may be a primary mechanism of Pb-induced
neurotoxicity (Kelada et al., 2001; Warren et al., 1998).
‘‘Black tail’’, which represents a grossly observable
response to Pb-induced neurotoxicity, was associated with
blood-Pb of 1.7mg/L (about 13.6 mg/g dw) and ALA-D
inhibition of 74% relative to controls in laboratory-
exposed rainbow trout (Oncohrynchus mykiss; Hodson
et al., 1979). Blood Pb in our fish did not exceed 7.72 mg/
g dw (Fig. 1), but some fish from the Big River analyzed in
previous studies did (Schmitt et al., 1984, 1993, 2005).
Although black tail has not been reported in wild fish by
any scientific investigations, a recent newspaper article
reported that it had been observed in fish from the Big
River (Rehagen, 2004). Behavioral effects have been
induced in fathead minnow exposed to part-per-million
concentrations of waterborne Pb (Weber et al., 1991), in

mirror carp (Cyprinus carpio) at p50 mg/L in moderately
hard water (Shafiq-ur-Rehman, 2003), and in rainbow
trout at 29 mg/L in moderately hard water (Burden et al.,
1998); growth and ALA-D activity were also affected at
higher concentrations in the rainbow trout, and lipid
peroxidation was detected in the brains of the mirror carp.
In contrast, neither behavioral nor hematological effects
were elicited in smallmouth bass (Micropterus dolomieu)
fingerlings exposed to p405 mg/L of Pb in moderately hard
water for 90 d (Coughlan et al., 1986). Effects on bone
strength, which may impair swimming performance and
increase vulnerability to predators, were detected in sunfish
from the Big River with blood Pb concentrations of about
0.5mg/L (Dwyer et al., 1988). Stippled erythrocytes and
spinal deformities have been induced in common carp
exposed to part-per-million concentrations of Pb in the
laboratory (Holcombe et al., 1976; Beretić et al., 1980), as
have additional sub-lethal effects in other fishes (Johans-
son-Sjöbeck and Larsson, 1979; Weber et al., 1991).
Organism-, population-, and community-level effects were
associated with reduced ALA-D activity in two species of
catfish (Pimelodidae) inhabiting a tailings-contaminated
stream (Moraes et al., 2003). Blood Pb concentrations were
not measured in this study, but muscle Pb concentrations
in the two species averaged 2.97 mg/g and 7.55 mg/g dw
(0.59 mg/g and 1.5 mg/gww assuming 80% moisture), which
are within the range of recently reported fillet concentra-
tions in fish from the Big River (Gale et al., 2004).
Other than ALA-D, the effects of Pb and other metals

on porphyrin metabolism in fish has received limited study.
Theodakoris et al. (1992) reported increased ZPP concen-
trations in bluegill exposed to Pb-contaminated sediments,
with ZPP increasing over 8wk of exposure. In contrast,
Hodson et al. (1984) detected only low levels of porphyrins
by scanning fluorometry in blood extracts from rainbow
trout exposed to Pb in the laboratory; ALA-D activity was
450% inhibited in these fish, which also showed evidence
of neurotoxicity (black tails). We detected ZPP by
hematofluorometry in all specimens of three species,
including bluegill, in our pilot studies. We also detected
ZPP fluorescence in some stoneroller, hog sucker, and
sunfish from Pb-contaminated sites, but none in other
specimens of the same species with equally high blood Pb
concentrations (Fig. 3). In addition, ZPP concentrations in
bluegill and lake sturgeon tended to increase over time in
refrigerated samples, which may represent the fluorescence
of bilirubin (Buhrmann et al., 1978) or some other
substance.
In mammals, ZPP has been shown to be both more

(Simmonds et al., 1995) and less (Schuhmacher et al., 1997)
sensitive than ALA-D inhibition to Pb. In birds and in the
American toad (Bufo arenarum), ferrochelatase inhibition
results in the accumulation of free erythrocyte protopor-
phyrin (FEP), and FEP measurement by hematofluorome-
try has been used as a biomarker of Pb exposure (Anderson
and Havera, 1985; Arrieta et al., 2004; Blus et al., 1991;
Franson et al., 1986; Roscoe et al., 1979). In the American
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toad, FEP is more sensitive to Pb than ALA-D (Arrieta
et al., 2004), but the general consensus among avian
toxicologists is that FEP accumulation is less sensitive than
ALA-D (Pain, 1989; Beyer et al., 2000). The limited data
available (ours and previous studies) indicate that ZPP is
also less sensitive than ALA-D in fish, but substantially
more data and information on porphyrin biochemistry in
fish is needed. A particular shortcoming is the lack of
information on possible effects of other metals such as Co
and Ni, which have been shown to substitute for Fe in
protoporphyrin IX in mammals (Rosenberg, 1993).

