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a b s t r a c t

Physico-chemical properties of bread baked by partially replacing normal wheat (Triticum aestivum L.)
flour (15, 30, and 45%) with two hard waxy wheat flours were investigated. Substitution with waxy
wheat flour resulted in higher loaf volume and softer loaves. However, substitution at >30% resulted in
excessive post-bake shrinkage and a ‘key-hole’ shape with an open crumb structure. Bread crumb
microstructure indicated a loss of starch granule rigidity and fusing of starch granules. The cells in the
interior of the bread did not become gas-continuous and as a result, shrunk as the loaf cooled. Soluble
starch content was significantly higher in bread crumb containing waxy wheat flour than in control
bread. Debranching studies indicated that the soluble starch in bread made with 30e45% hard waxy
wheat flour was mostly amylopectin. Incorporation of waxy wheat flour resulted in softer bread
immediately after baking but did not retard staling upon storage.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Based on the level of amylose in its endosperm starch, wheat
(Triticum aestivum L.) varieties are classified as full waxy, partial
waxy, normal (wild-type) and high-amylose wheat (Graybosch,
1998; Nakumura et al., 1993, 1995). Full waxy wheat has little, if
any amylose. A change in the ratio of amylose to amylopectin can
result in altered textural attributes in food products, primarily
because of differences in swelling and gelling properties. Because of
its lack of amylose, waxy wheat can potentially reduce the initial
phase of retrogradation i.e. rapid association of amylose molecules
(Graybosch, 1998). A number of studies have been conducted to
understand the potential of waxy wheat as a shelf-life extender of
baked goods. Bread containing waxy wheat was reported to be
softer than bread made with wild-type wheat immediately after
baking (Graybosch, 2001; Morita et al., 2002a,b; Yi et al., 2009).
Reduced amylose wheat used in a French bread formulation
resulted in a soft crumb structure (Park and Baik, 2007). Incorpo-
ration of 10e50% waxy wheat flour into a white-pan bread
formulation resulted in a high loaf volume immediately after
baking (Bhattacharya et al., 2002; Graybosch, 2001; Morita et al.,

2002a); however, the loaves collapsed upon storage and shrunk
excessively within 24 h after baking (Lee et al., 2001; Morita et al.,
2002a). The crumb structure of bread containing waxy wheat flour
displayed a more open and porous structure compared to the
control (Graybosch, 2001; Hung et al., 2007a,b; Lee et al., 2001).

Previous reports on the inclusion of waxy wheat flour in bread
and its impact on staling have been inconsistent. When flour from
near-isogenic waxy wheat lines was substituted (up to 40%) for
wild-type flour in a white-pan bread formulation, the bread
showed lower firmness for up to 7 days of storage as compared to
the control (Morita et al., 2002a). When durum waxy wheat flour
was used (up to 30%), the resulting loaves showed lower firmness
than the control (Bhattacharya et al., 2002). In contrast to those
studies, when flours from waxy wheat lines were substituted for
stronger hard red winter wheat flour (up to 50%), the rate of crumb
firming was higher than the control (Graybosch, 2005). Compared
to the bread made with commercial normal white flour, the firm-
ness of breadcrumbs with 30% and 50% whole waxy wheat flour
was lower after one day of storage but increased quickly after 3 days
of storage (Hung et al., 2007a). In a separate study, incorporation of
waxy wheat flour in bread was reported to increase the moisture
retention capacity of crumb during storage (Park and Baik, 2007).

In addition to the inconsistent conclusion on the impact of waxy
wheat flour on bread staling, the reasons why waxy wheat flour
causes the collapse of bread loaves upon storage are not clearly
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understood. Objectives of this study were to (i) evaluate the impact
on white-pan bread of incorporating 15e45% of total flour weight
with hard waxy wheat flour from advanced breeding lines; (ii)
understand and explain the underlying mechanism of loaf collapse
in bread containing high levels of waxy wheat flour; and (iii) clarify
the impact of waxy wheat flour on bread staling.

