8-2012

Neural basis of the potentiated inhibition of repeated haloperidol and clozapine treatment on the phencyclidine-induced hyperlocomotion

Changjiu Zhao
University of Nebraska-Lincoln, czhao2@unl.edu

Tao Sun
University of Nebraska- Lincoln, tsun2@unl.edu

Ming Li
University of Nebraska-Lincoln, mli2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/psychfacpub

Part of the Psychiatry and Psychology Commons

Zhao, Changjiu; Sun, Tao; and Li, Ming, 'Neural basis of the potentiated inhibition of repeated haloperidol and clozapine treatment on the phencyclidine-induced hyperlocomotion' (2012). Faculty Publications, Department of Psychology. 596.
http://digitalcommons.unl.edu/psychfacpub/596
Neural basis of the potentiated inhibition of repeated haloperidol and clozapine treatment on the phencyclidine-induced hyperlocomotion

Changjiu Zhao, Tao Sun, and Ming Li

Department of Psychology, University of Nebraska-Lincoln

Keywords: Antipsychotic sensitization, Clozapine, c-Fos, Haloperidol, PCP-induced hyperlocomotion

Abstract

Clinical observations suggest that antipsychotic effect starts early and increases progressively over time. This time course of antipsychotic effect can be captured in a rat phencyclidine (PCP)-induced hyperlocomotion model, as repeated antipsychotic treatment progressively increases its inhibition of the repeated PCP-induced hyperlocomotion. Although the neural basis of acute antipsychotic action has been studied extensively, the system that mediates the potentiated effect of repeated antipsychotic treatment has not been elucidated. In the present study, we investigated the neuroanatomical basis of the potentiated action of haloperidol (HAL) and clozapine (CLZ) treatment in the repeated PCP-induced hyperlocomotion. Once daily for five consecutive days, adult Sprague-Dawley male rats were first injected with HAL (0.05 mg/kg, sc), CLZ (10.0 mg/kg, sc) or saline, followed by an injection of PCP (3.2 mg/kg, sc) or saline 30 min later, and motor activity was measured for 90 min after the PCP injection. C-Fos immunoreactivity was assessed either after the acute (day 1) or repeated (day 5) drug tests. Behaviorally, repeated HAL or CLZ treatment progressively increased the inhibition of PCP-induced hyperlocomotion throughout the five days of drug testing. Neuroanatomically, both acute and repeated treatment of HAL significantly increased PCP-induced c-Fos expression in the nucleus accumbens shell (NAs) and the ventral tegmental area (VTA), but reduced it in the central amygdaloid nucleus (CeA). Acute and repeated CLZ treatment significantly increased PCP-induced c-Fos expression in the ventral part of lateral septal nucleus (LSv) and VTA, but reduced it in the medial prefrontal cortex (mPFC). More importantly, the effects of HAL and CLZ in these brain areas underwent a time-dependent reduction from day 1 to day 5. These findings suggest that repeated HAL achieves its potentiated inhibition of the PCP-induced hyperlocomotion by acting on the NAs, CeA and VTA, while CLZ does so by acting on the mPFC, LSv and VTA.

1. Introduction

A growing number of clinical studies suggest that antipsychotic action starts early and increases in magnitude with repeated treatment (Agid et al., 2003, 2006; Emsley et al., 2006; Glick et al., 2006; Kapur et al., 2005; Leucht et al., 2005; Raedler et al., 2007). This observation is strongly supported by the finding that improvement of psychotic symptoms occurs within the first week of treatment and shows a progressive increase over the subsequent weeks. For example, Agid et al. (2003) examined 42 double-blind, comparator-controlled studies (>7000 patients) using a meta-analysis technique. They found that psychotic symptoms improved within the first week of treatment and showed a progressive improvement over subsequent weeks, with the overall pattern of improvement approximating an exponential curve. Leucht et al. (2005) analyzed a large homogeneous database of original patient data from 7 randomized, double-blind studies of the efficacy of amisulpride in patients with schizophrenia spectrum disorders and found the same results. More improvement occurs in the first few days than in any later period of equal duration (Leucht et al., 2005). Subsequent studies show that the onset occurs within the first day, contemporaneous with the blockade of dopamine receptors (Kapur et al., 2005), and early nonimprovement (<20% reduction in Brief Psychiatric Rating Scale total score at 1 week) predicts nonresponse at 4 weeks (Correll et al., 2003).