Hepatic lipid peroxidation, as indicated by the measure-
ment of FPLPs, differed by about 3-fold in the two species
we analyzed, but no differences related to metals were
detected (Table 3). Using similar methods, Farag et al.
(1995, 2003) detected significantly (Po0.05) greater hepatic
lipid peroxidation in brown trout (Salmo trutta) and
rainbow trout from mining-contaminated sites on the
Clark Fork River and in the Boulder River system of
Montana than at reference sites. Liver Cd concentrations
averaged about 2.5 mg/g dw and liver Pb about 1.0 mg/g dw
in brown trout from the Clark Fork site, which are
substantially lower than the concentrations in our stone-
roller. Liver Zn concentrations in the Clark Fork fish were
not measured, but they contained elevated concentrations
of Cu and arsenic (Farag et al., 1995). Maximum liver Cd
concentrations in our stoneroller and sunfish were sub-
stantially lower than those in the rainbow trout from the
Boulder River site, which were about 100 mg/g dw. Our
liver Zn maxima were somewhat lower than those from the
Boulder River (Farag et al., 2003, which were about
200 mg/g dw, but maximum liver Pb concentrations in our
fish of both species selected as ‘‘high Pb’’ (maxima
3.41–7.79 mg/g dw) were substantially greater (maxima
o1.0 mg/g dw; Farag et al., 2003). The Boulder River fish,
like those from the Clark Fork, had also been exposed to
comparatively high Cu concentrations (Farag et al., 2003).
Collectively, these results indicate that metals other than
Pb caused the lipid peroxidation reported by Farag et al.
(1995, 2003).

The results of other investigations also indicate that lipid
peroxidation is less sensitive to Pb than to other metals. In
a laboratory study, Campana et al. (2003) detected only
small effects on hepatic lipid peroxidation in European
(Lusitanian) toadfish (Halobatrachus didactylus) following
interperitoneal (ip) injection of Pb even though liver Pb
concentrations reached 300 mg/g ww (1429 mg/g dw assum-
ing 79% moisture; Harrison and Klaverkamp, 1990). As
noted previously, Pb concentrations in fish from the
tailings-contaminated reaches of the Big River are among
the greatest on record (e.g., Gale et al., 2004; Schmitt et al.,
1984, 1993, 2005, 2007), and a human consumption
advisory is in effect (Missouri Department of Health and
Senior Services, 2006). Nevertheless, concentrations of
other mining-derived metals in fish are greater elsewhere
(e.g., Schmitt et al., 1993, 2007; Farag et al., 2003). Copper
is among the metals recovered from mines in the NLB

(Wixson and Jennett, 1975; Wixson, 1978), but neither
previous nor ongoing studies have reported elevated
concentrations in NLB streams (Schmitt et al., 1993;
Petersen et al., 1998; Besser et al., 2003). Based on a review
of extant literature, Campana et al. (2003) hypothesized
that in contrast to Cu, neither Pb nor Cd can change their
oxidation states, a requirement of the redox cycling
necessary for lipid peroxidation. Collectively, these findings
indicate that hepatic lipid peroxidation in fish may not be
as sensitive to Pb as ALA-D, but that it may have potential
as a biomarker of exposure to other metals in NLB fish.
Hepatic MT mRNA induction, which we measured by