2. Materials and methods

2.1. Materials

Control wild-type wheat (Karl 92) and two waxy wheats,
NX03Y2114 (sample 2114) and NX03Y2489 (sample 2489) from
advanced breeding lineswere procured fromUSDA-ARS, Lincoln, NE.
The pedigree of sample 2114 was Cimarron/Rio Blanco//Baihou4/
L910145/3/Colt/Cody//Stozher/NE86582 and that of sample 2489
was BaiHuo/Kanto107//Ike/3/KS91H184/3*RBL//N87V106. Wheat
kernels were tempered to 16% moisture for 18 h and roller-milled
into straight-grade flour on an MLU 202 Bühler experimental mill
(Bühler Co., Uzwill, Switzerland). The protein contents of the flours
were 11.44, 13.01, and 13.25 (%db) for Karl 92, sample 2114 and
sample 2489, respectively, and the starch contents were 76.7, 75.0,
and 80.0 (%db) for Karl 92, sample 2114 and sample 2489, respec-
tively, as previously reported (Guan et al., 2009).

2.2. Dough mixing characteristics

Dough characteristics were measured using a 10 g mixograph
according to AACC 54e40 A (AACC International, 2000). Water
absorption was initially calculated based on protein content by
using AACC 54e40A, but was finally optimized for each sample
based on series of mixograms (Guan et al., 2009).

2.3. Gas generation from flours using Risograph

Gas generated from liquid ferment of flours was measured by
using a modified AACC 89-01 method (AACC International, 2000).
Instant yeast (0.4 g) (Lesaffre Yeast Corp., Milwaukee, WI) and
distilled water (15 mL) were added to each flour (10 g) and mixed
for 1 min in Risograph (RDesign, Pullman, WA) containers by using
a glass rod, which was left in the container. The containers were
connected to the Risograph and the rate and the total amount of
carbon dioxide released from liquid ferment was measured at 30 �C
over a 90-min period.

2.4. Enzyme digestion of flours and release of D-glucose

Enzyme digestion of flours was done using a modified Englyst
method (Englyst et al., 1992). The enzymemixture was prepared by
adding 3.0 g of pancreatin (P-7545, Sigma Aldirch, St. Louis, MO) to
20 mL of distilled water, mixing for 10 min and centrifuging at
4000� g for 10 min. An aliquot (15 mL) of supernatant was trans-
ferred into a solution of 60 mg of amyloglucosidase (A-7255, Sig-
maeAldrich, St. Louis, MO) in 1.7 mL distilled water. Flour samples
(0.60 g) were suspended in 10 mL of distilled water and incubated
for 30 min at 37 �C. Subsequently, 10 mL of 0.25 N sodium acetate
and 5 mL of the enzyme mixture were added to the suspension
which was then incubated up to 180 min at 37 �C with continuous
mixing. At time intervals of 20, 40, 60, 90, 120 and 180 min, 0.25 mL
of solutionwas transferred into 25 mL glass tubes containing 10 mL
of 66% ethanol. The tubes were centrifuged at 4500� g for 10 min.
The supernatant (0.1 mL) was transferred into 10 mL glass tubes
and 3.0 mL glucose oxidaseeperoxidase (GOPOD, Megazyme Kit,
Wicklow, Ireland) was added immediately. The tubes were

incubated at 40 �C for 20 min, and the absorbance was measured
against a reagent blank at 510 nm.

2.5. Bread baking

Pup-loaf bread was baked using the AACC 10e10B (AACC
International, 2000) straight dough method with 90-min fermen-
tation time. The baking formula (flour basis) was 100.0 g flour
(14%mb), 6.0 g sucrose, 3.0 g shortening (Crisco�, Orville, OH), 2.0 g
yeast, 1.5 g salt, 50mg L-ascorbic acid (Merck, Darmstadt, Denmark)
and 0.5 g diastatic malt (King Arthur Flour, Norwich, VA). For breads
made with 15e45% levels of waxy wheat flour, Karl 92 flour was
partially replaced on a dry weight basis with one of the two hard
waxy wheat flours (2114 or 2489). Additionally, pup-loaf breads
were baked using 100%waxywheat flour. Four loaves of breadwere
baked for each formulation.

Loaf weight and loaf volume (rapeseed displacement AACC 10-
05, AACC International, 2000) were measured immediately, 1 h and
24 h after removal from the oven, and specific volume data were
reported. The loaves were double bagged in polypropylene bags
and stored at room temperature. On day 1 and day 7 after baking,
two loaves of each formulation were sliced into 100 thick slices. The
two slices from the middle were analyzed. Characteristics of bread
crumb were determined using C-Cell (Calibre Control Intl., War-
rington, UK), an image analysis instrument, to obtain an image of
the slice and data on number of gas cells, gas cell volume, cell wall
thickness and slice brightness. Moisture content of the slices was
determined by AACC 44-15A (AACC International, 2000).