Animal models play an important role in delineating the time course of antipsychotic action and related behavioral mechanisms (Abekawa et al., 2007; Sun et al., 2009). Among many animal models of antipsychotic drugs, the phencyclidine (PCP)-induced hyperlocomotion model seems especially useful for this purpose. First, the PCP model is sensitive to antipsychotic action. Antipsychotic drugs, both typical (haloperidol), and atypical (clozapine, olanzapine, risperidone, aripiprazole) acutely...
inhibit hyperlocomotion induced by PCP in rodents. Atypical drugs are less likely to cause extrapyramidal motor syndromes (EPS) and sustained prolactin elevation in comparison to typicals. They also show a preferential inhibition on the PCP-induced hyperlocomotion over the amphetamine-induced hyperlocomotion, whereas typicals do not seem to possess this preference. Thus, the PCP model is useful in distinguishing different classes of antipsychotics (Gleeson and Shannon, 1997; Maurel-Remy et al., 1995; Millan et al., 1999). Second, repeated treatment of antipsychotic drugs progressively potentiates the inhibition of the PCP-induced hyperlocomotion across multiple drug testing sessions and prolonged this action within sessions (Sun et al., 2009), a time course of behavioral changes closely mimicking clinical effects. This property is not shared by antidepressants or anxiolytics (Sun et al., 2009). Therefore, it appears that the repeated PCP-induced hyperlocomotion model could serve as a valid model for the investigation of the neurobiological and behavioral mechanisms of action of repeated antipsychotic treatments.

2.2. Drugs

The injection solution of haloperidol (HAL, 5.0 mg/ml ampoules, SicoC Pharmaceuticals, Inc., Irvine, CA) was obtained by mixing drugs with sterile water. Phencyclidine hydrochloride (PCP, a gift from NIDA Drug Supply Program) and clozapine (CLZ, a gift from NIMH Drug Supply Program) were dissolved in 0.9% saline and 1.0% glacial acetic acid in distilled water, respectively. We chose haloperidol (0.05 mg/kg, sc) and clozapine (10.0 mg/kg, sc) because they are clinically relevant doses based on the dopamine D2 receptor occupancy data (50–75% occupancy) (Kapur et al., 2003) and animal behavioral assessment of antipsychotic activity (Li et al., 2010, 2011). The dose for PCP was 3.2 mg/kg, which has been shown to induce a robust hyperlocomotion effect without causing severe stereotypy (Gleeson and Shannon, 1997; Kalinichev et al., 2008; Sun et al., 2009). Haloperidol, clozapine and phencyclidine were administered subcutaneously.

2.3. Locomotor activity apparatus

Sixteen activity boxes were housed in a quiet room. The boxes were 48.3 cm × 26.7 cm × 20.3 cm transparent polycarbonate cages, which were similar to the home cages but were each equipped with a row of 6 photocell beams (7.8 cm between two adjacent photobeams) placed 3.2 cm above the floor of the cage. A computer detected the disruption of the photocell beams and recorded the number of beam breaks. All experiments were run during the light cycle from 9 am to 4 pm.

2.4. Experimental procedure

Thirty-two rats were randomly assigned to one of four groups (n = 8/group): vehicle (water) + vehicle (saline, SAL), vehicle (water) + PCP, haloperidol (0.05 mg/kg) + PCP, clozapine (10.0 mg/kg) + PCP. After two days of habituation to the testing room and the testing boxes (30 min/day for 2 days), the drug test days started. On the first drug day, rats were brought to the testing room, and injected with vehicle (sterile water), haloperidol (0.05 mg/kg), or clozapine (10.0 mg/kg). They were then immediately placed in locomotor activity boxes for 30 min. At the end of the 30-min testing, rats were taken out and injected with either 0.9% saline (sc) or PCP (3.2 mg/kg, sc) and placed back in the boxes for another 90 min. Locomotor activity (number of photobeam breaks) was measured in 5 min intervals throughout the entire 120-min testing session. Half of rats from each group (4/group) were randomly selected and sacrificed immediately after the end of the 90 min testing for acute c-Fos assay. The remaining rats were repeatedly tested for another 4 days (a total of 5 tests) and sacrificed at the end of the last drug test day.

2.5. c-Fos immunohistochemistry

Immediately after the locomotor activity test, all rats were anesthetized with sodium pentobarbital (100.0 mg/kg) and then perfused with 4% paraformaldehyde. Brains were post-fixed and cryoprotected in 30% sucrose, and coronal sections (40 μm) were cut on a cryostat. Procedures for Fos immunohistochemistry followed the protocol by Zhao and Li (2010). Briefly, sections were incubated with a rabbit polyclonal anti-c-Fos (Ab-5, PC38) antibody raised against residues 4–17 of human c-Fos (1:2000, Calbiochem, CA, USA) for 48 h at 4 °C. Sections were then incubated with a biotinylated goat anti-rabbit secondary antibody (Vector Laboratories) for 48 h, followed by the avidin–biotin horseradish peroxidase complex (1:200, Vector Laboratories, Burlingame, CA, USA) for 60 min at room temperature. The immunoreaction was visualized with peroxidase substrate (DAB Substrate Kit for Peroxidase, Vector Laboratories). After staining, sections were mounted on gelatin-coated slides, air-dried, dehydrated and coverslipped. As a control, the primary antibody was substi-