RT-PCR, was correlated only with liver Zn. Within-site
variation was comparatively high (Fig. 4), and differences
among sites were not statistically significant (Table 4). As
noted, the range of metal concentrations spanned by the
fish and sites selected for these analyses may not have been
sufficient for the detection of among-site differences in MT
induction, and the sample size was small (Table 4).
Campana et al. (2003) detected increased MT protein
concentrations in European toadfish 7 d after interperito-
neal injection of Pb, by which time liver Pb concentrations
had plateaued at about 300 mg/g ww (1429 mg/g dw assum-
ing 79% moisture). These concentrations are 410-fold
higher than liver Pb concentrations in our fish (Schmitt
et al., 2007). Campana et al. (2003) also noted that the time
course for induction may be temperature related, and that
both the timing and intensity of the MT response may
differ among metals. They hypothesized that Pb was a
weak MT inducer relative to other metals because of its
comparatively low (compared with other metals) sulfhydryl
binding affinity. Farag et al. (1995) reported an increase in
hepatic MT protein of about 3-fold relative to reference
sites in brown trout from a contaminated site on the Clark
Fork, and Farag et al. (2003) detected as much as 30-fold
greater MT protein concentrations in the livers of rainbow
trout from mining-contaminated streams in the Boulder
River system. Given that Pb is a weak inducer of MT
(Campana et al., 2003), these responses may reflect the
comparatively greater concentrations of metals other than
Pb to which the Montana fish had been exposed (Farag
et al., 1995, 2003), as also hypothesized for lipid peroxida-
tion. The induction of MT can also be affected by a wide
range of factors such as fish age, gender, size, and
reproductive status (Lacorn et al., 2001). Although we
attempted to standardize fish size, we did not control for
these other factors, which probably contributed to the
variation in our data (Fig. 4).
Another factor to consider when using MT as a

biomarker is the method used to measure it relative to
the exposure history of the organisms. Traditional methods
typically determine the amount or concentration of MT
present in the tissues (e.g., Hogstrand and Haux, 1990;
Lacorn et al., 2001; Campana et al., 2003; Farag et al.,
2003) or the amount of Cd that can be bound by MT or
other proteins (e.g., Hamilton et al., 1987; Cope et al.,
1994; Kamman et al., 1997). These methods document the
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cumulative, long-term exposure history of the animals. In
contrast, RT-PCR responds to active or recent MT
synthesis (Norey et al., 1990). Consequently, MT mRNA
might not be detected in resident fish that have acclimated
to contemporary exposure conditions. RT-PCR has been
used to detect MT induction in caged, un-acclimated fish
held in metals-contaminated streams (McClain et al., 2003;
Roberts et al., 2005). These findings indicate that RT-PCR
might be better suited to use with transplanted, naı̈ve fish,
in which extraneous (and potentially confounding) vari-
ables such as genetic diversity, exposure/acclimation
history, age, reproductive status, nutrition, size, and gender
can also be controlled; and that measurement of metal-
lothionein concentrations by traditional methods is better
for documenting the long-term exposure of wild fish.
Studies incorporating these methods at sites representing a
wider range of metals concentrations may ultimately
demonstrate both metallothionein and lipid peroxidase
differences among NLB sites and stronger concentration-
dependent relationships.

As a final consideration, multiple MT isoforms have
been documented in fish and other organisms (Klaverkamp
et al., 1984; Carginale et al., 1998; Lacorn et al., 2001;
Muto et al., 1999), and not all isoforms respond to metals.
Lacorn et al. (2001) reported that only one of two MT
isoforms in dab (Limanda limanda) was induced by metals,
the other by rising temperature. Furthermore, expression
of the cDNAs specific to different MT isoforms has been
shown to be differentially regulated by exposure to
different metals (Carginale et al., 1998; Ren et al., 2000).
Lacorn et al. (2001) therefore questioned the use of MT as
a biomarker of exposure without first confirming that the
isoform being measured responds to metals.

5. Conclusions

We documented elevated blood metals concentrations
and negative statistical relations between blood Pb
concentrations and ALA-D activity in stoneroller, sunfish,
and hog sucker. Greatest Pb concentrations and lowest
ALA-D activity in all three species were in fish from the Big
River and at sites o10 km downstream from NLB mines.
Conversely, lowest Pb concentrations and greatest ALA-D
activity were in fish from reference sites and the exploration
area. Consistent with previous findings, and with some
exceptions, blood Pb concentrations in NLB fish exceeded
reference concentrations but were lower than those from
the Big River and other historical mining areas in the US
and elsewhere, as would be expected given the modern
technology and environmental regulation of the NLB.
Nevertheless, ALA-D activity was inhibited in fish of all
species from sites near mines, indicating that Pb is both
bioavailable and biochemically active in streams draining
the NLB. It is generally believed that because the
conversion of ALA to PBG is not the rate-limiting step
in heme synthesis, the inhibition of ALA-D does not by
itself lead to anemia. However, we observed limited

evidence of anemia (i.e., lower Hb and blood Fe
concentrations) in some fish from mining-affected sites,
which differs from previous findings. As noted by Schmitt
et al. (2005), the use of more sensitive indicators (e.g.,
Houston, 1997) may eventually demonstrate a relationship
between ALA-D activity and heme status in fish. In
addition, the influence of Ni and Co from mining in the
NLB on porphyrin metabolism in fish is unknown.
Trends for Cd and Zn were less evident than those for