2.6. Texture analysis

Firmness was measured by a modified AACC 74-09 method
(AACC International, 2000). Bread slices were tested using a TA.XT2
texture analyzer (Texture Technologies Corp., Scarsdale, N.Y.) with
a 36 mm cylindrical probe. Each slice was compressed to a 7 mm
distance. Firmness was calculated as the peak force at 7 mm.
Firmness values reported were the average of three measurements.

2.7. Soluble carbohydrate in bread crumbs

Bread samples were analyzed for soluble carbohydrate (starch)
content and molecular weight distribution. Soluble carbohydrate
content was determined by a modified AACC 76-13 method (AACC
International, 2000) (Megazyme Kit, Wicklow, Ireland). Soluble
starch was extracted by mixing 100 mg of freeze-dried bread with
1.5 mL of water in a 2.0 mL microcentrifuge tube. The sample was
vortexed for 45 s and centrifuged at 12,000� g. The supernatant
(1.0 mL) was immediately transferred to a test tube containing
3.0 mL of thermostable a-amylase (300 U) in MOPS buffer (50 mM,
pH 7.0). The contents of the test tube were vigorously mixed and
incubated in a boiling water bath for 6 min with intermediate
stirring at 2 and 4 min intervals. The test tube was placed in a 50 �C
water bath and sodium acetate buffer (4.0 mL, 200 mM, pH 4.5),
followed by amyloglucosidase (0.1 mL, 20 U) were added. The
contents were thoroughly mixed and the test tubewas incubated in
a 50 �C water bath for 30 min. The volume of the test tube contents
was adjusted to 10.0 mL with distilled water and centrifuged at
3000� g for 10 min. An aliquot (0.1 mL) of the supernatant was
transferred to a test tube to which 3.0 mL of glucose oxidase
peroxidase (GOPOD) reagent was added. The tubes were incubated
in a 50 �C water bath for 30 min. Absorbance of the samples was
taken at 510 nm against the reagent blank and D-glucose was used
as the reference standard. Percent soluble starch was calculated
based on the starch content of the flour. An average of three
replicates was reported as total soluble carbohydrate (%).
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Molecular weight distribution of soluble carbohydrate was
determined by gel permeation chromatography (GPC). Freeze-dried
soluble starch was dissolved in 1.0 mL of dimethyl sulphoxide
(DMSO) in 2.0 mL microcentrifuge tubes to obtain a final concen-
tration of 0.1% starch. The GPC analysis was performed with
a Polymer Laboratory (Amherst, MA) PL-GPC 220 Integrated GPC/
SEC fully automated system as previously described (Cai et al.,
2010).

2.8. Thermal properties of bread

Thermal properties of bread crumb were determined by using
differential scanning calorimetry (DSC) (Q100 DSC, TA Instruments,
New Castle, DE). Freeze-dried bread samples (10 mg) from day 1
and day 7 and distilled water were added to the DSC pan in a 1:2
ratio (w/w). The pan was hermitically sealed and allowed to
equilibrate at 25 �C for 1 h. The samples were then heated from
10 �C to 140 �C at 10 �C/min. An empty DSC pan was used as
a reference. Onset, peak and completion temperatures along with
enthalpy were determined. Each sample was analyzed in duplicate
and average values were reported.

2.9. Scanning electron microscopy (SEM)

A small piece (<1 mm3) of freeze-dried bread crumb was fixed
on specimen stubs using carbon paste. The samples were coated
with goldepalladium by a sputter coater (Denton Vaccuum, LLC.,
Moorestown, NJ). The samples were viewed at 300� and 1000�
resolution with a scanning electron microscope (S-3500N, Hitachi
Science Systems, Ltd., Japan) operating at an accelerating voltage of
20 kV. Each sample was analyzed two times.

2.10. Confocal laser scanning microscopy (CLSM)

Slides of freeze-dried bread samples were prepared based on
the methods of Lee et al. (2001) and Schober et al. (2004). A small
piece (<1 mm3) of freeze-dried bread crumb was placed on
a microscopic slide and a weakly alkaline solution of flourescein
5(6)-isothiocyanate (FITC) (SigmaeAldrich, St. Louis, MO) was
added to the sample. The slide was air-dried at room temperature
in a dark environment for 1 h. Prior to analysis, immersion oil was
dropped on the sample and the sample was covered with a cover
slip. A Zeiss LSM 5 Pa CLSM (Ziess, Gottingen,Germany) was used to
view themicrostructure of the bread crumb. Fluorescence emission
imaging of FITC was done using the 488 nm line of a 458/488/514
argon gas ion laser to excite FITC. Overlaid images of birefringent
starch granules and florescent protein matrix were used to
compare the internal structures of different bread samples. Each
sample was analyzed two times.