2.1. Animals

Male Sprague–Dawley rats (220–250 g upon arrival, Charles River, Portage, MI) were housed in pairs in transparent polycarbonate cages (48.3 cm × 26.7 cm × 20.3 cm) under 12-hr light/dark cycle (lights on from 6:30 am to 6:30 pm), with food and water available ad libitum. All animals were maintained in our colony with a controlled temperature (21 ± 1 °C) and a relative humidity of 55–65%. Animals were allowed at least one week of habituation to the animal facility before being used in experiments. All procedures were approved by the Institutional Animal Care and Use Committee at the University of Nebraska-Lincoln.
Directed with normal rabbit serum. No corresponding nucleus or cytoplasm was immunostained in the control.

2.6. Fos-immunoreactive (Fos-I) cell counting

Photomicrographs were captured with a digital camera (INFINITY lite, Canada) equipped with an Olympus CX41RF microscope (Japan) using ×10 objective lens. Fos-I cells characterized by clearly stained nuclei was counted bilaterally in one section with comparable anatomical levels across the treatment groups. The brain regions analyzed included the neural sites that were either implicated in the action of PCP and/or in the regulation of locomotor activity [e.g., the medial prefrontal cortex (mPFC), nucleus accumbens shell (NAsh), nucleus accumbens core (NAc), dorsolateral striatum (DLSt), ventral part of lateral septal nucleus (LSv), medial amygdaloid nucleus (MeA), central amygdaloid nucleus (CeA), and ventral tegmental area (VTA)]. The levels of brain slices were: Bregma 3.00 mm for mPFC, 1.92 mm for NAsh, NAc and DLSt, 1.44 mm for LSv, −2.92 mm for MeA and CeA, −6.24 mm for VTA according to Paxinos and Watson (2007) (Figure 1). With the help of ImageJ software (developed at the US National Institutes of Health), cell counts were made within a 680 × 510 μm^2 unit area of each interest region by an experimenter blind to the treatment condition. The images were thresholded and then analyzed. In a given area from distinct treatments, the images were thresholded to the same value by means of eliminating background and noise staining to ensure that the Fos-I cells were selected. The number of Fos-I nuclei of a given brain region from bilateral sites per rat was averaged. The values from four rats of each treatment group were averaged to obtain the final mean ± SEM.

2.7. Statistical analysis

Data for locomotor activity and the number of c-Fos immunoreactive cells were expressed as mean ± SEM and analyzed using a two-way analysis of variance (ANOVA) with treatment conditions (VEH + VEH, VEH + PCP, HAL + PCP, CLZ + PCP) × test days (Day1, Day5) as between-subject factors, followed by post-hoc Tukey tests to detect two-group difference. Locomotor activity data from each daily test were analyzed using a factorial repeated measures ANOVA with the between-subjects factor being the treatment conditions (“Treatment”, e.g. vehicle, HAL or CLZ in combination with vehicle or PCP), and the within-subjects factor being the 5-min time block (“Block”, e.g. block for 90 min after PCP injection). A one-way ANOVA was used to test two-group difference where appropriate. The independent-samples T test was used to compare the acute and repeated effect of different treatment groups. A conventional two-tailed level of significance at the 0.05 level was required. Percent inhibition was calculated by subtracting the motor activity of the HAL/CLZ + PCP group (T) from the motor activity of the VEH + PCP group (P), dividing by the motor activity of the VEH + PCP group, and multiplying by 100[(P − T)/P × 100].

3. Results

3.1. Repeated HAL or CLZ treatment potentiated the inhibition on the PCP-induced hyperlocomotion

On day 1, PCP significantly increased the mean motor activity during the 90-min testing period compared to the vehicle treatment [Figure 2, F(1,12) = 25.14, p < 0.001, post-hoc Tukey tests, p < 0.001 vs. vehicle]. This psychomotor stimulating effect was significantly attenuated by pretreatment with HAL (p = 0.008) and CLZ (p = 0.042). However, in comparison to the vehicle controls, rats treated with HAL + PCP and CLZ + PCP still had significantly higher motor activity (p = 0.004 versus HAL, p < 0.001 versus CLZ), suggesting that the attenuation at the tested doses was not complete.