Pb. Although greatest concentrations of Cd and Zn were in
fish from sites o10 km downstream from NLB mines,
there was considerable variability within and among sites.
Brumbaugh et al. (2005) noted similar variability for Cd
and Zn relative to Pb in fish from mining areas in
Oklahoma, and suggested that these differences reflected
differing long-term exposure histories and accumulation
patterns. Although liver Zn and MT induction were
correlated, our findings indicate that RT-PCR may not
be the best way to document long-term exposure and MT
effects. We also failed to detect effects on hepatic lipid
peroxidation, which indicates that both MT and hepatic
lipid peroxidation are less sensitive to Pb than to other
metals. However, the biomarkers for this study were
selected based on the well known effects of Pb on heme
synthesis and of several metals on MT induction and lipid
peroxidation. Previous studies in the NLB (i.e., Wixson,
1978; Schmitt et al., 1993; Petersen et al., 1998) had not
reported elevated Ni or Co concentrations, which became
evident during the course of our investigation and
subsequent studies (Besser et al., 2003; Schmitt et al.,
2007). Ongoing studies in the NLB are therefore examining
for ecological effects attributable to metals beyond Pb, Zn,
and Cd (including Ni and Co), at a wider range of sites.
Future biomarker studies, if conducted, should incorporate
a battery of biomarkers that have been shown to respond
to a variety of mining-associated metals. In addition to the
endpoints we used, these should include histopathological
evaluations to document macrophage aggregate numbers,
hyperplasia, and other lesions in the kidney; histopatholo-
gical lesions in the gill, brain, and liver; and reproductive
and developmental biomarkers, including gonadal histo-
pathology (e.g., Farag et al., 1999, 2003; Campana et al.,
2003; Pereira et al., 1993). Both caged and wild fish should
be studied to document both short- and long-term
exposures (e.g., Theodakoris et al., 1992; McClain et al.,
2003; Roberts et al., 2005) and the effects of milling
reagents should be investigated.
Lastly, it is important to recognize that the environ-

mental effects of mining vary temporally in response to
many factors. In addition to natural factors, these include
the variable mineral composition of ores, mining intensity
changes related to global market forces, and improvements
in extraction and effluent treatment technology. Mining
intensity in the NLB waned during the 1990s, but elevated
concentrations of metals and their effects in fish were
nevertheless evident at most sites located near NLB mines.
Mining and exploration activity in southern Missouri has
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recently begun to increase in response to rising demand for
Pb and other metals. Continued investigation and mon-
itoring of streams in this region is therefore warranted.
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morphological and hematological parameters of abnormal lead

absorption in fish. In: Branica, M., Zdenka, K. (Eds.), Lead in the

Marine Environment. Pergamon Press, Oxford, UK, pp. 263–269.

Besser, J.M., Brumbaugh, W.G., Brunson, E.O., Allert, A.L.,

Schmitt, C.J., 2003. Metal bioavailability in stream and reservoir

sediments from stream and reservoir sites in the vicinity of lead

mining areas in Missouri. 24th Annual Meeting of the Society

of Environmental Toxicology and Chemistry, November 11–15,

Austin, TX.

Beyer, W.N., Audet, D.J., Heinz, G.H., Hoffman, D.J., Day, D., 2000.

Relation of waterfowl poisoning to sediment lead concentrations in the

Coeur d’Alene River Basin. Ecotoxicology 9, 207–218.

Blus, L.J., Henny, C.J., Hoffman, D.J., Grove, R.A., 1991. Lead toxicosis

in tundra swans near a mining and smelting complex in Northern

Idaho. Arch. Environ. Contam. Toxicol. 21, 549–555.

Brumbaugh, W.G., Schmitt, C.J., May, T.W., 2005. Concentrations

of cadmium, lead, and zinc in fish from mining-influenced

waters of Northeastern Oklahoma: sampling of blood, carcass, and

liver for aquatic biomonitoring. Arch. Environ. Contam. Toxicol. 49,

76–88.
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