2.11. Statistical analysis

Macanova 4.12 (School of Statistics, University of Minnesota,
Minneapolis, MN) was used to perform ANOVA and honest signif-
icance difference (HSD) analysis. The level of significance was
p < 0.05 for all data analyses.

3. Results and discussion

3.1. Flour and dough properties

Protein content of Karl 92, waxy wheat samples 2114, and 2489
were 15.47, 13.88 and 12.82%, respectively (previously reported by
Guan et al., 2009). As previously reported (Guan, 2008), the opti-
mized mixograph data indicated that the wild-type wheat flour

(Karl 92) had a longer peak time (4.82 min) than the two waxy
wheat samples (4.22 and 3.41 min for samples 2114 and 2489,
respectively). Additionally, sample 2114 had higher peak height
(59.5%) and sample 2489 had lower peak height (47.4%) when
compared towild-type Karl 92 wheat flour (55%). Water absorption
capacity for Karl 92, sample 2114 and 2489 were 60.8, 66.4, and
57.7%, respectively. The high water absorption capacity of sample
2114 is probably due to its high arabinoxylan content and small
flour particle size (Garimella Purna, 2010). In this study, the blends
of Karl 92 wheat flour and each waxy wheat flour were further
examined by mixograph and the optimum water absorption and
mixing time were determined from a series of mixographs
(Table 1). When the normal wheat flour was replaced by 45% waxy
wheat flour, the water absorption increased when sample 2114 was
added to the blend, but slightly decreased when sample 2489 was
added. The optimum mixing time decreased with increasing
incorporation of waxy wheat flour.

3.2. Bread volume and microstructure of crumb

3.2.1. Volume
Changes in specific loaf volume (cc/gm) are given in Fig. 1.

Immediately after baking, the specific volume of bread loaves
containing waxy wheat flour was significantly higher (p < 0.05)
than the Karl 92 control, and was highest for bread loaves con-
taining 100% waxy wheat flour. These results are consistent with
findings by previous researchers (Morita et al., 2002a,b; Yi et al.,
2009) who reported an increase in volume of breads baked with
waxywheat. The higher loaf volume inwaxywheat breads could be
due to higher gas (carbon dioxide) production during fermentation
of waxy wheat flours (Fig. S1A). In our study, the starch in waxy
wheat flour was more readily digestible than starch in wild-type
flour (Fig. S1B). Liquid ferment from waxy wheat flour 2489
released approximately 100% more carbon dioxide than wild-type
flour during the 120-min fermentation time (Fig. S1A). Higher
amounts of damaged starch in waxy wheat (Bettge et al., 2000 and
Garimella Purna, 2010) provided readily fermentable sugars during
yeast fermentation (Lee et al., 2001). However, it should be noted

Table 1
Mixing time and level of water absorption used for doughmaking (based on series of
four mixographs).

Replacement Waxy flour 2114 Waxy flour 2489

Absorption (%) Time (min) Absorption (%) Time (min)

0% (Controla) 62.0 5.5 62.0 5.5
15% 62.0 5.0 62.0 5.0
30% 63.0 5.0 61.0 4.75
45% 63.5 4.75 61.0 4.5

a Karl 92 was base flour.

Fig. 1. Changes in bread specific volume after baking (N ¼ 4).
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that sucrose provided readily fermentable sugar in the bread
formula whereas no sucrose was added in the Risograph experi-
ment. The differences in specific loaf volumeswere not significantly
different (p > 0.05) between the two waxy wheat samples at all
substitution levels, although there were differences between the
two waxy wheat samples with respect to gas production in a liquid
ferment (Fig. S1A) and their dough mixing properties (Table 1).