Across the 5 drug test days, repeated PCP treatment tended to progressively increase locomotor activity. In contrast, repeated HAL and CLZ pretreatment progressively enhanced their efficacy in inhibiting PCP-induced hyperlocomotion. A two-way repeated measures ANOVA revealed a main effect of “Treatment” [F(3,12) = 90.31, p < 0.001], no main effect of “Day” [F(4,48) = 1.53, p = 0.21], but a significant interaction between “Treatment” and “Day” [F(12,48) = 1.89, p = 0.046]. The enhanced inhibition by repeated HAL and CLZ treatment was also revealed by the percent inhibition measure. According to this measure, HAL reduced PCP-induced hyperlocomotion by 45% on day 1, but 77% on day 5. Similarly, CLZ reduced PCP-induced hyperlocomotion by 29% on day 1, but up to 49% on day 5.
3.2. Repeated HAL or CLZ treatment prolonged the time course of the inhibitory action on PCP-induced hyperlocomotion within session

Figure 3 shows the time course (measured in 5-min blocks for the 90-min period after PCP administration) of the effects of HAL or CLZ pretreatment on PCP-induced hyperlocomotion on the first and last days of drug testing. The two-way repeated measures ANOVA revealed a main effect of “Treatment” \([F_{(3, 12)} = 25.14, p < 0.001\) for day 1; \(F_{(3, 12)} = 18.55, p < 0.001\) for day 5], a main effect of “Time” \([F_{(17, 204)} = 4.63, p < 0.001\) for day 1; \(F_{(17, 204)} = 8.52, p < 0.001\) for day 5], and a significant interaction between “Treatment” and “Time” \([F_{(51, 204)} = 2.32, p < 0.001\) for day 1; \(F_{(51, 204)} = 5.38, p < 0.001\) for day 5]. With repeated treatment, HAL and CLZ prolonged their inhibition of PCP-induced hyperlocomotion. For example, on day 1, the significant inhibitory effect of HAL and CLZ started at the 15-min testing point after the PCP injection, and lasted for the remainder of the test session (Figure 3a, all \(p < 0.05\) in comparison to the vehicle + PCP group). On day 5, the significant inhibition advanced to the 10-min point (Figure 3b, all \(p < 0.05\)).

3.3. Effects of acute HAL or CLZ treatment on PCP-induced c-Fos immunoreactivity

A one-way ANOVA revealed a significant effect in the mPFC \([F_{(3, 12)} = 27.64, p < 0.001\], NAs \([F_{(3, 12)} = 59.14, p < 0.001\], NAc \([F_{(3, 12)} = 14.03, p < 0.001\], DLSt \([F_{(3, 12)} = 104.18, p < 0.001\], LSv \([F_{(3, 12)} = 24.14, p < 0.001\], CeA \([F_{(3, 12)} = 77.04, p < 0.001\], VTA \([F_{(3, 12)} = 250.05, p < 0.001\). In comparison to the vehicle treatment, acute PCP treatment significantly increased the number of c-Fos positive cells in the mPFC \((p < 0.001\), NAs \((p < 0.001\), NAc \((p = 0.016\), LSv \((p = 0.021\), CeA \((p < 0.001\) and VTA \((p < 0.001\), while having no detectable effect in the DLSt and MeA (Figure 4a). Acute HAL pretreatment further increased c-Fos expression induced by PCP in the NAs, NAc and VTA (all \(p < 0.05\), \(p < 0.05\), \(p < 0.05\)).
Haloperidol and clozapine treatment of phencyclidine-induced hyperlocomotion

Figure 4. Effects of acute treatment of PCP alone (a), and in combination with haloperidol or clozapine (b) on c-Fos expression in rat brain. Data were expressed as mean ± SEM. *p < 0.05 versus VEH + VEH control, #p < 0.05 versus VEH + PCP group.

but reduced it in the CeA (p = 0.007) (Figure 4b). HAL itself also increased c-Fos expression in the DLSt where PCP had little effect. Acute CLZ pretreatment significantly increased c-Fos expression induced by PCP in the LSv (p = 0.002) and VTA (p < 0.001), but reduced it in the mPFC (p = 0.002) (Figure 4b).

Table 1 summarizes the distinct effects of acute HAL or CLZ pretreatment on PCP-induced c-Fos expression. Both HAL and CLZ shared a common action in the VTA in enhancing the PCP-induced c-Fos expression.

3.4. Effects of repeated HAL or CLZ treatment on PCP-induced c-Fos immunoreactivity

A one-way ANOVA revealed a significant effect in the mPFC [F(3, 12) = 26.62, p < 0.001], NAs [F(3, 12) = 42.28, p < 0.001], NAc [F(3, 12) = 35.76, p < 0.001], LSv [F(3, 12) = 62.71, p < 0.001], and VTA [F(3, 12) = 51.64, p < 0.001]. Similar to the acute effect, repeated PCP treatment significantly increased the number of c-Fos positive cells in the mPFC (p < 0.001), NAs (p = 0.036), LSv (p < 0.001), CeA (p < 0.001) and VTA (p = 0.023) (Figure 5a). Repeated HAL treatment resulted in an increase in PCP-induced c-Fos in the NAs and VTA (all ps < 0.001), while reduced it in CeA (p < 0.001) (Figure 5b). Repeated CLZ further increased PCP-induced c-Fos in the LSv (p = 0.006), CeA (p < 0.001) and VTA (p = 0.001), while reduced it in the mPFC (p = 0.004) (Figure 5b).

Table 2 summarizes the effects of repeated HAL or CLZ treatment on PCP-induced c-Fos expression in rat brain.

Table 2. Effects of repeated HAL or CLZ pretreatment on PCP-induced c-Fos expression in rat brain.

In comparison to acute effects (day 1), repeated treatment (day 5) resulted in a reduction in c-Fos immunoreactivity in most, but not all brain areas (Figure 6). The two-way ANOVA revealed a main effect of “Day” for mPFC [F(1, 24) = 12.35, p = 0.002], NAs [F(1, 24) = 36.53, p < 0.001], NAc [F(1, 24) = 8.05, p = 0.009], LSv [F(1, 24) = 70.54, p < 0.001], and VTA [F(1, 24) = 91.41, p < 0.001], and VTA [F(3, 24) = 71.14, p < 0.001]. Specifically, the number of c-Fos positive cells was significantly reduced from day 1 to day 5 in the LSv with VEH + VEH (Figure 6a, p = 0.007); in the mPFC (p = 0.041), NAs (p = 0.006), NAc (p = 0.004), CeA (p = 0.006) and VTA (p = 0.003) with VEH + PCP (Figure 6b); in the mPFC (p = 0.015), NAs (p = 0.011), LSv (p < 0.001), CeA (p < 0.001) and VTA (p = 0.001) with HAL + PCP (Figure 6c); and in the mPFC (p = 0.048), NAs (p = 0.003), DLSt (p = 0.02), LSv (p = 0.003), CeA (p = 0.007) and VTA (p = 0.016) with CLZ + PCP (Figure 6d).

Treatment mPFC NAs NAc LSv MeA CeA VTA
VEH + PCP Δ Δ Δ Δ Δ Δ
HAL + PCP ↑ ↑ ↑ ↑ ↑ ↑
CLZ + PCP ↓ ↓ ↓ ↓ ↓ ↓
Δ, increase; †, no significant effect relative to VEH + VEH control; ††, increase; †, decrease; —, no significant effect relative to VEH + PCP control.

3.5. Differences in c-Fos expression between acute and repeated drug treatment

Table 2 summarizes the effects of repeated HAL or CLZ treatment with haloperidol or clozapine (b) on c-Fos expression in rat brain. Data were expressed as mean ± SEM. *p < 0.05 versus VEH + VEH control, #p < 0.05 versus VEH + PCP group.

Figure 5. Effects of repeated treatment of PCP alone (a), and in combination with haloperidol or clozapine (b) on c-Fos expression in rat brain. Data were expressed as mean ± SEM. *p < 0.05 versus VEH + VEH control, #p < 0.05 versus VEH + PCP group.
3.6. c-Fos identification of brain regions involved in the potentiation of inhibitory effect of repeated HAL or CLZ treatment on PCP-induced hyperlocomotion

Based on the changes of c-Fos expression, a brain region had to meet the following three criteria in order to be considered as part of the neural circuit(s) by which HAL and CLZ act to achieve their potentiated inhibitory effect on the PCP-induced hyperlocomotion. First, it should show altered c-Fos expression in response to both acute and repeated treatment of PCP. Second, it should show altered PCP-induced c-Fos expression in response to acute and repeated treatment of HAL or CLZ. Third, it should show a change in c-Fos expression from day 1 to day 5. Based on these criteria, three regions including NAs, CeA and VTA could be classified as part of the HAL neural circuit, and three regions including mPFC, LSv and VTA as part of the CLZ neural circuit. Table 3 summarizes the results of how these regions met these criteria.

Table 3. Brain regions considered to be part of the neural circuit through which HAL and CLZ act to achieve their potentiated inhibitory effect on PCP-induced hyperlocomotion using neuronal marker of c-Fos.

<table>
<thead>
<tr>
<th>Brain regions</th>
<th>mPFC</th>
<th>NAs</th>
<th>LSv</th>
<th>CeA</th>
<th>VTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1 (PCP effect)</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
<td>Δ</td>
</tr>
<tr>
<td>Criterion 2 (response to HAL)</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Criterion 2 (response to CLZ)</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Criterion 3 (change from acute to repeated treatment)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Δ, increase relative to VEH + VEH control; ↑, increase; ↓, decrease relative to VEH + PCP treatment; +, change from acute to repeated treatment.