3.2.2. “Keyhole” effect
There was a considerable decrease in specific volume from

0 min (immediately after baking) to 24 h after baking for all
formulations. The decrease in specific volumewith timewas higher
in formulations containing higher levels of waxy wheat flour.
Excessive shrinkage of loaves containing 45 and 100% waxy wheat
flour resulted in a “keyhole” effect (Fig. 2A). Bread made with 100%
waxy barley starch has been reported to collapse (Hoseney et al.,
1978) or shrink excessively (keyhole) (Ghiasi et al., 1984) after
baking. Kusunose et al. (1999) studied the impact of wheat, potato
and tapioca starches in bread and attributed excessive post-baking
shrinkage in bread containing tapioca starch to its lower pasting
temperature and fusing of starch granules into a continuous
network. Waxy wheat starch granules have a lower pasting
temperature than wild-type starch granules (Guan, 2008). More-
over, waxy wheat starch swells rapidly and the granules lose
structural integrity and disintegrate at temperatures around 70 �C
(Guan, 2008). SEM showed that starch granules maintained integ-
rity in Karl 92 control bread crumb (Fig. 2B) but waxy wheat bread
crumb, especially those containing 100% waxy wheat, had a fused
starch granule network (Fig. 2), similar to the microstructure of
bread made from tapioca and waxy barley (Ghiasi et al., 1984;
Kusunose et al., 1999). The fusing of starch granules became more

evident as the level of waxy wheat in bread crumb increased.
Additionally, CLSM showed the protein network in bread crumb
made with high levels of waxy wheat appears to be elongated
between the starch granules (Fig. 2C).

Fromdoughtobread, there isaphase inversionduringwhich foam
structureofdough isconverted into sponge i.e. bread(Bloksma,1981).
Duringmixing, air is incorporated in the formof smallnuclei/cells into
the dough (Baker andMize,1946;MacRitchie,1976). The gas cells are
surrounded by a starch gluten matrix, and this matrix acts as a cell
wall. These gas cells expand during proofing as they are filled with
fermentation gases, and during baking, the gas cells expand with
increasing temperature (He and Hoseney, 1991). Up to this point,
dough isconsidered tobeaclosedcell foamthat retainsCO2 (Hoseney,
1986).During the later stagesofbaking, cross linkingofproteins along
with gelatinization of starch leads to a rupture in the cell wall,
allowing the gas to escape from crumb to crust (Bloksma,1981). After
baking, the leached amylose forms a gel between the swollen starch
granules during cooling and could be responsible for the setting or
rigidity of the loaf. Baked bread is considered to be an open celled
sponge that is permeable to air (Baker andMize, 1946).We postulate
that when dough containing waxy wheat flour is baked, fusing of
waxy starch granules prevents the cell walls from becoming gas-
continuous. The cell walls are impermeable. When high amounts of
carbon dioxide are produced during baking, the cell walls expand to
their maximum but fail to rupture thereby continuing to maintain
their foam structure. During cooling, the cell walls shrink due to
negative internal pressure and result in a keyhole effect.

3.2.3. C-Cell
Bread containing high levels of waxy wheat flour had an open

crumb grain (Fig. 2A). C-Cell results show that as the level of waxy

Fig. 2. Changes in bread structure with inclusion of waxy wheat flour (sample 2114) (24 h after baking).
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wheat flour in the bread formulation increased, gas cell volume
increased and the number of cells decreased (Table S1). Control
bread (Karl 92) had a higher number of cells, but the volume of the
cells was lower (Table S1, Fig. 2A). Thus the control bread contained
a higher number of smaller size cells than bread containing 45%
waxy wheat. Enzyme digestibility data indicated that compared
with the control (Karl 92) flour, the starch inwaxy wheat flours was
more readily digestible by enzymes which could have contributed
to the increased gas (carbon dioxide) released by the yeast in the
liquid ferment (Fig. S1). Gas produced during fermentation is
typically transported to gas nuclei that were formed during dough
mixing (Gan et al., 1990), and the greater gas production in dough
systemswith waxy wheat flour could result in large gas cells. Those
large gas cells expand during baking, creating an “open” crumb
structure in the resultant bread. Alternatively, gas cells can coalesce
during bread making when waxy wheat flour is added because of
the excessive swelling of waxy wheat starch granules. Guan (2008)
noted that waxy starch granules swell excessively and lose granule
integrity upon heating in excess water. Excessive swelling of waxy
starch could be the cause of open crumb structure.