4. Discussion

The present study differs from most other studies in the literature in which it examined the repeated effects of HAL and CLZ treatment on the neuronal activities (as indexed by the c-Fos expression) in a validated animal model of antipsychotic activity (i.e. the PCP hyperlocomotion model). Most studies in this field only focus on the acute effects of antipsychotic treatment in normal animals (Robertson and Fibiger, 1992; Robertson et al., 1994). The present study filled these knowledge gaps. Behaviorally, we replicated our previous finding that repeated antipsychotic treatment progressively potentiates the inhibition of the PCP-induced hyperlocomotion, a behavioral pattern closely resembling the characteristics of time course of antipsychotic actions in the clinic (Sun et al., 2009). Furthermore, we delineated possible neuronal mechanisms of the time course of antipsychotic action. We showed that both acute and repeated treatment of HAL significantly increased PCP-induced c-Fos expression in the NAs and VTA, while reduced it in the CeA. In contrast, CLZ treatment enhanced PCP-induced c-Fos in the LSv and VTA, but reduced it in the mPFC. More importantly, the effects of HAL and CLZ in these brain areas underwent a time-dependent reduction from day 1 to day 5, consistent with their effects at the behavioral levels. These findings indicate that these brain areas are the likely sites upon which HAL or CLZ act on to inhibit the psychomotor activation effect of PCP. Thus, we suggest that HAL may achieve its potentiated inhibitory effect on PCP-induced hyperlocomotion via acting on the NAs, CeA and VTA, while CLZ does so via the mPFC, LSv and VTA.

Phencyclidine (PCP) has been extensively used to mimic the positive and negative symptoms of schizophrenia in various animal models (Javitt and Zukin, 1991; Mouri et al., 2007; Sams-Dodd, 1998). Among many behavioral tasks, the hyperlocomotion model is commonly used as a screening tool for the
Haloperidol and clozapine treatment of phencyclidine-induced hyperlocomotion 181
detection of antipsychotic activity. When given acutely, many antipsychotics inhibit the hyperlocomotor activity induced by acute administrations of PCP (Gleason and Shannon, 1997; Millan et al., 1999). However, this acute effect is limited in its ability to capture the intrinsic antipsychotic efficacy of a drug and mimic the time course of antipsychotic treatment in the clinic (Agid et al., 2003; Leucht et al., 2005). This is because that the inhibition of PCP-induced hyperlocomotion is not exclusively the property of antipsychotics. Drugs that antagonize 5-HT_{2A} receptors but are not antipsychotics such as LY53857, ritanserin, ketanserin, fananserin, and MDL 100,907 also block PCP-induced hyperlocomotion (Gleason and Shannon, 1997; Millan et al., 1999). Therefore, the neural basis of PCP effect or antipsychotic effect identified through c-Fos immunocytochemistry based on the acute treatment model is questionable. On the other hand, repeated administration of PCP induces an array of behavioral and neurochemical changes that mimic those found in schizophrenia better than acute administration of PCP (Jentsch and Roth, 1999). More importantly, repeated antipsychotic treatment, but not anxiolytic (e.g. chlordiazepoxide) or antidepressant treatment (e.g. fluoxetine and citalopram) progressively potentiates the inhibition of the PCP-induced hyperlocomotion across sessions and prolongs this action within sessions (Redmond et al., 1999; Sun et al., 2009). Because clinical antipsychotic treatment also requires medications be taken for a prolonged period of time, and the overall antipsychotic effects show an exponential curve and reach their full therapeutic benefit in 2–3 weeks (Agid et al., 2006), we postulated that the repeated PCP-induced hyperlocomotion model based on a repeated antipsychotic treatment regimen could serve as a valid model to investigate the neurochemical and neural mechanisms of action of antipsychotic drugs. This was the rationale upon which the current c-Fos study was based on, and we believe that the brain regions identified through this approach are behaviorally and neurochemically relevant to the specific action of HAL and CLZ.

Previous work indicates that PCP treatment induces c-Fos expression in the brain in a region-specific manner. Acute PCP treatment is shown to increase c-Fos protein and mRNA expression in the mPFC, piriform, cingulate and insular cortices, nucleus accumbens (NA) and lateral septal nucleus (LS) (Gotoh et al., 2002; Habara et al., 2001; Kargieman et al., 2007; Nåkki et al., 1996; Sato et al., 1997; Sugita et al., 1996). In the present study, we also found increased c-Fos expression in the mPFC, NA and LS. In addition, we found a c-Fos increase in the VTA and CeA, suggesting that the VTA and CeA, together with the mPFC, NA and LS, are parts of a neural network upon which PCP acts to achieve its behavioral effects. Indeed, PCP treatment was shown to cause a hyperlocomotion, and this motor-stimulating effect was attenuated by pharmacological lesions of the mPFC (Jentsch et al., 1998). Direct infusion of PCP into the NA also increased locomotor activity (McCullough and Salamone, 1992). Systemic and site-directed injection of PCP to the NA produced an increase in extracellular dopamine levels in the NA (Carboni et al., 1989; Hernandez et al., 1988; McCullough and Salamone, 1992; Millan et al., 1999). Depletion of dopamine by microinjection of 6-hydroxydopamine (6-OHDA) into the NA or VTA inhibited PCP-induced hyperlocomotion (Abekawa et al., 1993; Steinpreis and Salamone, 1993). Finally, systemic administration of HAL significantly reduced the hyperlocomotion induced by intra-accumbens injection of PCP (McCullough and Salamone, 1992). All these findings suggest the hypothesis that PCP affects multiple brain areas including the mPFC, NA (shell and core), CeA and VTA to achieve its psychotomimetic effect.

If this hypothesis is correct, we would also expect that pretreatment of HAL or CLZ should alter PCP-induced c-Fos expression in these brain areas. Indeed, we found that both acute and repeated pretreatment with HAL significantly increased PCP-induced c-Fos expression in the NAs and VTA, while reduced it in CeA. Similarly, CLZ pretreatment further increased PCP-induced c-Fos in the LSv and VTA, while reduced it in the mPFC (Figs. 4b, 5b). Interestingly, the c-Fos expression in these areas underwent a time-dependent reduction from day 1 to day 5, consistent with the observed HAL and CLZ potentiated inhibition of PCP-induced hyperlocomotion from day 1 to day 5. This pattern of change in c-Fos expression over the repeated treatment period has been reported before in the studies of drugs of abuse (Hope et al., 1992; Persico et al., 1993; Rosen et al., 1996; Slodzian et al., 1999), antipsychotic drugs (Atkins et al., 1999; Coppens et al., 1995; Hiroi and Graybiel, 1996; Sebens et al., 1995) and chronic stress (Melia et al., 1994; Stamp and Herbert, 1999; Uemomo et al., 1997). The exact mechanism responsible for this time-dependent c-Fos reduction is still not clear. It may be an intrinsic neuroadaptation of the brain in response to various stimuli.

The mechanism of action of PCP is complex (Jentsch and Roth, 1999). Besides blocking NMDA receptor channels, PCP can enhance serotonergic, dopaminergic and glutamatergic neurotransmission in the NA and PFC (Abekawa et al., 2007; Maurel-Remy et al., 1995; Millan et al., 1999). Because typical antipsychotics with preferential action on D_{2} receptors such as HAL, and atypicals drugs with mixed D_{2}-like/5-HT_{2A} antagonism such as CLZ and olanzapine all inhibit the PCP-induced hyperlocomotion (Gleason and Shannon, 1997; Maurel-Remy et al., 1995; Millan et al., 1999), and other 5-HT_{2A} antagonists such as LY53857, ritanserin, ketanserin, fananserin, and MDL 100,907, but not 5-HT_{4} or 5-HT_{3} antagonists such as WAY 10,655 and zatosetron, also reduce the PCP-induced hyperlocomotion (Gleason and Shannon, 1997; Millan et al., 1999), it has been suggested that the inhibition of PCP-induced hyperlocomotion is primarily due to multiple actions of antipsychotics on dopamine D_{2} and 5-HT_{2A} receptors (Gleason and Shannon, 1997; Maurel-Remy et al., 1995; Millan et al., 1999). This hypothesis is further supported by the findings that depletion of 5-HT in the NA by parchloroamphetamine abolishes PCP-induced hyperlocomotion (Millan et al., 1999; M100907, a selective 5-HT_{2A} receptor antagonist, attenuated PCP-induced c-Fos in the NA, insular cortex and piriform cortex (Habara et al., 2001); and blockade of dopamine D_{2} receptors reduced the extracellular dopamine levels in the NA (McCullough and Salamone, 1992). So for HAL, we suggest that its potentiated inhibition of the PCP-induced hyperlocomotion is due to its D_{2} antagonism in the NA, CeA or VTA which leads to a reduction of PCP-induced dopamine increase. Repeated administration of CLZ causes a down-regulation of 5-HT_{2A} receptors in the PFC (Doat-Meyerhoeter et al., 2005), microinjection of PCP into the prefrontal cortex elicits hyperlocomotion (Abekawa et al., 2007), we speculate that CLZ may enhance its inhibition of the PCP-induced hyperlocomotion by down-regulating 5-HT_{2A} receptors and concomitantly decreasing PCP-induced glutamate, dopamine and 5-HT increases in the mPFC, LSv and VTA (Abekawa et al., 2007).

In conclusion, using the Fos immunoreactivity as markers of neuronal activation, we showed that typical antipsychotic HAL appears to achieve its potentiated inhibitory effect on the PCP-induced hyperlocomotion primarily via acting on the NA, CeA and VTA, while CLZ works primarily via the mPFC, LSv and VTA. It should be pointed out that while c-Fos is an important step in illuminating the differences in neuronal actions between haloperidol and clozapine in this task, these data should be regarded as one piece of evidence toward delineating the neural basis of these drug effects. Thus, other indices such as neurotransmitter release, receptor density changes should be used to validate the current findings in future work.