3.3. Soluble starch and structure

In general, the firmness decreased (Fig. 3A) and solubility of
starch increased (Fig. 3B) as the percentage of waxy wheat
increased (Fig. 3B). This could be because amylopectin has greater
solubility than amylose in 1- and 7-day old bread. The control
formulation had more amylose than the formulations containing
waxywheat flour. GPC showed differences between the control and
the waxy wheat sample 2114 (Fig. 4). Similar results were obtained
for sample 2489. Soluble starch from control bread (Karl 92) had

a prominent peak in the low molecular weight region plus
a shoulder peak in the higher molecular weight region. As the level
of waxy wheat flour was increased from 15 to 45%, the distribution
became bimodal, with the peaks being almost equally intense in
the low and highmolecular weight regions. The same phenomenon
was observed for both waxy varieties. An increase in the replace-
ment level of waxy wheat flour resulted in an increase in soluble
starch in the bread crumb. The increase in soluble starch content
could be due to the ease of fragmentation of waxy starch granules
(Guan, 2008). Our results indicate that most of the soluble starch
observed at high molecular weight was amylopectin (Fig. 4), which
agrees with previous studies (Schoch and French,1947; Ghiasi et al.,
1979). Overall, amylose content (the low molecular weight peak)
decreased when wild-type wheat flour was partially replaced with

Fig. 3. Changes in (A) firmness and (B) soluble starch of bread samples (N ¼ 4) day 1 and day 7 after baking.

Fig. 4. Molecular weight distribution of soluble starch profile in breads made with
normal wheat flour (Karl 92) and with inclusion of waxy wheat flour (sample 2114)
after 1 day of storage.
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waxywheat flour; therefore, the amount of amylose leached during
baking was reduced. Leached amylose forms a gel between swollen
starch granules (He and Hoseney, 1991) and is thought to be
responsible for the setting or rigidity of the loaf (Hug-Iten et al.,
2003; Ghiasi et al., 1979). The combination of less amylose and
more soluble starch from amylopectin could result in a soft crumb
structure on day 1 and shrinkage after baking for bread that
contains a high level of waxy wheat flour.

From day 1 to day 7, the percentage of soluble starch decreased
(Fig. 3B), which could be due to retrogradation of amylopectin in
bread. On day 7, there was no difference in the percentage of
soluble starch between the control, 15% replacement, and 30%
replacement, which contained, respectively, w75, 79 and 83%
amylopectin in starch. However, the 45% replacement with w86%
amylopectin in its starch had slightly more soluble starch.

3.4. Texture and effect of waxy wheat on staling

On day 1, bread slices from loaves containing waxy wheat
flour were significantly softer than control bread (Fig. 3A). Firmness
decreased (Fig. 3A) and bread volume increased (Fig. 1) as the level
of waxy wheat flour in the formulation increased. The lower
firmness could be due to the lower amylose content in waxy wheat
bread formulations. Previous researchers (Biliaderis, 1992; Hug-
Iten et al., 2003) have attributed the initial firmness of bread
crumb to rapid re-association of the amylose fraction. It was not
possible to get consistent firmness values from 100% waxy wheat
loaves. The crumb of the 100% waxy wheat loaves was too fragile
and the testing surfacewas too small tomeasure properly. On day 7,
there was not a significant difference in firmness between any of
the loaves (Fig. 3A).

Our firmness results from day 1 are consistent with previous
studies (Graybosch, 2001; Hung et al., 2007a and b), which repor-
ted that loaves made from formulations containing waxy wheat
flour were softer than loaves from formulations with wild-type
wheat flour. On day 7, there were no significant differences in
firmness between bread crumbs containing waxy wheat and
control samples. Our results are contrary to two previous studies
(Morita et al., 2002a; Bhattacharya et al., 2002). Bhattacharya et al.
(2002) reported a decrease in firmness over 5 days when waxy
durum wheat flour was substituted at low levels (up to 30%), and
Morita et al. (2002a,b) reported a decrease in firmness over 7 days
when waxy wheat flour was substituted at low levels (up to 40%).
However, some previous studies (Graybosch, 2001, 2005; Hung
et al., 2007b) reported an increase in firmness upon storage for
bread crumbs made with partial replacement with waxy wheat
flour. The differences in staling results could be due to different
control and waxy flours used in the baking formulations.

It should be emphasized that, in the present study, bread made
with high levels of waxywheat was softer than the control on day 1
but became as firm as the control upon storage, which correlates
with the change in soluble starch (Fig. 3). These results are
consistent with previous findings by Ghiasi et al. (1984), who
reported that bread loaves containing waxy barley starches were
softer than the control on day 1 but had equal firmness after three
or five days of storage. Amylose retrogrades rapidly during initial
cooling of bread and slow changes in amylopectin are responsible
for further firming of bread after day 1 (Kim and D’Appolonia,
1977). Inagaki and Seib (1992) also reported that crumb of bread
made with cross-linked waxy barley starch was softer 6 h after
baking but firmed much faster during further storage at 25 �C than
that of the control bread made with prime wheat starch.