Acknowledgments — This study was funded by the NIMH grant (R01MH085635) to Professor Ming Li.

References

Abekawa T, Ito K, Koyama T. Different effects of a single and repeated administration of clozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the rat medial prefrontal cortex at short- and long-term withdrawal from this antipsychotic. Nau-

Agid O, Kapur S, Arenovich T, Zipursky RB. Delayed-onset hypothe-
sis of antipsychotic action; a hypothesis tested and rejected. Arch
Gen Psychiatry 2003;60:1228–35.

Agid O, Seeman P, Kapur S. The “delayed onset” of antipsychotic ac-
tion—an idea whose time has come and gone. J Psychiatry Neuro-
sci 2006;31:93–100.

Atkins JB, Chlan-Fourney J, Nye HE, Hiroi N, Carlezon Jr WA, Nes-
tler EJ. Region-specific induction of deltaFosB by repeated admin-
istration of typical versus atypical antipsychotic drugs. Synapse

Carbony E, Imperato A, Perazzini L, Di Chiara G. Amphetamine, co-
caine, phencyclidine and nomifensine increase extracellular do-
pamine concentrations preferentially in the nucleus accumbens of

Coppen HG, Sebens JB, Korf J, Catalyse, Fos protein, and dopamine
receptor occupancy after long-term haloperidol treatment. Pharm-
acol Biochem Behav 1995;51:175–82.

Correll CU, Malhotra AK, Kaushik S, McMeniman M, Kane JM. Early
prediction of antipsychotic response in schizophrenia. Am J Psy-

De Leonibus E, Mele A, Oliverio A, Pert A. Distinct pattern of c-fos
mRNA expression after systemic and intra-accumbens amphet-

Doat-Meyerhofer MM, Hard R, Winter JC, Rabin RA. Effects of clo-
zapine and 2,5-dimethoxy-4-methylamphetamine [DOM] on
5-HT2A receptor expression in discrete brain areas. Pharmacol

Emsley R, Rabinowitz J, Medori R. Time course for antipsychotic treat-
ment response in first-episode schizophrenia. Am J Psychiatry

French ED. Effects of N-allylnormetazocine (SKF 10,147) on
phencycli-
dine, and other psychomotor stimulants in the rat following 6-hy-
droxydopamine lesion of the ventral tegmental area. Neurophar-

Gleason SD, Shannon HE. Blockade of phencyclidine-induced hyper-
locomotion by olanzapine, clozapine and serotonin receptor sub-
type selective antagonists in mice. Psychopharmacology (Berli
1997;129:79–84.

Glick ID, Shkedy Z, Schreiner A. Differential early onset of therapeu-
tic response with risperidone vs conventional antipsychotics in
patients with chronic schizophrenia. Int Clin Psychopharmacol

Gotoh L, Kawamori N, Nakahara T, Hondo H, Motomura T, Kato E.
Kanchiku I, Kuroki T, Hirano M, Uchimura H. Effects of the ade-
nocortin-1 (AC1) receptor agonist N6-cyclopentyladenosine on phen-
cyclidine-induced behavior and expression of the immediate-early
genes in the discrete brain regions of rats. Brain Res Mol Brain Res
2002;100:1–12.

Hataba T, Hamamura T, Miki M, Ohashi K, Kuroda S. M100907, a
selective 5-HT(2A) receptor antagonist, attenuates phencyclidine-
duced Fos expression in discrete regions of rat brain. Eur J Pharm-
col 2001;417:89–94.

Hernandez L, Auerbach S, Hoelbel BC. Phencyclidine (PCP) injected
in the nucleus accumbens increases extracellular dopamine and sero-

Hiroi N, Graybiel AM. Atypical and typical neuroleptic treatments in-
duce distinct programs of transcription factor expression in the

Hope B, Kosofsky B, Hyman SE, Nestler EJ. Regulation of immediate
eye gene expression and AP-1 binding in the rat nucleus accum-

Javitt DC, Zukin SR. Recent advances in the phencyclidine model

Jentsch JD, Roth RH. The neuropsychopharmacology of phen-
cyclidine: from NMDA receptor hypofunction to the dopa-
mine hypothesis of schizophrenia. Neuropsychopharmacology

Jentsch JD, Tran A, Taylor JR, Roth RH. Prefrontal cortical involve-
ment in phencyclidine-induced activation of the mesolimbic
dopamine system: behavioral and neurochemical evidence. Psycho-
pharmacology (Berli) 1998;138:89–95.


Umemoto S, Kawai Y, Ueyama T, Senba E. Chronic glucocorticoid administration as well as repeated stress affects the subsequent acute immobilization stress-induced expression of immediate early genes but not that of NGFI-A. Neuroscience 1997;80:763–73.