Thermal properties of bread crumbwere shown in Table 2. After
baking, starch retrogradation is a biphasic phenomenon of starch
with rapid association of amylose followed by less rapid

recrystallization of amylopectin (Biliaderis, 1992; Hug-Iten et al.,
2003). The endothermic peak observed in DSC at onset temperature
(To) 43.0e46.1 �Cwasdue tothemeltingof retrogradedamylopectin.
On day 1, bread crumb containing 45% waxy wheat had higher
enthalpy, presumably due to the increased level of amylopectin.
However, crumb firmness decreased on day 1 as the level of waxy
wheat flour increased, because of the reduced contribution of
amylose retrogradation. From day 1 to day 7, there was a smaller
increase in enthalpy in bread crumbs containing 45% waxy wheat
flour compared with bread crumbs made with wild-type wheat
flour, despite the fact that bread crumb containing 45% waxy wheat
flour had a higher level of amylopectin. The low retrogradation from
waxy wheat flour is consistent with previous researchers
(Hayakawa et al., 1997) and with our earlier experimental evidence
from DSC analysis of starch-based gels, which indicated a marked
resistance of waxy wheat starch to retrogradation (Guan, 2008).
Overall, there was no difference in enthalpy values between bread
containingwaxywheatflours and the controlwheat (Karl 92) onday
7. Additionally, all bread had similar firmness and starch solubilities.

4. Conclusions

Substituting waxy wheat flour in awhite-pan bread formulation
resulted in increased loaf volume, but significant post-bake
shrinkage occurred in formulations with higher levels (>30%) of
waxy wheat flour. Disintegration and fusing of starch granules was
observed in bread containing high levels of waxy wheat flour. The
cells in the interior of the bread did not become gas-continuous,
which explains the excessive loaf volume and high post-bake
shrinkage. Partial replacement of waxy wheat flour resulted in
softer fresh bread immediately after baking but did not retard
staling during storage (7 days).
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Table 2
Thermal properties of bread samples measured by differential scanning calorimetry
(DSC) (N ¼ 2).

Sample Tonset (�C) Tpeak (�C) Tend (�C) DH (J/g)

Day 1
Karl 92 46.1 � 0.4a 58.2 � 2.0a 69.4 � 0.5bc 1.9 � 0.1c

15% 2114 45.8 � 1.1a 57.0 � 0.1ab 71.4 � 1.1a 2.2 � 0.3abc

30% 2114 45.6 � 0.8ab 56.7 � 0.2ab 69.5 � 0.7bc 1.9 � 0.1c

45% 2114 43.9 � 1.6ab 57.3 � 0.4ab 72.0 � 0.5a 2.4 � 0.1a

15% 2489 44.2 � 0.3ab 56.2 � 0.2b 71.3 � 1.0ab 2.5 � 0.1ab

30% 2489 45.6 � 0.9ab 56.5 � 0.3ab 69.2 � 1.0c 2.0 � 0.1bc

45% 2489 43.0 � 1.8b 55.9 � 0.9b 72.0 � 0.2a 2.5 � 0.3a

Day 7
Karl 92 44.4 � 1.7a 55.4 � 0.7b 70.5 � 2.1ab 4.0 � 0.8ab

15% 2114 44.7 � 1.1a 58.0 � 0.5a 72.4 � 0.4a 3.8 � 0.5ab

30% 2114 43.1 � 1.5a 54.9 � 0.6b 71.1 � 0.7ab 4.4 � 0.6a

45% 2114 45.2 � 1.1a 55.8 � 1.2b 70.6 � 0.3ab 3.6 � 0.3ab

15% 2489 44.9 � 0.5a 55.5 � 1.0b 70.0 � 0.2b 3.1 � 0.1b

30% 2489 44.7 � 0.2a 55.4 � 0.7b 70.8 � 1.1ab 4.2 � 0.4a

45% 2489 45.4 � 0.5a 55.4 � 0.1b 69.9 � 0.8b 3.4 � 0.1ab

Mean � standard deviation values are reported.
Different letters within each day and each column denote significant differences
among the samples (p < 0.05).
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